Proof systems for #SAT based on restricted
circuits

Florent Capelli'

Université de Lille, CRIStAL, INRIA/CNRS

Abstract. In this work, we extend a well-known connection between
linear resolution refutation and read-once branching program by con-
structing proof systems based on syntactically restricted circuits studied
in the field of Knowledge Compilation. While our approach only yield
proof systems that are weaker than resolution, they may be used to de-
fine proof systems for problems such as #SAT or maxSAT. This is a
work in progress.

Ezxtended abstract. It is well-known that a linear resolution refutation of a CNF
formula F' can be seen as a read-once branching program B whose sinks are
labelled by clauses of F' and such that every path from the source of B to a sink
labelled with ¢ € F corresponds to an assignment of the variables of F' that does
not satisfy ¢, as depicted on Figure 1.

Fig. 1. Refutation of F = C1 AC2 AC3 =z Ay A (—z V —y) and its transformation.
Solid arrows correspond to fixing the value of the variable to 1, dashed arrows to 0.

By slightly changing the point of view, we can see this type of branching
programs as a propositional proof system in the Cook—Reckhow sense as one can
check in polynomial time if a given branching program B is indeed a refutation
of a CNF formula. It is enough to check that the branching program is read-once,
that is, there is no source-sink path containing twice the same variable and that
for every clause ¢ € F' and every literal ¢ € ¢, every path from the source of B
to a ¢ labelled clause tests —£.

Another way of interpreting this result is to consider the following transfor-
mation of a CNF-formula F':

F= /\ cV S

ceF



where s, is a fresh selector variable for every clause ¢ € F'. Now, we can see B as
a circuit computing some Boolean function b on variables {s. | ¢ € F'} Uvar(F)
by turning every sink of B labelled with ¢ into a node testing s. and returning
1 if s, = 1 and 0 otherwise, as depicted on Figure 1. It turns out that B is a
refutation of F if and only if we have F = b and that if we plug all s, to 0 in
b, then we have a Boolean function identically equal to 0. Both properties can
easily be checked in polynomial time on branching programs.

All this reasoning can be abstracted independently from the representation
of b. Indeed, assume we are given a Boolean function b on variables var(F)U{s. |
¢ € F}. If the representation of b is good enough, we may be able to check in
polynomial time whether F = b. Now, if we are also able to check in polynomial
time where b evaluates to 0 when we plug all s. to 0, then we can consider b
as a proof that F' is not satisfiable. We can actually do much more. Assume we
can count the number M of models of b when we plug all s. to 0, then F' has
at most M models. In this case, b can be seen as a proof that F' has at least M
models in the sense that it can be checked in polynomial time by a third party.

Such good representations actually already exist in the literature in the field
of Knowledge Compilation. They naturally induce proof systems for SAT but
it seems that they are not much stronger than linear resolution. However, they
also naturally induce proof systems for #SAT or max SAT and other aggregation
problems for which there do not seem to exist much alternative. It turns out
that many existing tools for solving #SAT actually already implicitly construct
a circuit that can be seen as a proof on the number of models of the input CNF.

In this talk, we propose to present this generic construction of proof systems
for aggregation problems using circuits and develop the example on a particular
family of circuits known as decision DNNF that strictly generalises branching
programs and explain how such proofs could be easily extracted from the existing
tools for #SAT.

State of the work. This is an ongoing unpublished work. I have trouble judging
the relevance of these observations for the proof complexity community and I
would enjoy the opportunity of this workshop to discuss it.



