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Abstract
Vector Addition Systems with States (VASS) provide a well-known
and fundamental model for the analysis of concurrent processes,
parameterized systems, and are also used as abstract models of
programs in resource bound analysis. In this paper we study the
problem of obtaining asymptotic bounds on the termination time of
a given VASS. In particular, we focus on the practically important
case of obtaining polynomial bounds on termination time. Our main
contributions are as follows: First, we present a polynomial-time al-
gorithm for deciding whether a given VASS has a linear asymptotic
complexity. We also show that if the complexity of a VASS is not
linear, it is at least quadratic. Second, we classify VASS according to
quantitative properties of their cycles. We show that certain singu-
larities in these properties are the key reason for non-polynomial
asymptotic complexity of VASS. In absence of singularities, we
show that the asymptotic complexity is always polynomial and of
the formΘ(nk ), for some integer k ≤ d , where d is the dimension of
the VASS. We present a polynomial-time algorithm computing the
optimal k . For general VASS, the same algorithm, which is based
on a complete technique for the construction of ranking functions
in VASS, produces a valid lower bound, i.e., a k such that the termi-
nation complexity is Ω(nk ). Our results are based on new insights
into the geometry of VASS dynamics, which hold the potential for
further applicability to VASS analysis.

1 Introduction
Vector Addition Systems with States (VASS) are a fundamental
model widely used in program analysis. Intuitively, a VASS consists
of a finite set of control states and transitions between the control
states, and a set of d counters that hold non-negative integer values,
where at every transition between the control states each counter
is updated by a fixed integer value. A configuration pv of a given

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209191

VASS is determined by the current control state p and the vector v
of current counter values.

One of themost basic problems studied in program analysis is ter-
mination that, given a program, asks whether it always terminates.
For VASS, the problem whether all paths initiated in given con-
figuration reach a terminal configuration is EXPSPACE-complete.
Here, a terminal configuration is a configuration where the compu-
tation is “stuck” because all outgoing transitions would decrease
some counter to a negative value. The EXPSPACE-hardness follows
from [28], and the upper bound from [5, 37]. Contrasting to this,
the problem of structural VASS termination, which asks whether
all configurations of a given VASS terminate, is solvable in polyno-
mial time [24]. This is encouraging, because structural termination
guarantees termination for all instances of the parameters repre-
sented by the counter values (i.e., all inputs, all instances of a given
parameterized system, etc.).

The quantitative variant of the termination question asks
whether a given program terminates in O(f (n)) steps for every
input of size n, where f : N → N is some function. A significant
research effort has recently been devoted to this question in the
program analysis literature: Recent projects include SPEED [18, 19],
COSTA [1], RAML [20], Rank [2], Loopus [33, 34], AProVE [17],
CoFloCo [16], C4B [9]. The cited projects target general-purpose
programming languages with the goal of designing sound (but in-
complete) analyses that work well in practice. The question whether
sound and complete techniques can be developed for restricted
classes of programs (such as VASS), however, has received consid-
erably less attention.

Our contribution. In this work, we study the quantitative vari-
ant of structural VASS termination. The termination complexity of
a given VASS is a function L : N → N ∪ {∞} such that L(n) is
the length of the longest computation initiated in a configuration
pv where all components of v are bounded by n. We concentrate
on polynomial and particularly on linear asymptotic bounds for
termination complexity, which seem most relevant for practical
applications. Our main results can be summarized as follows:

Linear bounds.We show that the problem whether L ∈ Θ(n) is
decidable in polynomial time. Our proof reveals that if the termi-
nation complexity is not linear, then it is at least quadratic (or the
VASS is non-terminating). Hence, there is no VASS with asymptotic
termination complexity “between” Θ(n) and Θ(n2). In addition, for
strongly connected linear VASS, we compute a constant c ∈ Q
(in polynomial time) such that L(n) = cn for n → ∞. Further, a
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void main(uint n) {
uint i = n, j = n;

l1 : while (i > 0) {
i--;
j++;

l2 : while (j > 0 && *)
j--;

} }

p1

p2

(-1,1)

(0,-1)

(0,0)

Figure 1. (a) a program, (b) VASS Aprog

i

j

k
d==ff, d:=tt

d:=ffd==tt

pd=tt

pd=ff

(-1,1,0)

(-1,1,0)

(-1,0,1)

(1,-1,0)

Figure 2. (a) a process template, (b) VASS Acsys

linear VASS always has a ranking function that witnesses the linear
termination complexity; this ranking function is also computable
in polynomial time.

Polynomial bounds. We show that the termination complexity
of a given VASS is highly influenced by the properties of normals
of quasi-ranking functions, see Section 4. We start with strongly
connected VASS, and classify them into the following three types:

(A) Non-terminating VASS.
(B) Positive normal VASS: Terminating VASS for which there

exists a quasi-ranking function such that each component
of its normal is positive.

(C) Singular normal VASS: Terminating VASS for which there
exists a quasi-ranking function such that each component
of its normal is non-negative and (B) does not hold.

This classification is efficient, i.e., we can decide in polynomial time
to which class a given VASS belongs. We show that each type (B)
VASS of dimension d has termination complexity in Θ(nk ), where
1 ≤ k ≤ d , and we show that the k is computable in polynomial
time. Termination complexity of a type (C) VASS is not necessarily
polynomial, and hence singularities in the normal are the key reason
for high asymptotic bounds in VASS. For a given type (C) VASS,
we show how to compute a valid lower bound, i.e., a k such that
the termination complexity is Ω(nk ) (in general, this bound does
not have to be tight). Our tight analysis for type (B) VASS extends
to general (not necessarily strongly connected) VASS where each
SCC determines a type (B) VASS.

Ranking Functions and Completeness. Algorithmically the result
on polynomial bounds is established by a recursive procedure: the
procedure computes quasi-ranking functions which establish that
certain transitions can only be taken a linear number of times; these
transitions are then removed and the algorithm recurses on the
remaining strongly-connected components. We show that if there
is no quasi-ranking function, then the VASS does not terminate, i.e.,
our ranking function construction is complete. To the best of our
knowledge, this is the first completeness result for the construction
of ranking functions for VASS.

Technically, our results are based on new insights into the ge-
ometry of VASS dynamics, some of which are perhaps interesting
on their own and can enrich the standard toolbox of techniques
applicable to VASS analysis.

Motivation and Illustration of our Results. In previous work
we have described automated techniques for the complexity analy-
ses of imperative programs, which use VASS (and extensions) as
backend [33, 34]. For example, our techniques allow to abstract
the program given in Fig. 1 (a) to the VASS Aprog in Fig. 1 (b).
Aprog has two locations p1 and p2, which correspond to the loop
headers of the program. Aprog has dimension two in order to rep-
resent the variables i and j. The transitions of Aprog correspond
to the variable increments/decrements. In contrast to our previous
approaches [33, 34], the analysis in this paper is guaranteed to
compute tight bounds: we obtain the precise linear termination
complexity L(n) = 4n for Aprog and can construct a linear rank-
ing function, e.g., f (p, (i, j)) = 3i + j +w(p), where w(p1) = 0 and
w(p1) = 1 (our construction is not guaranteed to return this ranking
function, but it will always find a linear ranking function).

We illustrate VASSs as models of concurrent systems: Fig. 2 (a)
states a process template. A concurrent system consists of n copies
of this process template. The processes communicate via the
Boolean variable d . The concurrent system is equivalently rep-
resented by the VASS Acsys in Fig. 2 (b). Acsys has two locations
pd=tt and pd=ff, which represent the global state. Acsys has di-
mension three in order to represent the number of processes in the
local states i , j and k . The transitions ofAcsys reflect the transitions
of the process template, e.g., transition (−1, 1, 0) means that one
process moves from state i to j. We are interested in the param-
eterized verification problem, i.e., to study the termination of the
concurrent system for all system sizes n. Our results in this paper
establish L(n) ∈ Θ(n2), i.e., after quadratically many steps of the
concurrent system there is no more process that can take another
step.

Related Work. Results on VASS. The model of VASS [22] or
equivalently Petri nets are a fundamental model for parallel pro-
grams [15, 22] as well as parameterized systems [3, 4, 6]. The ter-
mination problems (counter-termination, control-state termina-
tion) as well as the related problems of boundedness and cover-
ability have been a rich source of theoretical problems that have
been widely studied [7, 13, 14, 28, 31]. The complexity of the ter-
mination problem with fixed initial configuration is EXPSPACE-
complete [5, 28, 37]. Besides the termination problem, the more
general reachability problem where given a VASS, an initial and a
final configuration, whether there exists a path between them has
also been studied [23, 25, 29]. The reachability problem is decid-
able [23, 25, 29], and EXPSPACE-hard [28], and the current best-
known upper bound is cubic Ackermannian [26], a complexity class
belonging to the third level of a fast-growing complexity hierar-
chy introduced in [32]. Functions (non)computable by VASS are
studied in [27]. Our algorithm for computing polynomial bounds
can be seen as the dual (in the sense of linear programming) of the
algorithm of [24]; this connection is the basis for the completeness
of our ranking function construction (we further comment on the
connection to [24] in Section 4).

Ranking functions and extensions. Ranking functions for intrapro-
cedural analysis have been studied widely in the literature. We
restrict ourselves here to approaches which present complete
methods for the construction of linear/polynomial ranking func-
tions [2, 30, 36]; in contrast to this paper these approaches target
general programs and do not show that the non-existence of a lin-
ear/polynomial ranking function implies the non-termination of
the program.
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The problem of existence of infinite computations in VASS has
been studied in the literature. Polynomial-time algorithms have
been presented in [10, 35] using results of [24]. In the more general
context of games played on VASS, even deciding the existence
of infinite computation is coNP-complete [10, 35], and various
algorithmic approaches based on hyperplane-separation technique
have been studied [11, 12, 21].

A full version of this paper is available at arXiv [8].

2 Preliminaries
We use N, Z, Q, and R to denote the sets of non-negative integers,
integers, rational numbers, and real numbers. The subsets of all
positive elements of N, Q, and R are denoted by N+, Q+, and R+.
Further, we use N∞ to denote the set N ∪ {∞} where∞ is treated
according to the standard conventions. The cardinality of a given
setM is denoted by |M |. When no confusion arises, we also use |c |
to denote the absolute value of a given c ∈ R.

Given a function f : N → N, we use O(f (n)) and Ω(f (n)) to
denote the sets of all д : N → N such that д(n) ≤ a · f (n) and
д(n) ≥ b · f (n) for all sufficiently large n ∈ N, where a,b ∈ R+ are
some constants. If h(n) ∈ O(f (n)) and h(n) ∈ Ω(f (n)), we write
h(n) ∈ Θ(f (n)).

Let A,B be arbitrary index sets. Elements of RA are denoted
by bold letters such as u, v, z, . . .. The component of v of index
i ∈ A is denoted by v(i). For a matrix A ∈ RA×B we denote by
A(a,b) the element in row of index a ∈ A and column of index
by b ∈ B, and by A⊤ the transpose of A. If the index set is of
the form A = {1, 2, . . . ,d} for some positive integer d , we write
Rd instead of RA, i.e., for v ∈ Rd we have v = (v(1), . . . , v(d)).
For every c ∈ N, we use c to denote the constant vector where
all components are equal to c . The scalar product of v, u ∈ Rd is
denoted by v · u, i.e., v · u =

∑d
i=1 v(i) · u(i). The other standard

operations and relations on R such as +, ≤, or < are extended to
Rd in the component-wise way. In particular, v is positive if v > 0,
i.e., all components of v are positive. The norm of v is defined by
norm(v) =

√
v(1)2 + · · · + v(d)2.

Half-spaces and Cones. An open half-space of Rd determined by
a normal vector n ∈ Rd , where n , 0, is the setHn of all x ∈ Rd
such that x · n < 0. A closed half-space Ĥn is defined in the same
way but the above inequality is non-strict. Given a finite set of
vectorsU ⊆ Rd , we use cone(U ) to denote the set of all vectors of
the form

∑
u∈U cuu, where cu is a non-negative real constant for

every u ∈ U .

2.1 Syntax and semantics of VASS
In this subsection we present a syntax of VASS, represented as
finite state graphs with transitions labelled by vectors of counter
changes.

Definition 2.1. Let d ∈ N. A d-dimensional vector addition system
with states (VASS) is a pairA = (Q,T ), whereQ , ∅ is a finite set of
states and T ⊆ Q × Zd ×Q is a finite set of transitions such that for
every q ∈ Q there exists p ∈ Q and u ∈ Zd such that (q, u,p) ∈ T .

We denote by maxA the number max(p,u,q)∈T ,1≤i≤d |u(i)|. The
encoding size of A is denoted by ||A|| (the integers representing
counter updates are written in binary).

In our discussion it is often beneficial to express constraints
on transitions using matrix notation. We define the update matrix

U ∈ Zd×T by setting U (i, t) = u(i) for all 1 ≤ i ≤ d and all transi-
tions t = (p, u,p′) ∈ T . We also define the oriented incidence matrix
F ∈ ZQ×T by setting F (p, t) = 1 resp. F (p, t) = −1, if t = (p, u,p′)
resp. t = (p′, u,p) and p′ , p, and F (p, t) = 0, otherwise. We note
that every column of F , corresponding to a transition t , either con-
tains exactly one −1 entry and exactly one 1 entry (in case the
source and target of transition t are different) or only 0 entries (in
case the source and target of transition t are the same).

Example 2.2. VASS Aprog from Fig. 1 (b) has two states p1,p2
and three transitions t1 = (q1, (−1, 1),q2), t2 = (q2, (0, 0),q1), t3 =
(q2, (0,−1),q2). The matrices F andU look as follows:

F =

(
1 −1 0
−1 1 0

)
Here the rows correspond to the states q1,q2 and columns to tran-
sitions t1, t2, t3.

U =

(
−1 0 0
1 0 −1

)
Hence, the columns are the update vectors of transitions t1, t2, t3.

Paths and cycles. A finite path in A of length n is a finite se-
quence π of the form p0, u1,p1, u2,p2, . . . , un ,pn where n ≥ 1 and
(pi , ui+1,pi+1) ∈ T for all 0 ≤ i < n. If p0 = pn , then π is a cycle.
A cycle is simple if all p1, . . . ,pn−1 are pairwise different. The effect
of π , denoted by eff (π ), is the sum u1 + · · · + un . Given a set of
paths P , we denote by eff (P) the sum of effects of all paths in P . Let
Inc = {eff (π ) | π is a simple cycle of A} . The elements of Inc are
called increments.

Given two finite paths α = p0, u1, . . . ,pn and β = q0, v1, . . . ,qm
such that pn = q0, we use α ⊙ β to denote the finite path
p0, u1, . . . ,pn , v1, . . . ,qm . Amulti-cycle inA is a multiset of simple
cycles. The length of a multi-cycle is the sum of lengths of all its
cycles.

Let π be a finite path in A. A decomposition of π into simple
cycles, denoted by Decomp(π ), is a multi-cycle, i.e., a multiset of
simple cycles, defined recursively as follows:
• If π does not contain any simple cycle, then Decomp(π ) is
an empty multiset.
• If π = α ⊙ γ ⊙ β where γ is the first simple cycle occurring
in π , then Decomp(π ) = {γ } ∪ Decomp(α ⊙ β).

Observe that if Decomp(π ) is empty, then the length of π is at most
|Q | −1. Since the length of every simple cycle is bounded by |Q |, the
length of π is asymptotically the same as the number of elements
in Decomp(π ), assuming a fixed VASS A. Considering π ′ to be the
remainder of π after all simple cycles of Decomp(π ) removed by
the above procedure, we obtain eff (π ) = eff (π ′) + eff (Decomp(π )).

Let A = (Q,T ) be a VASS. A sub-VASS of A is a VASS A ′ =
(Q ′,T ′) such thatQ ′ ⊆ Q andT ′ ⊆ T . VASSA is strongly connected
if for every p,q ∈ Q there is a finite path from p to q.

A strongly connected component (SCC) ofA is a maximal strongly
connected sub-VASS of A.

Configurations and computation. A configuration ofA is a pair
pv, where p ∈ Q and v ∈ Nd . The set of all configurations of A is
denoted by C(A). The size of pv ∈ C(A) is defined as ||pv|| = ||v|| =
max{v(i) | 1 ≤ i ≤ d}. Given n ∈ N, we say that pv is n-bounded if
||pv|| ≤ n.

A computation initiated in p0v0 is a finite sequence
p0v0, . . . ,pnvn of configurations such that there exists a
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path p0, u1,p1, u2,p2, . . . , un ,pn where vi = v0 + u1 + · · · + ui for
all 0 ≤ i ≤ n. The length of a given computation is the length of its
(unique) corresponding path.

2.2 Termination Complexity of VASS
Definition 2.3. Let A = (Q,T ) be a d-dimensional VASS. For
every configuration pv ofA, let L(pv) be the least ℓ ∈ N∞ such that
the length of every finite computation initiated in pv is bounded by
ℓ. The termination complexity ofA is a function L : N→ N∪ {∞}
defined by

L(n) = sup {L(pv) | pv ∈ C(A) where ||pv|| = n} .

If L(n) = ∞ for some n ∈ N, we say that A is non-terminating,
otherwise it is terminating.

Observe that if A is non-terminating, then L(n) = ∞ for all
sufficiently large n ∈ N. Further, if A is terminating, then L(n) ∈
Ω(n). In particular, if L(n) ∈ O(n), we also have L(n) ∈ Θ(n).

3 Linear Termination Time
In this section, we give a complete and effective characterization
of all VASS with linear termination complexity. Let us consider a
VASS A = (Q,T ). We assume that A is strongly connected unless
explicitly stated otherwise.

Consider an integer solution µ ∈ ZT to the constraints µ ≥ 0
and Fµ = 0 (here F is the oriented incidence matrix ofA). Note that
µ induces a multi-cycle M of A. Indeed, if µ(t) > 0, then there is a
transition t ′ with µ(t ′) > 0 such that the source state of t ′ is equal
to the target state of t . Hence one may trace a path over states
with positive value in µ that eventually leads to a simple cycle.
Subtracting one from µ(t) for all t on the simple cycle we obtain
µ′ still satisfying the above constraints. Repeating this process we
eventually end up with a zero vector and the desired multi-cycleM .

Note that 1⊤µ is equal to the number of transitions traced along
the multi-cycle. So, roughly speaking, it suffices to add a constraint
U µ ≥ −n1 (hereU is the update matrix) to characterize multicycles
that, when appropriately executed in an n-bounded configuration,
produce a zero-avoiding computation. However, there are several
issues in such a formulation, namely dependency of the constraints
on the parameter n and demand for an integer solution.

So we transform the constraints into the following relaxed opti-
mization problem to completely characterize the linear computa-
tional complexity:

rational LP (R):

max 1⊤ρ with

ρ ≥ 0
Uρ ≥ −1
Fρ = 0

Theorem 3.1. Let A be a strongly connected VASS. We consider LP
(R) over Q.

(A) If LP (R) has a solution ρ with 1⊤ρ = c ∈ Q, then cn is the
precise asymptotic computational complexity of A, i.e., L(n)
converges to cn for n →∞.

(B) If (R) is unbounded, then the computational complexity of A
is at least quadratic.

Intuition: Let ρ be a rational solution of (R) with 1⊤ρ = c and
consider a non-negative integer n ∈ N. Let µ ∈ ZT satisfy µ =

nmρ wherem is the least common multiple of the denominators
of ρ. Since µ = nmρ ≥ 0 and Fµ = Fnmρ = 0, the vector µ
specifies a multi-cycle of length 1⊤µ = cnm. Moreover, µ satisfies
U µ = Unmρ ≥ −nm · 1 which means that executing all transitions
of the multi-cycle cannot decrease the counters by more thanmn.
By executing cycles of the multi-cycle in a carefuly arranged order
initiated in a n-bounded configuration, we obtain a zero-avoiding
computation whose length is, roughly, cn.

On the other hand, if the program (R) is unbounded, we show that
then there is a solution ρ satisfyingUρ ≥ 0. From this we obtain
multi-cycles of arbitrary length whose overall effect is non-negative.
Note that this does not mean that the VASS is non-terminating since
the cycles need to be connected into a single computation. However,
we show that they always can be connected into a computation of
at least quadratic length.

Proof of Theorem 3.1 (A). Assume (R) is bounded. Let ρ ∈ QT
be an optimal solution. We set c = 1⊤ρ. We first show the up-
per bound. We fix some n. We consider the longest computation
starting from some n-bounded configuration. Let π be the path
associated to this computation. Because we are interested only in
asymptotic behaviour, we can assume π is a cycle. Let µπ (t) de-
note the number of occurrences of transition t on π . We note that
U µπ = eff (π ) ≥ −n · 1 because the starting configuration of the
considered worst-case computation is n-bounded. Because π is a
cycle, we have Fµπ = 0. Hence, 1

n · µπ is a feasible point of LP (R)
and we get 1⊤ 1

n · µπ ≤ c . Thus, 1⊤µπ ≤ cn. Because this holds for
all n, we can conclude L(n) ≤ cn.

We show the lower bound. We fix some n. Let m be the least
common multiple of the denominators of ρ. We set µ =m · ρ ∈ ZT .
We have µ ≥ 0,U µ ≥ −m · 1, Fµ = 0 and 1⊤µ = cm. We consider
the multi-cycleM associated to µ. Let C be some cycle of A which
visits each state at least once. Let l be the length of C . Because C
visits every state at least once we can combine C and

√
n copies of

multi-cycleM into a single cycle C ′. Let l ′ be the length of C ′. We
have l ′ = l +

√
n1⊤µ = l +

√
ncm. Let p be the start and end state

ofC ′. We set n′ = n−(l+
√
ncm)·maxA

maxA ·l+m
√
n

(rounded down if needed). Let
v0 = n · 1. We show that starting from configuration pv0 we can n′
times execute the cycle C ′. This is sufficient to establish L(n) = cn
because of n′l ′

cn → 1 for n →∞.
We consider the configurations pvi after 0 ≤ i < n′ executions

ofC ′. We show by induction on i thatC ′ can be executed one more
time. We have eff (C ′) = eff (C) +

√
n eff (M) = eff (C) +

√
nU µ ≥

−(maxA ·l+m
√
n)·1. Hence, we have vi ≥ n ·1−i(maxA ·l+m

√
n)·1.

We have to show that we can execute C ′ one more time. In every
step of C ′ we decrease each vector component by at most maxA.
Hence, we need to show vi ≥ l ′ · maxA ·1. Indeed, we have vi ≥
n · 1 − i(maxA ·l +m

√
n) · 1 ≥ (l +

√
ncm) ·maxA ·1.

Proof of Theorem 3.1 (B). Assume (R) is unbounded. We will
show that there is no open half-space Hn of Rd such that n > 0
and Inc ⊆ Hn. As we show later, this implies that the computa-
tional complexity of A is at least quadratic. From the theory of
linear programming we know that there is a direction in which the
polyhedron given by ρ ≥ 0, Uρ ≥ −1 and Fρ = 0 is unbounded
and which increases the objective function 1⊤ρ. Hence, there is
a ρ ≥ 0 with Uρ ≥ 0 and Fρ = 0 and ρ(t) ≥ 1 for some t ∈ T .
We consider the multi-cycle M extracted from the integer vector
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µ = mρ wherem is the common multiple of denominators in ρ.
Assume now for the sake of contradiction that there is an open
half-spaceHn of Rd such that n > 0 and Inc ⊆ Hn. Let C1, . . . ,Ck
be all simple cycles occuring inM . Because of Inc ⊆ Hn we have
n⊤ · eff (Ci ) < 0 for all i , and hence

0 >
∑
i
n⊤ eff (Ci ) = n⊤ eff (M) = n⊤U µ = n⊤Umρ =m(n⊤U µ)

which implies n⊤Uρ < 0. On the other hand, we get n⊤ ·Uρ ≥ 0
from n > 0 andUρ ≥ 0. A contradiction.

Now suppose there is no open half-space Hn of Rd such that
n > 0 and Inc ⊆ Hn. We show that L(n) ∈ Ω(n2), i.e., there exist
p ∈ Q and a constant a ∈ R+ such that for all configurations pn,
where n ∈ N is sufficiently large, there is a computation initiated
in pn whose length is at least a · n2.

The crucial point is that now there are v1, . . . , vk ∈ Inc and
b1, . . . ,bk ∈ N

+ such that k ≥ 1 and
∑k
i=1 bivi ≥ 0.

The above is a direct consequence of the following purely geo-
metric lemma with X = IncA .

Lemma 3.2. Let X ⊂ Zd be a finite set. If there is no open
half-space Hn of Rd such that n > 0 and X ⊆ Hn, then there
exist v1, . . . , vk ∈ X and b1, . . . ,bk ∈ N

+ such that k ≥ 1 and∑k
i=1 bivi ≥ 0.

As the individual simple cycles with effects v1, . . . , vk may pro-
ceed through disjoint sets of states, they cannot be trivially concate-
nated into one large cycle with non-negative effect. Instead, we fix
a control state p ∈ Q and a cycle π initiated in p visiting all states
of Q . Further, for every 1 ≤ i ≤ k we fix a simple cycle γi such
that eff (γi ) = vi . For every t ∈ N, let πt be a cycle obtained from
π by inserting precisely t · bi copies of every γi , where 1 ≤ i ≤ k .
Observe that the inequality

∑k
i=1 bivi ≥ 0 implies

eff (πt ) = eff (π ) + t ·
k∑
i=1

bivi ≥ eff (π ) for every t ∈ N. (1)

For every configuration pu, let t(u) be the largest t ∈ N such that πt
is executable in pu. If such a t(u) does not exist, i.e. πt is executable
in pu for all t ∈ N, then A is non-terminating (since, e.g. v1 must
be non-negative in such a case), and the proof is finished. Hence,
we can assume that t(u) is well-defined for each u. Since the cycles
π and γ1, . . . ,γk have fixed effects, there is b ∈ R+ such that for
all configurations pu where all components of u are above some
sufficiently large threshold ξ wehave that t(u) ≥ b·minj=1, ...,d u(j),
i.e. t(u) grows asymptotically at least linearly with the minimal
component of u. Now, for every n ∈ N, consider a computation α(n)
initiated in pn defined inductively as follows: Initially, α(n) consists
just of pu0 = pn; if the prefix of α(n) constructed so far ends in
a configuration pui such that t(ui ) ≥ 1 and ui ≥ ξ (an event we
call a successful hit), then the prefix is prolonged by executing the
cycle πt (ui ) (otherwise, the construction of α(n) stops). Thus, α(n)
is obtained frompn by applying the inductive rule I (n) times, where
I (n) ∈ N∞ is the number of successful hits before the construction
of α(n) stops. Denote bypui the configuration visited by α(n) at i-th
successful hit. Now the inequality (1) implies that ui ≥ n+i · eff (π ),
so there exists a constant e such that minj=1, ...,d ui (j) ≥ n− i ·e . In
particular the decrease of all components of ui is at most linear in i .
This means that I (n) ≥ c ·n for all sufficiently largen ∈ N, where c ∈
R+ is a suitable constant. But at the same time, upon each successful

min y⊤U · 1 with

y⊤U ·U − y
⊤
F · F ≤ −1

⊤

yU ≥ 0

Figure 3. The rational LP Rdual that is dual to R. Here the variables
are vectors yU ∈ Qd and yF ∈ QQ .

hit we have ui ≥ ξ , so the length of the segment beginning with the
i-th successful hit and ending with the (i + 1)-th hit or with the last
configuration of α(n) is at least b ·minj=1, ...,d ui (j) ≥ b · (n − i · e).
Hence, the length of α(n) is at least

∑c ·n
i=1 b · (n− i · e), i.e., quadratic.

Finally, let us consider an arbitrary VASS A, not necessarily
strongly connected. The following lemma allows us to characterize
the linear complexity of termination forA by applying Theorem 3.1
to its strongly connected components. A proof is straightforward.

Lemma 3.3. Let d ∈ N, and let A = (Q,T ) be a d-dimensional
VASS. Then L(n) ∈ O(n) iff LR (n) ∈ O(n) for every SCC R of Q ,
where LR (n) is the termination complexity of AR .

Corollary 3.4. The problem whether the termination complexity of
a given d-dimensional VASS is linear is solvable in time polynomial
in the size of A.

4 Polynomial termination time
We now concentrate on VASS with polynomial termination com-
plexity. For simplicity, we restrict ourselves to strongly connected
VASS. The general case is discussed at the end of the section.

A prominent notion in our analysis is the one of a ranking func-
tion for VASS. Let A = (Q,T ) be a VASS. A linear map for A is a
function f assigning rational numbers to configurations of A s.t.
there exists a vector cf and a weighting vector wf ∈ Q

Q such that
for each configuration pv ofA it holds f (pv) = c⊤f · v+wf (p). The
vector cf is called a normal of f . Given a linear map f , we say that
a transition (p, u,q) ofA is f -ranked if c⊤f · u+wf (q) ≤ wf (p) − 1
and f -neutral if c⊤f · u +wf (q) = wf (p). A linear map f is a quasi-
ranking function (QRF) for A if cf ≥ 0 and if all transitions of
A are either f -ranked or f -neutral, and a ranking function (RF)
if cf ≥ 0 and all transitions of A are f -ranked. A quasi-ranking
function f is positive if each component of cf is positive. Note
that in the language of update and incidence matrices U and F the
conditions can be phrased as follows: a linear map f is a QRF if
and only if cf ≥ 0 and c⊤f ·U − w

⊤
f · F ≤ 0⊤ such that if there is

a negative number in some column, it is ≤ −1. Similarly, a linear
map f is a RF if and only if cf ≥ 0 and c⊤f ·U −w

⊤
f · F ≤ −1

⊤.
The existence of ranking functions is already tightly connected

to the question whether a given VASS has linear complexity, as
shown in the following theorem.

Theorem 4.1. A VASSA has a linear termination complexity if and
only if there exists a ranking function for A.

Proof. Consider the LP R from Theorem 3.1. Its dual LP is the LP
Rdual pictured in Figure 3.

The dual LP has a feasible solution if and only if the original
LP has an optimal solution (since it always has a feasible solution)

5
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and that is if and only if the VASSA is linear (due to Theorem 3.1).
Assume there exists a feasible solution. Let f be a function such
that

f (pv) = y⊤U · v + yF (p)

i.e., cf = yU and wf (p) = yF (p). From the constraints of the dual
LP we obtain for any transition (p, u,q)

c⊤f · u − (wf (p) −wf (q)) ≤ −1,

i.e. f is a RF. Conversely, let f be any RF. Then yU = cf , yF = wf
is a feasible solution for the dual LP. □

Below, we show that complexity of general VASS A is highly
influenced by properties of normals of QRFs for A. In particular,
we classify each VASS A into one of three types:

(A) Non-terminating VASS.
(B) Positive normal VASS: Terminating VASSA for which there

exists a QRF f s.t. each component of the normal cf is posi-
tive.

(C) Singular normal VASS: Terminating VASSA for which there
exists a QRF f forA s.t. each the normal cf is non-negative
and (B) does not hold.

Results.Weperform our complexity analysis on top of the above
classification. We show that each non-trivial type (B) VASS of di-
mension d has termination complexity in Θ(nk ), where 1 ≤ k ≤ d
is an integer. Condition (C) is not strong enough to guarantee poly-
nomial termination complexity, and hence singularities in the QRF
normals are the key reason for complex asymptotic bounds in VASS.
On the algorithmic front, we present a polynomial-time algorithm
which classifies VASS into one of the above classes. Moreover, for
type (B) VASS the algorithm also computes the degree k such that
the termination complexity of the VASS is Θ(nk ). Hence, we give a
complete complexity classification of type (B) VASS. For type (C)
VASS, the algorithm returns a valid lower bound: a k such that the
termination complexity is Ω(nk ) (in general, such a bound does not
have to be tight). In the following, we first present the algorithm
and then formally state and prove its properties, which establish
the above results.

Theorem 4.1 gives complete classification of linear complexity
VASS. Note that the ranking function doesn’t have to be positive.
The following lemma shows that every linear VASS is actually of
type (B).

Lemma 4.2. Let A be a VASS. There exists a ranking function for
A if and only if there exists a positive ranking function for A.

Proof. One direction is trivial. For the other, assume we have some
ranking function f for A. Then for any transition t = (p, u,q) we
have cf · u +wf (q) ≤ wf (p) − 1.

Let ϵ > 0 be such that every transition (p, u,q) we have ϵ · u ≤ 1
(there are only finitely many transitions so such ϵ must exist). We
define a linear map д as follows

cд = 2cf + ϵ and wд = 2wf .

Then for any transition (p, u,q) we have

cд · u +wд(q) = 2cf · u + ϵ · u + 2wf (q) ≤

2wf (p) − 2 + ϵ · u ≤ 2wf (p) − 1 = wд(p) − 1.

Therefore, д is a positive RF. □

Algorithm 1: Computing polynomial upper/lower bounds
on the termination complexity of A.
input :A strongly connected d-dimensional VASS

A = (Q,T ) with at least one transition.
output :A tuple (k, tight) ∈ {1, 2, . . . ,d} × {true, false}, or

“non-terminating”.
1 if ∃ positive QRF for A then tight ← true
2 else tight ← false
3 k :=Decompose(A)

4 if k = ∞ then return ”non-terminating”
5 else return (k, tight)

6 procedure Decompose(A)
7 f ← a QRF for A maximizing the no. of f -ranked

transitions
8 Tf ← { f -neutral transitions of A }
9 if Tf contains all transitions of A then return∞

10 if Tf = ∅ then return 1
11 A1, . . . ,Aℓ ← all SCCs of ATf
12 return

1 +max(Decompose(A1), . . . ,Decompose(Aℓ))

Algorithm. Our method is formalized in Algorithm 1. In the
algorithm, for a VASS A = (Q,T ) and T ′ ⊂ T , we denote by
AT ′ = (Q,T

′) a pair obtained from A by removing all transitions
not belonging to T ′. Note that this may not be a VASS (since some
state doesn’t have to have an outgoing transition). An SCC of AT ′

is a maximal strongly connected VASS in AT ′ . We now formally
state the properties of the algorithm, starting with bounds on its
running time.

Theorem 4.3. Algorithm 1 runs in time polynomial in ||A||. In par-
ticular, when called on a VASS of dimension d , the overall depth of
recursion is < d .

We proceed with correctness of the algorithm w.r.t. non-
termination.

Theorem 4.4. Assume that on input A, Algorithm 1 returns “non-
terminating.” Then A is a non-terminating VASS.

Finally, the following two theorems show the correctness of
the algorithm w.r.t. upper and lower bounds on the termination
complexity of VASS.

Theorem 4.5. Assume that on input A, Algorithm 1 returns a tu-
ple (k, tight) ∈ N × {true, false}. Then k ∈ {1, . . . ,d} and A is
terminating. Moreover, if tight = true, then L(n) ∈ O(nk ).

Theorem 4.6. Assume that on inputA, Algorithm 1 returns a tuple
(k, tight) ∈ N×{true, false}. Then k ∈ {1, . . . ,d} andL(n) ∈ Ω(nk ).

Note that the algorithm indeed performs the required classifica-
tion since tight is set to true if and only if the check for the existence
of a positive QRF in the beginning of the algorithm is successful.
We now present the proofs of the above theorems.

Proof of Theorem 4.3. In order to analyze the termination of
the algorithm we consider the cone of cycle effects. As usual we
define the dimension dim(C) of a cone C as the dimension of the
smallest vector space containingC . We show that the dimension of
the cone generated by IncA decreases with each recursive call:

6



Asymptotic termination in VASS LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Lemma 4.7. Let A be some VASS such that Decompose(A) leads
to some recursive call Decompose(A ′) for some SCC A ′ of A. Then
dim(cone(IncA )) > dim(cone(IncA′)).

Proof. Clearly, IncA′ ⊆ IncA because A ′ is a sub-VASS of A and
hence dim(cone(IncA )) ≥ dim(cone(IncA′)). Let f be the QRF com-
puted forA and let cf be the associated normal. We will show that
cone(IncA′) is contained in the hyperplane {v | c⊤f v = 0} while
cone(IncA ) is not. This is sufficient to infer dim(cone(IncA )) >
dim(cone(IncA′)).

We consider some v ∈ IncA′ . We have eff (C) = v for some
simple cycle C . We consider the edges along the cycle C . Because
A ′ appears in some recursive call of Decompose(A), we have that
every edge of C is f -neutral, i.e., c⊤f u +wf (p

′) = wf (p) for every
transition (p, u,p′) of C . Adding these equations along the cycle C
establishes v = eff (C) = 0. Hence, cone(IncA′) ⊆ {v | c⊤f v = 0}.

On the other hand, because there is a recursive call i.e., Tf , T ,
there is at least one transition of A which is f -ranked. Because A
is connected we can choose some simple cycleC which contains an
f -ranked transition. Adding the inequalities c⊤f u+wf (p

′) ≤ wf (p)

for every transition (p, u,p′) of C establishes c⊤f eff (C) < 0. Hence,
cone(IncA ) is not contained in {v | c⊤f v = 0}. □

By Lemma 4.7 we have that the dimension of cone(IncA ) de-
creases with every recursive call. With dim(cone(IncA )) ≤ d , we
get that the recursion depth is bounded by d − 1.

Nowwe focus on the complexity of computing a QRF f maximiz-
ing the number of f -ranked transitions. The computation of such
a QRF can be directly encoded by the following linear optimization
problem Q .

LP (Q): max 1⊤b

0 ≤ b ≤ 1
c ≥ 0

c⊤ ·U −w⊤ · F ≤ −b⊤

Lemma 4.8. Let c,w,b be an optimal solution to LP (Q). Then,
f (pv) = c⊤v + w(p) is a QRF, which is maximizing the number
of f -ranked transitions.

Proof. We state the following properties about LP (Q), which are
easy to verify: LP (Q) is always satisfiable (consider c = 0, w = 0
and b = 0). Let c,w,b and c′,w′,b ′ be feasible points of LP (Q).
Then, (1) c+ c′,w+w′,max{b,b ′} is a feasible point of LP (Q) and
(2) dc,dw,min{db, 1} is a feasible point of LP (Q) for all d ∈ Qwith
d ≥ 1.

We now show that every transition is either f -ranked or
f -neutral. It is sufficient to show that b(t) = 0 or b(t) = 1 for
each transition t . Assume 0 < b(t) < 1 for some transition t . Then,
we can choose d = 1

b (t ) > 1 and apply (2) in order to obtain a
feasible point with value 1⊤db > 1⊤b, which is a contradiction to
the assumption that c,w,b is optimal.

Assume that there is another QRF f ′(pv) = c′⊤v + w′(p) and
a transition t such that t is f ′-ranked but f -neutral (we note that
we must have b(t) = 0). We set b ′(t) = 1 and b ′(t ′) = 0 for all
transitions t ′ , t . We can now apply (1) in order to obtain a feasible
point with value 1⊤max{b,b ′} > 1⊤b, which is a contradiction to
the assumption that c,w,b is optimal. □

Similarly, checking the existence of a positive QRF can be per-
formed by a direct reduction to linear programming. The LP is
analogous to Q .

Lemma 4.9. Checking the existence of a positive QRF can be done
in polynomial time.

Proof. Consider the following LP similar to the dual LP in the proof
of Theorem 4.1.

max ε with

y⊤U ·U − y
⊤
F · F ≤ 0⊤

yU ≥ ε

Here the variables are yU , yF and ε . We show that this program
has a feasible positive solution if and only if there exists a positive
QRF.

If the program has a feasible positive solution then define a linear
mapд such that cд = yU andwд = yF . For every transition (p, u,q)
we have

c⊤д · u − (wд(p) −wд(q)) ≤ 0.

Every transition t = (p, u,q) that is not д-neutral, we have

c⊤д · u − (wд(p) −wд(q)) = −δt .

Let δ = mint ∈T δt . Then function f =
д
δ is a positive QRF.

Positive QRF is a feasible solution for the dual program of Theo-
rem 4.1. It is therefore a feasible positive solution for this LP (since
these constraints are weaker). □

We now finish the proof of Theorem 4.3. We note that computing
the QRFs in the algorithm can be done by linear programming. We
next consider the set of recursive calls made at recursion depth i .
The VASSs of these recursive calls are all disjoint sub-VASSs of A.
Thus, the complexity of solving all the optimization problems at
level i is bounded by the complexity of solvingQ forA. Hence, the
overall complexity of Decompose(A) is the complexity of solving
Q times the dimension d .

Proof of Theorem 4.4. Let A = (Q,T ) be a VASS. Consider
the constraint systems (At ) and (Bt ) stated below. Both constraint
systems are parameterized by a transition t ∈ T . Constraint system
(At ) is taken from Kosaraju and Sullivan [24]. Note that system (At )
has a rational solution if and only if it has an integer solution.

constraint system (At ):

U µ ≥ 0 (2)
µ ≥ 0 (3)

Fµ = 0 (4)
µ(t) ≥ 1 (5)

constraint system (Bt ):

c ≥ 0

c⊤ ·U −w⊤ · F ≤ 0⊤ with − 1
in column t

The next lemma shows the connection between (At ) and multi-
cycles in A. We call a multi-cycleM non-negative if eff (M) ≥ 0.

Lemma 4.10 (Cited from [24]). There is a solution µ ∈ ZT to con-
straints (2)-(4) iff there exists a non-negative multi-cycleM such that
the number of times a transition t appears in cycles ofM is at least
µ(t), for each t ∈ T .

On the other hand, the system (Bt ) is connected to QRFs.
7
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Lemma 4.11. Constraint system (Bt ) has a rational solution c,w
if and only if there exists a k ∈ R+ and a QRF f with cf = k · c
and wf = k · w such that transition t is f -ranked and every other
transition is f -ranked or f -neutral.

Proof. We know that a linear map f is a QRF if and only if cf ≥ 0
and c⊤f ·U −w

⊤
f ·F ≤ 0T such that each column contains either 0 or a

number ≤ −1. Transitions with column ≤ −1 are f -ranked, the rest
are f -neutral. Therefore, any QRF f with (cTf ·U )(t)− (w

T
f · F )(t) ≤

−1 satisfies the constraints.
Now let c,w be a rational solution of (Bt ). Let

uT = c⊤ ·U −w⊤ · F ≤ 0T .

Surely u(t) ≤ −1. But it may happen that 0 > u(t ′) > −1 for some
t ′ ∈ T . To remedy this, consider k = maxt̂ ∈T u(t̂). Let

cf =
1
|k |

c, wf =
1
|k |

w.

Now if u(t ′) < 0, then 1
|k | u(t

′) ≤ −1. Therefore, f is a QRF such
that t is f -ranked. □

The following result is an immediate consequence of Farkas’
lemma.

Lemma 4.12. For each t ∈ T exactly one of the constraint systems
(At ) and (Bt ) has a solution.

Proof. We will use the following variant of Farkas’ Lemma, which
states that given matrices A,C and vectors b,d , exactly one of the
following statements is true:

constraint system (A):

there exists x with

Ax ≥ b
Cx = d

constraint system (B):

there exist y, z with

y ≥ 0
y⊤ · A + z⊤ ·C = 0T

y⊤ · b + z⊤ · d > 0

We fix some transition t . We denote by chart ∈ ZQ the vector
with chart (t ′) = 1, if t ′ = t , and chart (t ′) = 0, otherwise. Using
this notation we rewrite (At ) to the equivalent constraint system
(A′t ), where Id denotes the identity matrix:

constraint system (A′t ):
(
U
Id

)
µ ≥

(
0

chart

)
F µ = 0

Using Farkas’ Lemma (note that z is not restricted so we can
take z = −w), we see that either (A′t ) is satisfiable or the following
constraint system (B′t ) is satisfiable:

constraint system (B′t ):(
c
y

)
≥ 0(

c
y

)⊤
·

(
U
Id

)
−w⊤ · F = 0⊤(

c
y

)⊤
·

(
0

chart

)
−w⊤ · 0 > 0

simplified version of constraint
system (B′t ):

c ≥ 0

y ≥ 0

c⊤ ·U + y⊤ −w⊤ · F = 0⊤

y(t ) > 0

We recognize that constraint systems (B′t ) and (Bt ) are equiva-
lent, because solutions of (B′t ) with y(t) > 0 can always be turned

into solutions with y(t) ≥ 1 by multiplying with a sufficiently large
positive rational number. □

We now finish the proof of Theorem 4.4. Because Algorithm 1 re-
turns “non-terminating”, there is a sub-VASSA ′ ofA, encountered
during some recursive call, such that no transition ofA is f -ranked
for any QRF f . Hence, constraint system (Bt ) is unsatisfiable for
every transition t of A ′. By Lemma 4.12, constraint system (At ) is
satisfiable. We consider the non-negative multi-cycleM associated
to an integer solution of (At ). This multi-cycle contains at least
transition t . Because such a multi-cycle exists for every transition
t , we can combine all these multi-cycles into a single non-negative
cycle, which shows that A is non-terminating.

Connection to [24]. Algorithm 1 extends algorithm ZCYCLE
of Kosaraju & Sullivan [24] by a ranking function construction.
Because of the duality stated in Lemma 4.12, the ranking func-
tion construction part can be interpreted as the dual of algorithm
ZCYCLE. Algorithm 1 makes use of this duality to achieve com-
pleteness: it either returns a ranking function, which witnesses
termination, or it returns a non-negative cycle, which witnesses
non-termination. The duality also means that ranking function
construction comes essentially for free, as primal-dual LP solvers
simultaneously generate solutions for both problems. An additional
result is the improved analysis of the recursion depth: [24] uses the
fact that the number of locations |Q | is a trivial upper bound of the
recursion depth, while we have shown the bound dim(A) (see The-
orem 4.3). With this result and with LP (Q), which simultaneously
solves all constraint systems (At )/(Bt ) and thus avoids an iteration
over t , we affirmatively answer the open question of Kosaraju and
Sullivan [24], whether the complexity can be expressed as a poly-
nomial function in the dimension d times the complexity of a linear
program.

Proof of Theorem 4.5. First, we will prove the O-bound by
induction on the depth of recursion (of Decompose). More precisely,
if the algorithm returns tiдht = true and the depth of recursion
(number of calls) is i , the termination complexity is in O(ni+1).
• If there is no recursive call of procedure Decompose then
QRF f obtained on line 7 is actually a RF, becauseTf = ∅ i.e.,
all transitions are f -ranked. Due to Theorem 4.1 we have
LA ∈ O(n).
• Let i > 0 be the recursion depth. Assume the claim is correct
for every run of the algorithm with recursion depth < i . By
induction hypothesis we have that every SCC Aj of ATf
has termination complexity LAj ∈ O(n

i ).
Let q0u0 be an initial configuration. Now assume we have a
VASS A and QRF f . If a transition is f -ranked, the f -value
of the next configuration decreases by at least 1. If it is
f -neutral, it does not increase. Notice that every config-
uration pv satisfies f (pv) = c⊤f · v + wf (p) ≥ wf (p) ≥

minq∈Q wf (q) since v and cf are non-negative. There-
fore, any zero-avoiding path can have at most f (q0u0) −
minq∈Q wf (q) of f -ranked transitions.
Letд be the positive QRFwhose existence is ensured on line 1
of the algorithm (since algorithm returns (k, true)). We give
a linear bound on the size of counters in every configuration

8
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pv reachable from q0u0. Since д is a QRF, we have

д(q0u0) ≥ д(pv),

wд(q0) +
d∑
i=1

cд(i) · u0(i) ≥ wд(p) +
d∑
i=1

cд(i) · v(i).

Let cmax = maxi=1, ...,d cд(i) and cmin = mini=1, ...,d cд(i).
Now for any counter j ∈ {1, . . . ,d} we have the following
estimates.

wд(q0) −wд(p) +
d∑
i=1

cmax · u0(i) ≥ cminv(j),

wд(q0) −minq∈Q wд(q)

cmin
+ d ·

cmax
cmin

· max
i=1, ...,d

u0(i) ≥ v(j).

Therefore, the size of any reachable configuration is linearly
bounded by the size of the initial configuration and after
O(ni ) transitions in some SCC we have to do at least one
f -ranked transition. From this we obtain L(A) = O(ni+1)
and the proof is done.

Now we want to prove that the VASS terminates even if tight =
false. Again, we do the proof by induction on the depth of recursion
of Decompose. The base of the induction is the same as in the proof
of O-bound. In the induction step we assume only that every SCC of
ATf is terminating. Again, no transition increases the f -value and
we can do only f (q0u0) −minq∈Q wf (q) of f -ranked transitions,
thereforeA is terminating (we cannot stay in one SCC indefinitely
and by switching between them, we have to make at least one
f -ranked transition).

Proof of Theorem 4.6. We now prove the correctness of our
algorithm w.r.t. lower bounds. To do this, we show how to con-
struct, for each sufficiently large n, a path of length Ω(nk ) which
results into a computation. We start with a lemma which shows a
useful property of a QRF f that maximizes the number of f -ranked
transitions: whenever we have a cycle consisting solely of f -neutral
transitions, the effect of this cycle can be in some sense compen-
sated by executing a combination of some other cycles.

Lemma 4.13. LetA be a connected VASS, and let f be a QRF forA
which maximizes the number of f -ranked transitions. Let cf be the
normal of f . Then for each vector v ∈ Inc with c⊤f · v = 0 there exists
a vector w ∈ cone(Inc) such that v +w ≥ 0.

Proof. We consider some vector v ∈ Inc with c⊤f · v = 0. We have
eff (C) = v for some simple cycleC . We consider the edges along the
cycleC . Every edge ofC must be f -neutral: otherwise we could add
the equations c⊤f u +wf (p

′) ≤ wf (p) for every transition (p, u,p′)
alongC in order to witness c⊤f · v < 0. Hence, for every transition t
alongC there is no other QRF f ′ such that t is f ′-ranked; otherwise,
f would not be maximal with regard to the number of f -ranked
transitions. Thus, constraint system Bt is unsatisfiable for every
transition t ofC . By Lemma 4.12, constraint systemAt is satisfiable.
For every transition t of C , we fix some non-negative multi-cycle
Mt associated to some integer solution of At . We take the union
of the non-negative multi-cycles Mt in order to obtain the non-
negative multi-cycleM . We note thatM contains every transition t
of C . Hence, M can be decomposed into the simple cycle C and
a set of simple cycles, whose effect corresponds to some vector
w ∈ cone(Inc). BecauseM is non-negative, we get v +w ≥ 0. □

We now proceed with the proof of Theorem 4.6. We show that
if A is a strongly connected VASS, and the call Decompose(A)
returns a number k ∈ N, then for all sufficiently large n ∈ N there
exists a configuration pnn and a computation βn of length at least
b · nk initiated in pnn, where b ∈ Q+ is a fixed positive constant
independent of n. We proceed by induction on k . If k = 1, then A
admits a RF and the existence of such a zero-avoiding computation
of linear length follows from Theorems 4.1 and 3.1. Now assume
that k > 1. Then the call Decompose(A) must result in a recursive
sub-call Decompose(A ′) which returns k − 1. We prove that for all
sufficiently large n there exists a computation initiated in some pnn
of length Ω(nk ). We prove the existence of such a path in several
sub-steps.

Constructing the paths of length Ω(nk−1). Since the termination
complexity of A ′ is Ω(nk−1) (by induction hypothesis), there is
b ∈ R+ such that for all sufficiently large m ∈ N there exist a
configuration pmm and a computation βm of length at least b ·mk−1

initiated in pmm. Since πβm inevitably contains a cycle whose
length is at least b ′ ·mk−1 (for some fixed b ′ ∈ R+ independent
of βm ), we can safely assume that πβm is actually a cycle, which
implies eff (πβm ) ∈ cone(Inc).

Constructing the compensating path. Since πβm is such that c⊤f ·
eff (πβm ) = 0 and eff (πβm ) ∈ cone(Inc), it follows from Lemma 4.13
that there exists u ∈ cone(Inc) such that u + eff (πβm ) ≥ 0, i.e.,
u ≥ − eff (πβm ). Since u =

∑k
j=1 aj · vj , where k ∈ N, aj ∈ Q

+,
and vj ∈ Inc for all 1 ≤ j ≤ k , a straightforward idea is to define
the compensating path by “concatenating” ⌊aj ⌋ copies of γj , where
eff (γj ) = vj , for all 1 ≤ j ≤ k . This would produce the desired
effect on the counters, but there is no bound on the counter de-
crease in intermediate configurations visited when executing this
path. To overcome this problem, we choosem and construct the
compensating path for πβm more carefully. We use the following
lemma.

Lemma 4.14. LetA be a VASS and f a QRFmaximizing the number
of f -ranked transitions. Then there exists δ ∈ R+ such that for every
m ∈ N and every cycle πm with c⊤f · eff (πm ) = 0 and eff (πm ) ≥ −m
there is a path ϱm such that eff (πm )+eff (ϱm ) ≥ −(d+1)· |Q | ·maxA
and no counter is decreased by more than δ ·m along ϱm .

Constructing a computation αn of length Ω(nk ). Now we are
ready to put the above ingredients together, which still requires
some effort.

Assume pv is an initial configuration. Now we need only |Q |
transitions in order to get to the SCC A ′ where we execute a path
πβm with c⊤f · eff (πβm ) = 0 of length Ω(nk−1).

We need to choosem as large as possible but small enough so that
we can execute path πβm and its compensating path ϱm . At the end
of πβm some counters may be decreased bym ton−(|Q | ·maxA )−m
(remember, we used at most |Q | transitions to get to the starting
state of πβm ). Then we need to execute the compensating path ϱm .
For this we need counters of size at most δ ·m + |Q | · maxA (we
need to reach the initial state of ϱm and then execute this path).
Together we need

n − |Q | ·max
A
−m ≥ δ ·m + |Q | ·max

A
.
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We want to maximizem (in order to get a long path). This yields

m =

⌊
n − 2|Q | ·maxA

1 + δ

⌋
.

After this, every counter decreased by at most (d + 3)|Q | · maxA
(we needed to get to the right SCC and then run the compensating
path).

Repeating this procedure O(n) times, we obtain a path of length
Ω(n · nk−1) = Ω(nk ). This finishes the proof of Theorem 4.6.

Non-strongly connected VASS.We remark that our complete
complexity classification of type (B) VASS extends to non-strongly
connected VASS whose each SCC is also of type (B).

Lemma 4.15. Let A be a VASS, A1, . . . ,Al its SCCs (reachable
from the initial configuration).

1. LA ∈ Ω(maxi ∈{1, ...,l } LAl )

2. If for every SCC of A there is a positive QRF then LA ∈
O(maxi ∈{1, ...,l } LAl ).

Proof. The first part of the lemma is trivial. Since we can visit any
SCC Ai in a number of transitions bounded by |Q | from the initial
one, the asymptotic complexity cannot be lower than that of Ai .

As in the proof of Theorem 4.5 we have for any SCC Ai and
any configuration qu with q ∈ QAi that the size of any pv with
p ∈ QAi reachable from qu is linearly bounded by some constant
depending only on the positive QRF for Ai .

Since the number of SCCs for a given VASS is a constant, the
size of the counter vector can increase during any computation at
most by a factor independent of the size of the initial configuration.
Therefore, the second claim holds. □

5 Conclusions
Our results open a number of interesting directions for future work.
First, whether our precise complexity analysis or the complete
method can be extended to other models (such as affine programs
with loops) is an interesting theoretical direction to pursue. Second,
our result can be used for developing a scalable tool for sound and
complete analysis of asymptotic bounds for VASS.
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