
Rewriting with Frobenius
Filippo Bonchi
University of Pisa

Fabio Gadducci
University of Pisa

Aleks Kissinger
Radboud University

Pawel Sobocinski
University of Southampton

Fabio Zanasi
University College London

Abstract
Symmetric monoidal categories have become ubiquitous as a formal
environment for the analysis of compound systems in a compo-
sitional, resource-sensitive manner using the graphical syntax of
string diagrams. Recently, reasoning with string diagrams has been
implemented concretely via double-pushout (DPO) hypergraph
rewriting. The hypergraph representation has the twin advantages
of being convenient for mechanisation and of completely absorbing
the structural laws of symmetric monoidal categories, leaving just
the domain-specific equations explicit in the rewriting system.

In many applications across different disciplines (linguistics, con-
currency, quantum computation, control theory, ...) the structural
component appears to be richer than just the symmetric monoidal
structure, as it includes one or more Frobenius algebras. In this
work we develop a DPO rewriting formalismwhich is able to absorb
multiple Frobenius structures, thus sensibly simplifying diagram-
matic reasoning in the aforementioned applications. As a proof
of concept, we use our formalism to describe an algorithm which
computes the reduced form of a diagram of the theory of interacting
bialgebras using a simple rewrite strategy.

Keywords PROP, symmetric monoidal category, Frobenius alge-
bra, DPO graph rewriting

1 Introduction
String diagrams Symmetric monoidal categories (SMCs) are an
increasingly popular mathematical framework for reasoning about
generic compositional systems. An SMC is a category that has
sequential composition operation of morphisms (c ; d), a parallel
composition (c⊕d), and a collection of symmetrymorphisms, giving
the ability to ‘swap’ the components of a parallel composition [28].
It is convenient to use the two-dimensional notation of string dia-
grams to express morphisms in SMCs, where they are depicted as
boxes, sequential composition as plugging boxes together, parallel
composition as juxtaposition, and symmetries as wire-crossings:

. This has the advantage of absorbing structural equalities
prescribed by the definition of SMC. For instance, the two sides
of the exchange law (a1 ; a2) ⊕ (b1 ; b2) = (a1 ⊕ b1) ; (a2 ⊕ b2) are

encoded by the same string diagram
a1

b1 b2

a2

. The graphical
syntax emphasises connectivity and sharing of resources between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209137

components, which makes it particularly applicable in the analysis
of computational models with inter-connections between processes
such as dynamical systems [16, 29], signal-flow diagrams [1, 7],
digital circuits [19], and models of quantum computation [13].

Diagrammatic reasoning As in the case of universal algebra,
it is often very useful to consider SMCs that are freely generated
from a signature Σ —which provides the “building blocks” for the
string diagrammatic syntax— and a set of equations E. Proving two
morphisms in such a category are equal is done by diagrammatic
reasoning, that is, by performing string diagram transformations
using the rules of E and the SMC laws. Notably, there is a key
conceptual distinction between the SMC laws (e.g. the exchange law
above) and the equations of E: while the former are a structural part
of any theory, the latter are domain-specific, depending on the class
of systems under consideration. This distinction is reflected in the
way that diagrammatic reasoning is both practised and mechanised
(for instance in the graphical proof assistant Quantomatic [22]).
While the laws of SMCs are treated as structural congruences on
terms, allowing their representation as string diagrams, the domain-
specific equations in E are, instead, usually understood as rewriting
rules. For a concrete example, borrowed from the calculus of signal
flow diagrams [7], consider the following diagram rewriting rule,
which reduces the number of registers in a signal flow circuit

α :
x

x
⇒ x

The diagram below on the left has a redex for α : notice that in order
for the redex to appear as a sub-diagram, à la term rewriting, one
must first deform it using the laws of SMCs

x

x SMC
≈

x

x α
⇒ x

This example highlights the main challenge for implementing dia-
grammatic reasoning: matching is not “on-the-nose”, but modulo
the laws of SMCs . In recent work [2, 3, 32] the authors developed
a framework for implementing this style of rewriting. The key step
is to interpret diagrams combinatorially as cospans of hypergraphs.
This provides an off-the-shelf representation of string diagram
rewriting in terms of the well-established theory of double-pushout
(DPO) hypergraph rewriting, which is bothmachine-implementable
and completely absorbs the structural component.

Frobenius algebras The theme of this paper is to provide an anal-
ogous implementation for a more sophisticated class of categories.
Our starting observation is that a variety of applications demand a
richer structure than a SMC. The structure we shall focus on is the
one of a (commutative, separable) Frobenius algebra: it consists of a
monoid and a comonoid that interact according to the Frobenius
(bottom-left below) and separability (bottom-right) laws.

1

https://doi.org/10.1145/3209108.3209137

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi

= = =

= = =

= = = (1)

Frobenius algebras are an increasingly common feature in diagram-
matic calculi across diverse research threads.
• The ZX-calculus [12] is a diagrammatic theory for quantum
computation featuring two Frobenius algebras, each having
a specific physical meaning in terms of quantum observables.
• In compositional approaches to natural language processing
(e.g. [27]) Frobenius algebras model the information passing
from and to the relative clauses in a sentence.
• Frobenius algebras also form the backbone of the calculus
of stateless connectors [10], of signal flow diagrams [4, 7],
of Baez’s network theory [1], and of Pavlovic’s monoidal
computer [26]. In these theories they allow for elementary
signal operations such as copying, discarding and merging.
• In well-supported compact closed categories (now also called
hypergraph categories), each object carries a Frobenius struc-
ture. Their use in algebraic approaches to computation was
pioneered byWalters [11, 18, 21] and reprised in recent years,
when constructions for these categories have been studied
using (co)spans and (co)relations [9, 15, 17, 24, 31].

These applications shares a core intuition: the Frobenius compo-
nent allows dangling wires in a string diagram to fork, merge, be
initialised, be discarded, and be converted from inputs to outputs
(or vice-versa), resulting in a flexible manipulation of the interfaces
(variables, memory cells, ...) of the represented system. The perspec-
tive of this work is to acknowledge the Frobenius equations as part
of the structural rules of diagrammatic theories, distinguished from
the domain-specific equations in a rewriting system. We contend
that a satisfactory implementation of rewriting in the aforemen-
tioned theories ought to take the Frobenius component as structural

x

x

Frob
≈

x

x

α
⇒

x

(2)

Roadmap to the implementation The goal of the paper is to
identify a suitable DPO rewriting interpretation which is sound
and complete for graphical reasoning modulo Frobenius structure.

The first challenge is dealing with multiple Frobenius algebras
in single-sorted diagrammatic theories. As shown in [2, 32], the
hypergraph representation can absorb the structure of a Frobenius
algebra, but only one per sort. Thus in order to reach the correct
combinatorial domain we need an intermediate step, where we
move from a single-sorted to a multi-sorted setting. Concretely,
our starting domain is a prop (i.e. a single-sorted SMC) C, with
n Frobenius algebras. From this, we build an n-coloured prop Dϒ ,
where each colour/sort carries one of the Frobenius structures.
In order for this representation to be functorial, “colour-switch”
connectors are added —e.g. switches from red to black—
together with a set ϒ of equations of the form =

, making all sorts in Dϒ isomorphic.

For example, the left-most diagram in (2), from C, is interpreted
in Dϒ as follows

x

x

7→
x

x
(3)

We shall prove thatC→ Dϒ is actually an equivalence of coloured
props, meaning that Dϒ is a faithful representation of the informa-
tion carried by C. By working in the multi-sorted setting provided
by Dϒ , we can now exploit the correspondence established in [32]

Rewriting C-coloured props
with a Frobenius algebra on
each colour c ∈ C .

⇔

DPO rewriting of
hypergraphs with
C-sorted nodes.

To continue (3), where the diagram of C is interpreted in Dϒ , it is
then interpreted as the hypergraph on the top-left below. Observe
that there are two sorts of nodes, black and red, and hyperedges
are labeled with the operations in the signature, namely x ,
and the switches and of Dϒ . We also draw the
(black) nodes representing the input and the output dangling wire.

x

i o
x

∗
⇝⟨⟨ϒ⟩⟩ i o

x

x

⇝⟨⟨α ⟩⟩ oi
x

The above derivation is the sound DPO rewriting implementa-
tion of (2). The graphs correctly “absorb” the Frobenius structure.
However, in order to create the redex for α , a preliminary step is
needed: redundant switches are removed using ϒ as a (strongly
normalising) rewrite system. Thus our implementation uses the
following, new correspondence

Rewriting props
with C Frobenius
algebras.

⇔

DPO rewriting of hyper-
graphs with C-sorted nodes,
in ϒ-normal form.

Part of proving this correspondence is showing that ϒ-rewriting
does not interfere with other rewriting rules, for instance by re-
moving redexes. We are going to show how this is achieved by
imposing a simple syntactic transformation on the rewriting rules.

Application: interacting bialgebras Our contribution ensures
that diagrammatic theories with multiple Frobenius algebras be-
come easier to study as rewriting systems, since the Frobenius equa-
tions become structural. We show this via an example involving the
system IB, where two Frobenius algebras interact as a bialgebra.
This system is of particular interest as it forms the core of the ZX-
calculus [12]. We give a simple rewrite strategy for computing a
constant-depth reduced form for any IB-diagram and transforming
such a reduced form into its colour-dual, which is the graphical
analogue of the passage between a system of homogeneous linear
equations and a spanning set of solution vectors.

2

Rewriting with Frobenius LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Outline §2 provides a background on props, rewriting in props,
and DPO rewriting. In §3 we construct the multi-sorted representa-
tion for single-sorted theories with Frobenius algebras. In §4 we
discuss how this interpretation affects rewrite rules. Our main re-
sult, the implementation of rewritingmodulo Frobenius, is Theorem
4.7: to the proof of its key step is devoted §5. Finally, §6 gives an
application of the framework to the simplification of IB diagrams.

2 Background
2.1 Props, Frobenius algebras, rewriting in a prop
Definition 2.1 (Prop). Given a finite set C of sorts (or colours), a
C-coloured prop A is a symmetric strict monoidal category where
the set of objects is C⋆ —the set of finite words over C— and the
monoidal product on objects is word concatenation. A morphism
from a C-coloured prop A to a C′-coloured prop A′ is a symmetric
strict monoidal functor H : A→ A′ that maps elements of C (seen
as one-letter words) to elements of C′. Coloured props and their
morphisms form a category CPROP.

Fix a colour . Restricting to { }-coloured props and morphisms
between them yields a sub-category PROP ofCPROP. { }-coloured
props are simply called props in the literature, and are equivalently
described as symmetric monoidal categories where the objects are
natural numbers and the monoidal product on objects is addition.
Definition 2.2 (Free prop on a theory). Amonoidal theory is a pair
(Σ,C), where the signature Σ is a set of operations o : v → w with an
arity v and a coarityw , withv,w ∈ C⋆. We let SΣ,C denote the (free)
C-coloured prop on (Σ,C): its arrows are the Σ-terms quotiented
by the laws of symmetric monoidal categories. Σ-terms are freely
obtained by combining operations in Σ, identities id : c → c for
each c ∈ C and symmetries σc,d : cd → dc for each c,d ∈ C, by
sequential (;) and parallel (⊕) composition. That means, given terms
a : w1 → w2, b : w2 → w3, and a′ : v1 → v2, one constructs new
terms such as a ; b : w1 → w3 and a ⊕ a′ : w1v1 → w2v2.

We will also refer to free props on a theory, in which case it is
implicitly understood that the theory is single sorted, i.e. C = { }.

We shall adopt the graphical notation of string diagrams [28] for
the arrows of SΣ,C , drawing a box w1 w2a for an arrow a : w1 →
w2. In our examples we will mostly deal with coloured props on
two colours, and : in that case, the wire will indicate the
sort and wire the sort . E.g., a has type → .

Example 2.3. The prop Frob of Frobenius algebras is the free prop
on signature { , , , }, quotiented by equations (2).
In our work we will deal with the coproduct Frob + Frob in PROP,
which can be also described freely as the prop on the signature

,

with equations two copies of (2), one for black and one for red.
It is helpful to see how the coproducts in PROP andCPROP differ.

Rather than morphisms in the coproduct consisting of composition
of morphisms from the component props living on the same sort,
the coproduct in CPROP yield morphisms on two different sorts

,

again modulo two copies of the Frobenius equations. In particular,
the generators of the Frobenius algebra cannot be composed
with the generators of the Frobenius algebra. To emphasise this
difference, we write the coproduct in CPROP as Frob() + Frob().

Even though coproducts in CPROP yield disjoint colours, the
colours in twoC-coloured props can be identified by using a pushout,
as we see in the following example.

Example 2.4. The free C-coloured prop on the theory (∅,C) with
an empty signature is written PC and has arrows w → v the per-
mutations of w into v (thus arrows exist only when the word v
is an anagram of the wordw). Given C-coloured props A and A′,
we use notation A +C A for the pushout in CPROP of the span of
the inclusions A←− PC −→ A′. Intuitively, A +C A′ is the coproduct
A + A′ where we have identified the copy from A and from A′ of
each c ∈ C . Thus A +C A is also a C-coloured prop.

Graphical reasoning with string diagrams is formally understood
as a form of rewriting. The notion is given here for coloured props,
but it clearly restricts to define rewriting in a (ordinary) prop.

Definition 2.5 (Syntactic rewriting). A rewriting system R in a
coloured prop A is a set of rewriting rules, i.e. pairs ⟨l , r ⟩ : v1 → v2
of morphisms l , r : v1 → v2 in A. Given a,b : w1 → w2 in A, a
rewrites into b via R, notation a ⇒R b, if they are decomposable
as follows, for some a1 and a2, where ⟨l , r ⟩ : v1 → v2 is a rule in R .

w1 w2a = l
a2a1

u
w1 w2

v2v1

w1 w2b = a2a1

u
w1 w2

v2v1 r

(4)

In this case, we say that a contains a redex for ⟨l , r ⟩.

2.2 Rewriting with cospans of hypergraphs
Hypergraphs generalise directed graphs where edges connecting
pairs of nodes are replaced by hyperedges connecting a list of
source nodes to a list of target nodes. With the obvious notion of
hypergraph morphisms, they form a category Hyp. A monoidal
theory (Σ,C) can be seen as an hypergraph, where colours are
nodes and operators are hyperedges (cf. [32]). We write HypΣ,C for
the category of hypergraphs with hyperedges labelled in Σ and
nodes labelled in C, defined as the slice category Hyp ↓ (Σ,C). We
are now ready to introduce our combinatorial domain of interest.

Definition 2.6 (Hypergraphs with interfaces). Given a monoidal
theory (Σ,C), the category of (Σ,C)-labelled hypergraphs with in-
terfaces, denoted FTermΣ,C , is the C-coloured prop whose arrows
w → v are cospansw −→ G ←− v inHypΣ,C , quotiented by cospan iso-
morphism, and whose composition is given by pushout in HypΣ,C .

An equivalent definition of FTermΣ,C is as a certain sub-category
of the category of cospans in HypΣ,C [32]. The idea is that a mor-
phism of FTermΣ,C is an hypergraph G with morphisms w −→ G,
v −→ G indicating along which nodes of G other hypergraphs can
be “glued” on the left and on the right. Notice that here words
w,v ∈ C⋆ are seen as discrete hypergraphs (collections of C-
labelled nodes) and act as the interfaces ofG . The notation FTermΣ,C

stands for “Frobenius termgraphs”, following [2, 32]— the terminol-
ogy is justified by Proposition 2.8 below.

Double-pushout rewriting Wenow introduce a variant of double-
pushout rewriting [14] with interfaces [18], abbreviated DPOI, that
is suitable for rewriting in FTermΣ,C . The notion can be abstractly
formulated for (cospans over) arbitrary adhesive categories [23], and
we use the fact that HypΣ,C is indeed adhesive [32].

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi

Definition 2.7 (DPOI rewriting). A DPOI rule is a pair of cospans
⟨J1

r1
−−→ L

r2
←−− J2, J1

p1
−−→ R

p2
←−− J2⟩ in HypΣ,C . A DPOI rewriting

system R is a set of DPOI rules. For I1
r1
−−→ G

r2
←−− I2, I1

p1
−−→ H

p2
←−−

I2 cospans in HypΣ,C , we say that G rewrites into H via R with
interfaces I1 and I2, written (I1

q1
−−→ G

q2
←−− I2) ⇝R (I1

s1
−−→ H

s2
←−− I2),

if there is a DPOI rule as above and cospan J1 + J2 −→ C ←− I1 + I2
making the diagram below commute and its two squares pushouts

L

��

J1 + J2
��

⌝ ⌜

[r1,p1]oo [r2,p2] // R

��
G Coo // H

I1 + I2[q1,s1]

]] OO

[q2,s2]

AA (5)

We now recall from [2, 32] the correspondence of DPOI with
syntactic rewriting.1 For the use of +C below, cf. Example 2.4.

Proposition 2.8. Let C be a collection of sorts and Σ a signature
over C. Then there is an isomorphism of C-coloured props

⟨⟨·⟩⟩ : SΣ,C +C
∑
c ∈C

Frob(c) � FTermΣ,C .

Let α be any rewriting rule on SΣ,C +C
∑
c ∈C Frob(c). Then

a ⇒α b iff ⟨⟨a⟩⟩⇝⟨⟨α ⟩⟩ ⟨⟨b⟩⟩ .

Example 2.9. We give an illustration of the correspondence of
Proposition 2.8. Fix C = { , } and Σ = { a }, and take the
C-coloured prop SΣ,C +C (Frob() + Frob()). We consider a rule α
on such a prop, together with its interpretation in FTermΣ,C

a
_
⟨⟨·⟩⟩
��

⇒
a

_
⟨⟨·⟩⟩
��

*
,

0
−→ a0

1

2

←− 1

2
+
-

⇝ *
,

0
−→

a
0

1

2

←− 1

2
+
-

We conventionally use a grey background for hypergraphs to dis-
tinguish them from string diagrams, and numbers to indicate how
the morphisms in the cospan are defined. Notice that these legs
may be non-injective. Also, notice how the interpretation “absorbs”
the Frobenius component. With the above rule, one can perform

the syntactic rewriting step a
a ⇒α

a
a . It

is implemented in FTermΣ,C via the DPOI rewriting step below

a0
1

2

��

0

1
2

��⌝ ⌜

oo // a
0

1

2

��
a
a

0

2

31

4

3

4
a

1

2

0

oo //
a

a
31

2

0

4

0

4

1
3

]] OO AA

Outcomes of syntactic and DPOI rewriting coincide, modulo ⟨⟨·⟩⟩.
1The result in [2, 32] is actually stated for rewriting of single-interface hypergraphs.
Our two-interfaces version is just a corollary, because a rewriting as in (5) exists for
any pair of interfaces of G and H that are a coproduct decomposition of I1 + I2 .

Props are also coloured props, thus Proposition 2.8 offers an
implementation for rewriting in ordinary props. However, because
props are single-sorted, it allows to “absorb” a single Frobenius
structure in the rewriting procedure. Instead, we would like to
implement rewriting for single-sorted theories with multiple Frobe-
nius structures on that sort. This motivates next section.

3 The Polychromatic Interpretation
Throughout this and the next sections we fix a prop

C := SΣ + Frob + Frob

freely generated by a signature Σ and two Frobenius algebras (cf.
Example 2.3), together with a rewriting system R on C. Our goal is
to provide a DPOI rewriting implementation for R-rewriting in C.

Remark 1. Even though our exposition deals with rewriting modulo
two Frobenius algebras, this is just for simplicity. The theory works
for an arbitrary number of Frobenius algebras, via a straightforward
generalisation of the developments presented in this paper.

Towards this goal, this section provides the intermediate step
of representing C in terms of a coloured prop Dϒ; this setup will
make our diagrammatic theory adapted to DPOI rewriting, via
Proposition 2.8. Dϒ is defined as follows. Consider a signature of
“colour conversion” operations Γ, which we denote graphically as

Γ = { : → , : → },

together with equations

ϒ = { = , = }.

Then D is defined as the { , }-coloured prop

D := SΣ⊎Γ +{ , } (Frob() + Frob()) (6)

and Dϒ as D quotiented by ϒ. Notice that Dϒ is generated by the
same signature Σ as C, including operations on sort , but also from
the colour conversion operations in Γ. Whereas the two Frobenius
structures in C were on the same sort, the two in Dϒ are on two
different sorts: and . We use +{ , } (cf. Example 2.4) to identify
the sorts of Frob() + Frob() with those of SΣ⊎Γ .

We now define the “polychromatic interpretation” (·) : C→ Dϒ .
Intuitively, (·) will “shift” one of the two Frobenius structures of
C from sort to sort , so that each sort hosts a single Frobenius
algebra. Formally, (·) : C → Dϒ is a morphism of coloured props,
where C is here seen as a { }-coloured prop. It suffices to define (·)
on the generating objects and arrows of C. For objects, the single
sort of C is mapped to . For arrows, (·) acts as the identity with
the exception of the generators of the second Frobenius algebra

7→ 7→

7→ 7→

Notice that equations ϒ are needed in order for this functor to be
well-defined. For instance, they ensure preservation of the separa-
bility law for the “red” Frobenius algebra()

=

=

= = = ()

4

Rewriting with Frobenius LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Remark 2. As (·) has been defined in terms of the generators of C
and D, it will sometimes be useful to regard, by abuse of notation, (·)
as a mapping from formal string diagrams of the generators of C to
D-morphisms. It is worth noting that this mapping would not extend
to a well-defined functor from C to D, since the latter is missing the
equations of ϒ.

It is essential for our developments that the polychromatic inter-
pretation is without loss (or gain) of information. This is guaranteed
by the following result.

Proposition 3.1. (·) induces an equivalence C ≃ Dϒ in CPROP.

Proof. We have already shown that (·) gives a strict monoidal func-
tor from C to Dϒ . We define another functor K : Dϒ → C on objects
by letting K () = K () = . Since Dϒ is presented by generators
and equations, it suffices to say what it does on generators of Dϒ .
It sends the generators Σ and the two Frobenius algebras to their
monochromatic versions, whereas it sends each of the two colour-
changers in Γ to id . One can straightforwardly check this gives a
well-defined, strict monoidal functor and that K ((·)) = IdC. So, it
remains only to give a natural isomorphism κ : IdDϒ � (K (·)) .

For a wordw in { , }, (K (·)) = |w | . So, let κw : w → |w | be
the unique monoidal product of id and morphisms of
the correct type. This is an isomorphism by construction. Naturality
then follows from the definition of (·) and the equations ϒ. □

Remark 3. The construction in this section ‘splits the difference’
between the two coproducts discussed in Example 2.3. As noted there,
the embedding U : PROP → CPROP does not preserve coproducts.
However, we can consider the introduction of the colour changers and
equations ϒ as a weak truncation operation on coloured props (·)•,
which forces all of the colours to be isomorphic to . Then, we do indeed
have an equivalence of coloured propsU (A+A′) ≃ (U (A)+U (A′))•.
Proposition 3.1 is then the instantiation of this fact for A := SΣ + Frob
and A′ := Frob.

4 Interpreting the Rewriting
Now that we represented of C as a coloured prop Dϒ , we can pass
to hypergraphs by instantiating Proposition 2.8.

Corollary 4.1. There is an isomorphism of { , }-coloured props
between Dϒ and FTermΣ⊎Γ, { , } quotiented by ⟨⟨ϒ⟩⟩.

With respect to rewriting, Corollary 4.1 is still unsatisfactory:
rewriting in Dϒ (and thus in C) corresponds to DPOI rewriting in
FTermΣ⊎Γ, { , } only modulo the equations ϒ. Clearly, it would be
computationally obnoxious — and definitively not an implemen-
tation — to reason about rewriting of ⟨⟨ϒ⟩⟩-equivalence classes of
graphs. We now proceed in steps towards a solution to the problem.
First, henceforth we shall treat the two equations in ϒ as rewriting
rules on D, with a left-to-right orientation. For simplicity we write
ϒ also the resulting rewriting system. We observe the following.

Lemma 4.2. ϒ is terminating and confluent on D.

Our next goal is then to show that rewriting modulo ϒ can
be simulated without loss of generality by putting a graph in ϒ-
normal form and then apply the rewriting rule. However, a naive
application of this approach immediately poses problems, as it is
shown by the following example.

Example 4.3. Suppose Σ contains an operation o and consider
the rewrite rule α defined as o ⇒

o
o . Under the interpreta-

tion (·) it yields a rule α in D defined as o ⇒
o
o . The

translated rule conflicts with ϒ, meaning that ϒ can erase α -redexes.
For instance

o ϒ +3

α��

o

/��
o
o

(7)

This kind of problematic example motivates the following trans-
formation on the rewrite rules of D. As a preparatory step, we
record the following lemma, where ↓c is the unique ϒ-normal form
of a morphism c of D, guaranteed by Lemma 4.2.

Lemma 4.4. Let l be a morphism of D in the image of (·) . Then,
there is a morphism l ′ not containing any ϒ-redex such that (in D)

n m� l =
���

p1

js

j1

q1

k1

qr

kr

ps

��� l� . (8)

where p1+ j1+ · · ·+ps + js = n and q1+k1+ · · ·+qr +kr =m, with
pi , ji ,qi ,ki ∈ N. Moreover, there is a unique such l ′ in D for each l .

Proof. Given l , by Lemma 4.2 there is a unique ↓l in ϒ-normal form.
Because l is in the image of (·) , besides and it
can only contain -sorted operators, and external dangling wires
are also of sort : thus every wire of sort inside ↓l can only be
connected to the left boundary via a and to the right
boundary via a . We can use the laws of SMCs to “pull out”
all such connecting operators towards the corresponding boundary:
what we obtain is the left-hand side of (8). □

We are now ready to introduce the transformation that will
remove the conflicts between a rewrite rule and ϒ.

Definition 4.5. Let α be a rewriting rule of type n → m on D

l
n m

⇒α
n mr

We obtain l ′ through Lemma 4.4.

l
n m

=
���

p1

js

j1

q1

k1

qr

kr

ps

��� l�

The rule α⋄ is defined as

���

p1

js

j1

q1

k1

qr

kr

ps

��� l� ⇒
���

p1

js

j1

q1

k1

qr

kr

ps

��� r .

Given a rewriting system R, we write R⋄ = {α⋄ | α ∈ R}.

It is instructive to show how this transformation neutralises the
problem of (7).

Example 4.6. The rule α from Example 4.3 is transformed into
(α)⋄, defined as o ⇒

o
o Observe that coexistence

with ϒ is not problematic anymore, as ϒ cannot erase (α)⋄-redexes.
5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi

For instance, in computation (7) we are not stuck anymore

o
ϒ
+3 o

(α)⋄

��
o
o

o
oϒ

ks

We now have all the ingredients to state the main theorem of
the paper: the DPOI rewriting implementation of rewriting in C.

Theorem 4.7. Let R be a rewriting system on C. Then

a ⇒R b iff ↓⟨⟨a ⟩⟩⇝⟨⟨R⋄⟩⟩
⋆
⇝⟨⟨ϒ⟩⟩ ↓⟨⟨b ⟩⟩

Contrary to the situation depicted at the beginning of the section,
in Theorem 4.7 DPOI rewriting in the combinatorial domain is
“on-the-nose”: instead of dealing with ⟨⟨ϒ⟩⟩-equivalence classes of
hypergraphs, we can now deal exclusively with ⟨⟨ϒ⟩⟩-normal forms,
which thanks to Lemma 4.2 are straightforward to compute.

The proof of Theorem 4.7 will go in steps. The theory developed
so far ensures a correspondence between
• rewriting in C and rewriting inDϒ , thanks to Proposition 3.1;
• rewriting in D and rewriting in FTermΣ⊎Γ, { , } , thanks to
Proposition 2.8.

Thus the only missing link to complete the correspondence in
Theorem 4.7 is to adequately represent rewriting in Dϒ as rewriting
in D. This is the remit of the next section.

5 Adequacy of the Implementation
For the purposes of this section, let R be a rewriting system on D.
We focus on the only missing piece of the proof of Theorem 4.7:
showing that the rule transformation of Definition 4.5 provides an
adequate implementation for R-rewriting modulo ϒ in D.

Proposition 5.1. Let c and d be arrows in D. Then

c
⋆
⇔ϒ⇒R

⋆
⇔ϒ d iff ↓c ⇒R⋄

⋆
⇒ϒ ↓d .

The proof will follow from Propositions 5.2 and 5.5. For the right-
to-left direction (completeness), we can prove a stronger statement.

Proposition 5.2. c ⇒R⋄ d implies c
⋆
⇔ϒ⇒R

⋆
⇔ϒ d .

Proof. For the sake of readability, all the diagrams in the proofs of
this section are depicted with unlabelled wires— it is intended that
each wire stands for a number of parallel wires of the same type,
arbitrary but compatible with its position in the diagram.
By assumption c has a redex for α⋄ for some rule α ∈ R. If α is
given by l ⇒ r , then α⋄ rewrites c as follows

c = c2��� l�

���
c1 ���

(9)

⇒α⋄ ���
��� r

c2c1

���

(10)

In light of (9), c modulo ϒ contains a redex for α as well

c2��� l�

���
c1 ���

⋆
⇔ϒ ���

���

���

l�
c2c1

⋆
⇔ϒ ���

���
c2c1

���

l

⇒α ���
��� r

c2c1

���

.

where the second step is justified by the definition of l ′ as in (8).
Thus rewriting with α modulo ϒ gives the same outcome as apply-
ing α⋄. This proves the statement. □

The left-to-right direction (soundness) of Proposition 5.1 requires
more work. First, we have that R⋄ is as powerful as R, modulo ϒ.

Lemma 5.3. c
⋆
⇔ϒ⇒R

⋆
⇔ϒ d iff c

⋆
⇔ϒ⇒R⋄

⋆
⇔ϒ d .

Proof. It suffices to show that c ⇒R d implies c
⋆
⇔ϒ⇒R⋄

⋆
⇔ϒ d and

c ⇒R⋄ d implies c
⋆
⇔ϒ⇒R

⋆
⇔ϒ d . For the left-to-right implication,

the assumption is that c contains a redex for a rule α ∈ R, say of
the form l ⇒ r .

c = ���
���

c2c1

���

l

⇒α ���
��� r

c2c1

���

(11)

Then, modulo ϒ, c also contains a redex for (l ⇒ r)⋄. Applying this
rule yields the same outcome, modulo-ϒ, as (11).

���
���

c2c1

���

l

⋆
⇔ϒ ���

���

���

l�
c2c1

⇒α⋄ ���
���

���

c2c1 r

⋆
⇔ϒ ���

��� r
c2c1

���

.

This proves the left-to-right implication of the statement. The right-
to-left implication is given by Proposition 5.2. □

The next step is to show that⇒R⋄ satisfies a “diamond property”
with respect to ϒ. This property implies that ϒ-rewriting does not
interfere with R⋄-rewriting— whence the latter can be assumed
without loss of generality to work on arrows in ϒ-normal form,
as in the desired implementation (Proposition 5.1). As shown in
Example 4.3, the diamond property fails for arbitrary rewriting
systems and justifies the introduction of the transformation (·)⋄.

Lemma 5.4 (Diamond Property). If c ⇒R⋄ d and c ⇒ϒ e then there
exists an f such that d ⇒ϒ f and e ⇒R⋄ f .

6

Rewriting with Frobenius LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Proof. This is immediate from the fact that, by Definition 4.5, R⋄
contains no ϒ-redex. Therefore, R⋄ and ϒ are orthogonal rewriting
systems (i.e. they have no critical pairs between each other). □

We are now ready to show soundness.

Proposition 5.5. c
⋆
⇔ϒ⇒R

⋆
⇔ϒ d implies ↓c ⇒R⋄

⋆
⇒ϒ ↓d .

Proof. Since ϒ is confluent and terminating (Lemma 4.2), the con-
clusion is equivalent to ↓c ⇒R⋄

⋆
⇔ϒ d , so we focus on this statement.

Assume c
⋆
⇔ϒ⇒R

⋆
⇔ϒ d . By Lemma 5.3, this implies c

⋆
⇔ϒ⇒R⋄

⋆
⇔ϒ d .

Since ϒ is confluent and terminating, this implies c
⋆
⇒ϒ↓c

⋆
ϒ⇐⇒R⋄

⋆
⇔ϒ d .

We can now drop the first part of the rewrite sequence and focus
on ↓c

⋆
ϒ⇐⇒R⋄

⋆
⇔ϒ d . By repeatedly applying Lemma 5.4, we can

commute ⇒R⋄ through
⋆

ϒ⇐ to obtain ↓c ⇒R⋄
⋆

ϒ⇐
⋆
⇔ϒ d . Finally,

merging
⋆

ϒ⇐ and
⋆
⇔ϒ yields ↓c ⇒R⋄

⋆
⇔ϒ d as required. □

5.1 Proof of Theorem 4.7
We now have all the pieces to conclude the proof of our main result.

Proof of Theorem 4.7. First, we have a correspondence at the level
of syntactic rewriting (Definition 2.5) in the props C and Dϒ

a ⇒R b

in C iff
a ⇒R b

in Dϒ

(12)

This is ensured by the fact that (·) is a functorial and fully-faithful
mapping. Second, we interpret ϒ as a set of rewrite rules instead of a
set of equations. Then, rewriting in Dϒ is just the same as rewriting
in D modulo ϒ-rewriting. Starting from the right-hand side of (12)

a ⇒R b

in Dϒ

iff a
⋆
⇔ϒ⇒R

⋆
⇔ϒ b

in D
(13)

where a and b are understood on the right as arrows of D, cf.
Remark 2. Third, we use Proposition 5.1 to give an implementation
for rewriting modulo-ϒ. Starting from the right-hand side of (13)

a
⋆
⇔ϒ⇒R

⋆
⇔ϒ b

in D
iff ↓a ⇒R⋄

⋆
⇒ϒ↓b

in D
(14)

Last, Corollary 4.1 and Proposition 2.8 yield the correspondence be-
tween rewriting in D and DPO-rewriting in FTermΣ⊎Γ, { , } . Starting
from the right-hand side of (14)

↓a ⇒R⋄
⋆
⇒ϒ↓b

in D
iff

⟨⟨↓a ⟩⟩⇝⟨⟨R⋄⟩⟩
⋆
⇝⟨⟨ϒ⟩⟩ ⟨⟨↓b ⟩⟩

in FTermΣ⊎Γ, { , }

(15)

Notice that ⟨⟨↓a ⟩⟩ =↓⟨⟨a ⟩⟩, where the normal form on the right
is computed in FTermΣ⊎Γ, { , } with the rules ⟨⟨ϒ⟩⟩. To conclude, by
chaining (12) to (15), we obtain the statement of the theorem. □

6 Application: Interacting Bialgebras
The natural use-cases for rewriting modulo Frobenius equations
come from the study of multiple, interacting Frobenius algebras.

Perhaps the best studied example is a pair of such algebras whose
respective monoid and comonoid structures interact as bialgebras

=
=

=
=

(b)
(c1)

(c2)
(u)

(16)

=
=

=
=(b')

(c1')

(c2')

(u')
(17)

and whose induced ‘cup’ and ‘cap’ maps coincide

= =(ca) (cu) (18)

This system is referred to as IB [5] and forms the core of the ZX-
calculus [12], which has recently been extended to give sound and
complete equational theories for approximately [20] and fully [25]
universal families of quantum circuits.

From the rules above, one can derive (see e.g. [12]) the following
two rules, which will soon be useful

= =
(d) (h) =

(u1)

=
(u2) (19)

A generic diagram composed of generators from these two Frobe-
nius algebras consists of arbitrarily many alternating layers of
and generators

...

What we will show in this section is a rewriting strategy for
turning any such diagram into a -reduced form that consists of just
four layers: an initial layer of -comonoid structure, followed by
-monoid structure, followed by -comonoid structure, followed

by a final layer of -monoid structure

...... (20)

We call this the -reduced form because there are no internal layers
of generators. We now give a characterisation of these forms in
terms of their associated hypergraphs with interfaces. To express
hypergraphs with interfaces compactly and unambiguously, we
adopt the following notational conventions

1. The hyperedges corresponding to and
are depicted as unlabelled, directed edges between nodes of
appropriate colour, hence

0
0 = ⟨⟨ ⟩⟩

0
0 = ⟨⟨ ⟩⟩

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi

2. Like in §2.2, interface maps are specified by labels above

and below nodes. For a hypergraph with interfaces m
f
−→

G
д
←− n, a label i1, . . . , ik above a node v indicates that

f −1 (v) = {i1, . . . , ik }, whereas such a label below indicates
that д−1 (v) = {i1, . . . , ik }. For example, the following hyper-
graph with interfaces is abbreviated as

0,1 0

1

:=

[2] G [2]

Using these conventions, the rules in the system ϒ can be written
as the following two DPOI rules

0

0

0

0

0

0

0

0

() ()⌥1 ⌥2

Hence, normalising with respect to ϒ contracts away any node
with precisely one in-edge and one out-edge. We are now ready to
characterise -reduced forms.

Proposition 6.1. A string diagram generated by two Frobenius al-
gebras and is in -reduced form as in (20) (modulo Frobenius
equations) if and only if its associated hypergraph with interfaces
I1 → G ← I2 satisfies the following conditions. G is directed acyclic
and every node in G is either

(I) in the image of a single node in I1 and has no in-edges,
(O) in the image of a single node in I2 and has no out-edges, or
(IO) in the image of one or more nodes in both I1 and I2.

Proof. When hypergraph nodes representing Frobenius algebra
generators are composed, they fuse together. Hence, the nodes inG
correspond to maximal connected components of Frobenius algebra
generators of the same colour.

First, suppose a string diagram is in the form of (20). Then, each
node in the hypergraph G corresponds to a maximal connected

component of Frobenius generators in (20). We first note that
any (co)unit connected to a (co)multiplication can be reduced away.
Hence, we need to consider only 5 cases for connected components
of generators: (1) a counit applied to an input wire, (2) a unit
applied to an output wire, (3) a tree of comultiplications applied to
an input wire, (4) a tree of multiplications connected to an output
wire, or (5) a connected component of cases (3) and (4). Cases (1)
and (3) yield a node of type (I). Cases (2) and (4) yield a node of
type (O), and case (5) yields a node of type (IO).

Conversely, we can interpret each of the nodes of types (I) and
(O) as cases (1)-(4) described above. The only slightly difficult case
is nodes of type (IO). These can be interpreted as a ‘zig-zag’ of
comultiplications in the first layer of (20) and multiplications in
the last layer, with no generators in between

......
... ...0,1,...,n

0,1,...,m

... ...

□

Crucially, an hypergraph with interfaces which satisfies the
conditions above contains no interior nodes, i.e. nodes not in
the image of I1 or I2. Eliminating these nodes will form the main
component of the strategy below. In order to obtain a hypergraph
with interfaces satisfying these conditions, we first perform the
transformation of the interacting bialgebra rules into a DPOI rewrite
system. This is a mechanical procedure, but for clarity, we will show
it explicitly for the rule (b). Following the recipe of Theorem 4.7, we
first use (·) to get the polychromatic interpretation —(21) below—
then apply (·)⋄ to shift the colour change maps on inputs/outputs
to the right-hand side —(22)— and finally apply ⟨⟨·⟩⟩ to interpret

= (21)

= (22)

0,1

0,1

0

1
0

1

(B)
(23)

Similarly, the rules (cp1), (cp2), (u), and (ca) produce the following

0,1
0

1

(C1) (U)
0

1
0,1(CA)0,1

0

1
(C2)

We have mentioned the derived equations in box (19) because, once
we translate them into DPOI rules, we see that rule (d) allows to
reverse the direction of an arbitrary edge, rule (h) to delete parallel
edges, and rules (u1) and (u2) to delete single, isolated nodes

0

0

0

0

0

0

0

0

(D) (H)

(U1)

(U2)

Note the rule (D) (and its converse) render the additional equa-
tions in box (17) and the rule (cu) redundant, since they are the
same as the rules above, but with some of the directions reversed.
Hence, the strategy we will describe only relies on the DPOI rules
above. First, we derive variations of the laws (B), (C1), and (C2)

0

1

0

1

(B')
0

1

0
1

0

1

(C1')
0

1

0

1
(C2')0

1

Unlike the original rules, these variations will terminate in the
strategy below. They are obtained by applying the original rule to
their LHS, then normalising with respect to the rules (ϒ1) and (ϒ2).
Reduction Strategy We begin with a hypergraph with interfaces
I1 → G ← I2, whose interfaces I1, I2 are all of the -sort. It should be
understood that after every rewrite step, the graph is normalised with
respect to rules (ϒ1) and (ϒ2). The strategy proceeds as follows

8

Rewriting with Frobenius LICS ’18, July 9–12, 2018, Oxford, United Kingdom

1. Reduce as much as possible using rules (U 1), (U 2), and (H),
using the inverse of rule (D) to create additional redexes for
(H) if necessary.

2. If there are no interior nodes, go to step 5. Otherwise, fix
a full sub-graph consisting of a single interior node v , a
neighbouring node w , and all of the nodes adjacent to
v and w . This looks like the graph (24) below, where the
directions of the edges can be arbitrary. Apply the rule (D)
or its converse to direct all of the edges in the sub-graph
from left to right, thus obtaining (25)

v w

... ... (24)
v w

... ... (25)

3. Reduce sub-graph (25) as much as possible using rules (B′),
(C1′), (C2′), and (U). This will eliminatev andw , yielding a
totally connected bipartite graph between their neighbours

... ...

Km,n

(26)

4. If there are remaining interior nodes, go to step 1.
5. If a node is in the image of multiple nodes in I1 and no

nodes in I2, apply the converse of rule (CA) to split it into
multiple nodes connected by nodes. For example

(CA)
0,1,2 ... 0 ...

1,2

0 ...

1(CA)

2

We split nodes only in the image of I2 similarly.
6. Apply (D) or its converse to direct the remaining edges from

the image of I1, to the nodes, then to the image of I2.

Theorem6.2. TheReduction Strategy above terminates and yields
a graph in reduced form.

Proof. First we show termination. Steps 1, 2, 3, and 6 clearly termi-
nate after finitely many rule applications. We now show that step 4
terminates yielding a graph of the shape Km,n .

If either v orw has no additional neighbours, then (B′) has no
redex, whilst exactly one of the rules (C1′), (C2′), or (U) will have
a redex. Applying any of these rules will strictly decrease the edges
in (25) without creating a redex for (B′), so step 4 will terminate.

Suppose that bothv andw have at least one additional neighbour.
Then only the rule (B′) has a redex. Applying (B′) will propagate
one in-edge of a node to the right, past an out-edge of a node,
possibly creating more and nodes in the process. However, each
of the new nodes will be ‘closer’ to the output of the graph, in the
sense that the total number of out-edges for successor nodes will
have decreased. Repeatedly applying (B′) will thus terminate once
all of the in-edges on nodes have been propagated to the right as
much as possible. Moreover, application of the rule (B′) preserves
the number of paths from the left nodes in (25) to the right nodes.
Since precisely one path exists from every node on the left to every
node on the right, this procedure yields Km,n at termination.

Each iteration of steps 1-4 reduces the number of interior nodes
by 1. Hence, it terminates after n iterations for n interior nodes
with no interior nodes. Step 5 guarantees all remaining, non-
interior nodes are of the form (I), (O), or (IO) as in Proposition 6.1,
and step 6 guarantees the directed acyclicity conditions. □

We close this section with a brief discussion about the -reduced
form, and its relationship to the semantics of IB. It was shown
in [5] that the prop for IB is isomorphic to the prop LinRel(Z2)
of Z2-linear relations. That is, morphisms S : m → n are linear
sub-spaces S ⊆ Zm2 × Z

n
2 � Zm+n2 , ⊕ is given by direct product,

and composition is done relation-style

(v,w) ∈ (S ;T) ⇐⇒ ∃u .(v,u) ∈ S, (u,w) ∈ T (27)

As explained in [30], the -reduced form (called the cospan form
therein) enables us to ‘read off’ S as a homogeneous system of
equations (or equivalently, as a basis for S⊥). In this form, nodes
correspond to variables, and nodes to equations, whose LHS and
RHS consist of those variables connected by in-edges and out-edges,
respectively. For example, the diagram below represents the space
of solutions to the following system of equations

0

1 0

e0

e1

e2

x0

x1

y0 7→
*...
,

x0 + x1
e0
= y0

0 e1
= y0

x0 + x1
e2
= 0

+///
-

(28)

This interpretation gives a semantical view of the Reduction
Strategy as a quantifier elimination procedure. The main purpose
of the procedure is to eliminate interior -nodes. Since these nodes
arise from sequential compositions in LinRel(Z2), equation (27)
tells that they correspond to existentially quantified variables

0

1 0

e0

e1

e2

x0

x1

y0
d0

z0

0

e0

e1

e2

y0

z0

0

1

x0

x1

d0

z0 ;
0

0
= 7→ ∃z0.

*......
,

x0 + x1
d0
= z0

z0
e0
= y0

0 e1
= y0

z0
e2
= 0

+//////
-

The core of the Reduction Strategy are steps 2 and 3. The former
isolates an existentially quantified variable z on the LHS of an
equation e , and step 3 substitutes any occurrence for that variable
with its RHS, simultaneously eliminating z and e . Applying this
procedure to the diagram above yields the -reduced form in (28)

0

1 0

2

0

1 0

3
0

1 0

6

0

1 0

Since everything in IB and the Reduction Strategy is colour-
symmetric, we can use the same strategy to compute the analogous
-reduced forms. To do so, we first pre- and post-compose with

colour changers to obtain a graph with an interface consisting
entirely of -nodes, then apply the Reduction Strategy with the
colours reversed. Applying this to example (28) yields

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi

0

1
0 *

0
0

1

This again gives a canonical representation of a sub-space S (called
the span form), but this time as a basis for S itself, rather than S⊥ [30].
-nodes correspond to basis vectors, where the presence of an edge

indicates a 1 in the corresponding position. The final diagram in the
rewrite sequence above represents S as span{((1, 1), (0))} ⊆ Z22×Z2,
which is indeed the space of solutions to the system given in (28).

Note that we have focused on the case of IB and Z2-linear equa-
tions because it is the simplest. It was shown in [8] that this system
generalises straightforwardly to a system IBF that has as its prop
LinRel(F) for an arbitrary field F . In that case, we introduce a
family of generators for each a ∈ F\{0, 1} that give weights to
edges. By modifying the Reduction Strategy to account for these
weights, we can still obtain a (slightly more elaborate) procedure
for removing internal nodes. This then gives the graphical analogue
to quantifier elimination over an arbitrary field F .

Interestingly, this graphical version of quantifier elimination is
inherently compositional. It is possible to introduce generators and
relations, breaking the semantic connection with LinRel(F), while
using Reduction Strategy on sub-diagrams in the IBF fragment.
This technique can exploit the fact that the ZX-calculus contains
IB to perform peephole optimisations on quantum circuits, even
though the latter have a more complex semantics that LinRel(Z2).

For yet another perspective, recall that IB enjoys a modular char-
acterisation in terms of distributive laws of props [5], which pre-
scribes that each diagram can be turned into cospan form and span
form. As observed, these correspond to -reduced and -reduced
forms respectively: thus our result provides algorithmic means to
reach them, that was lacking in the abstract picture. It also fills the
main gap in formulating the realisability procedure for signal flow
graphs [6, 7] entirely as a diagram rewriting procedure.

7 Conclusions
The aim of this paper was to establish an implementation of rewrit-
ingmodulo Frobenius algebras, in terms of DPOI hypergraph rewrit-
ing. This posed a series of technical challenges that we solved in a
principled way: in particular, it turns out that our “polychromatic
interpretation” is an equivalence, and thus adequately captures the
information carried by the original single-sorted theory. We believe
that this interpretation is part of a broader picture. Namely, the
forgetful functorU : PROP→ CPROP mentioned in Remark 3 has
a left adjoint involving the ‘weak truncation’ operation described
in §3. We plan to investigate this construction and elucidate its
connection to the polychromatic interpretation in future work.

As illustrated in §1, diagrammatic theories featuring multiple
Frobenius algebras are widespread across different disciplines. Our
result drastically reduces the number of equations to consider when
reasoning about these theories, thus simplifying the path to termi-
nation and normal form result, as well as easing their mechanisation
in proof assistants. We concluded our paper with one such demon-
stration: a rewriting strategy for putting diagrams of the theory
IB in reduced forms. We mentioned how these forms have linear
algebraic significance and are also directly relevant for the study

of interacting bialgebras in terms of distributive laws. Further ap-
plications to the theories based on IB, such as the ZX-calculus and
the calculus of signal flow diagrams, as well as different calculi
featuring multiple Frobenius algebras, remain to be explored.

Acknowledgements. Fabio Zanasi acknowledges support from EP-
SRC grant n. EP/R020604/1.

References
[1] J. Baez and J. Erbele. 2015. Categories in control. Theory and Application of

Categories 30 (2015), 836–881.
[2] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. 2016. Rewriting

modulo symmetric monoidal structure. In LICS 2016. ACM, 710–719.
[3] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. 2017. Confluence

of graph rewriting with interfaces. In ESOP 2017 (LNCS), Vol. 10201. Springer,
141–169.

[4] F. Bonchi, P. Sobociński, and F. Zanasi. 2014. A categorical semantics of signal
flow graphs. In CONCUR 2014 (LNCS), Vol. 8704. Springer, 435–450.

[5] F. Bonchi, P. Sobociński, and F. Zanasi. 2014. Interacting bialgebras are Frobenius.
In FoSSaCS 2014 (LNCS), Vol. 8412. Springer, 351–365.

[6] F. Bonchi, P. Sobociński, and F. Zanasi. 2015. Full abstraction for signal flow
graphs. In POPL 2015. ACM, 515–526.

[7] F. Bonchi, P. Sobociński, and F. Zanasi. 2017. The calculus of signal flow diagrams
I: Linear relations on streams. Information and Computation 252 (2017), 2–29.

[8] F. Bonchi, P. Sobociński, and F. Zanasi. 2017. Interacting Hopf algebras. Journal
of Pure and Applied Algebra 221, 1 (2017), 144 – 184.

[9] R. Bruni and F. Gadducci. 2001. Some algebraic laws for spans (and their connec-
tions with multirelations). In RelMiS 2001 (ENTCS), Vol. 44(3). Elsevier, 175–193.

[10] R. Bruni, I. Lanese, and U. Montanari. 2006. A basic algebra of stateless connectors.
Theoretical Computer Science 366, 1–2 (2006), 98–120.

[11] A. Carboni and R. F. C. Walters. 1987. Cartesian bicategories I. Journal of Pure
and Applied Algebra 49, 1-2 (1987), 11–32.

[12] B. Coecke and R. Duncan. 2008. Interacting quantum observables. In ICALP 2008
(LNCS), Vol. 5216. Springer, 298–310.

[13] B. Coecke and A. Kissinger. 2016. Picturing Quantum Processes. A First Course in
Quantum Theory and Diagrammatic Reasoning. Cambridge University Press.

[14] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Loewe. 1997.
Algebraic approaches to graph transformation, part I: Basic concepts and double
pushout approach. In Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 163–246.

[15] B. Fong. 2016. The Algebra of Open and Interconnected Systems. Ph.D. Dissertation.
University of Oxford.

[16] B. Fong, P. Rapisarda, and P. Sobociński. 2016. A categorical approach to open &
interconnected dynamical systems. In LICS 2016. ACM, 495–504.

[17] B. Fong and F. Zanasi. 2017. A universal construction for (co)relations. In CALCO
2017 (LIPIcs), Vol. 72. Leibniz-Zentrum für Informatik, 12.1–12.6.

[18] F. Gadducci and R. Heckel. 1998. An inductive view of graph transformation. In
WADT 1997 (LNCS), Vol. 1376. Springer, 223–237.

[19] D. R. Ghica, A. Jung, and A. Lopez. 2017. Diagrammatic semantics for digital
circuits. In CSL 2017 (LIPIcs), Vol. 82. Leibniz-Zentrum für Informatik, 24:1–24:16.

[20] E. Jeandel, S. Perdrix, and R. Vilmart. 2018. A complete axiomatisation of the
ZX-calculus for Clifford+T quantum mechanics. In LICS 2018. ACM.

[21] P. Katis, N. Sabadini, and R.F.C. Walters. 1997. Span(Graph): An algebra of
transition systems. In AMAST 1997 (LNCS), Vol. 1349. Springer, 322–336.

[22] A. Kissinger and V. Zamdzhiev. 2015. Quantomatic: A proof assistant for dia-
grammatic reasoning. In CADE 2015 (LNCS), Vol. 9195. Springer, 326–336.

[23] S. Lack and P. Sobociński. 2005. Adhesive and quasiadhesive categories. Theoret-
ical Informatics and Applications 39, 3 (2005), 511–546.

[24] D. Marsden and F. Genovese. 2017. Custom hypergraph categories via generalized
relations. In CALCO 2017 (LIPIcs), Vol. 72. Leibniz-Zentrum für Informatik, 17:1–
17:16.

[25] K. F. Ng and Q. Wang. 2017. A universal completion of the ZX-calculus. CoRR
abs/1706.09877 (2017).

[26] D. Pavlovic. 2013. Monoidal computer I: Basic computability by string diagrams.
Information and Computation 226 (2013), 94–116.

[27] M. Sadrzadeh, S. Clark, and B. Coecke. 2013. The Frobenius anatomy of word
meanings I: subject and object relative pronouns. Journal of Logic and Computa-
tion 23, 6 (2013), 1293–1317.

[28] P. Selinger. 2011. A survey of graphical languages for monoidal categories.
Springer Lecture Notes in Physics 13, 813 (2011), 289–355.

[29] D. I. Spivak and J. Tan. 2017. Nesting of dynamical systems and mode-dependent
networks. Complex Networks 5, 3 (2017), 389–408.

[30] F. Zanasi. 2015. Interacting Hopf Algebras: The Theory of Linear Systems. Ph.D.
Dissertation. Ecole Normale Supérieure de Lyon.

[31] F. Zanasi. 2016. The algebra of partial equivalence relations. In MFPS 2016
(ENTCS), Vol. 325. Elsevier, 313–333.

[32] F. Zanasi. 2017. Rewriting in free hypergraph categories. In GAM@ETAPS 2017
(EPTCS), Vol. 263. Open Publishing Association, 16–30.

10

	Abstract
	1 Introduction
	2 Background
	2.1 Props, Frobenius algebras, rewriting in a prop
	2.2 Rewriting with cospans of hypergraphs

	3 The Polychromatic Interpretation
	4 Interpreting the Rewriting
	5 Adequacy of the Implementation
	5.1 Proof of Theorem 4.7

	6 Application: Interacting Bialgebras
	7 Conclusions
	References

