
On computability and tractability for infinite sets∗

Mikołaj Bojańczyk and Szymon Toruńczyk

University of Warsaw

{bojan,szymtor}@mimuw.edu.pl

Abstract
We propose a definition for computable functions on hereditarily

definable sets. Such sets are possibly infinite data structures that

can be defined using a fixed underlying logical structure, such as

(N,=). We show that, under suitable assumptions on the underlying

structure, a programming language called definable while programs
captures exactly the computable functions. Next, we introduce a

complexity class called fixed-dimension polynomial time, which
intuitively speaking describes polynomial computation on heredi-

tarily definable sets. We show that this complexity class contains

all functions computed by definable while programs with suitably

defined resource bounds. Proving the converse inclusion would

prove that Choiceless Polynomial Time with Counting captures

polynomial time on finite graphs.

1 Introduction
The goal of this paper is to identify the notion of computability, in-

cluding “polynomial-time computability”, for hereditarily definable

sets. Such sets are a generalisation of hereditarily finite sets. They

are possibly infinite, but can be defined using set builder notation

in terms of some underlying logical structure A, called the atoms
of the hereditarily definable set. We begin with some examples.

Suppose that the underlying structure of atoms is the natural num-

bers with equality (N,=). One possible hereditarily definable set

consists of all unordered pairs of atoms:

{{x ,y} : for x ,y ∈ A such that x , y}.

We can use parameters from the atoms, e.g. as in the following

hereditarily definable set:

{x : for x ∈ A such that x , 5}.

Another example is the set A2
of all ordered pairs, encoded via

Kuratowski pairing:

{{x , {x ,y}} : for x ,y ∈ A such that true}

If the atoms have more structure, then this structure can be used

in the hereditarily definable sets, e.g. if the atoms are the ordered

∗
The work of M. Bojańczyk was supported by the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation programme (ERC

consolidator grant LIPA, agreement no. 683080). The work of Sz. Toruńczyk is sup-

ported by the National Science Centre of Poland grant 2016/21/D/ST6/01485.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209190

rational numbers (Q, ≤) then an example of a hereditarily definable

set is the set of all closed intervals with right endpoint ≤ 7:

{{y : for y ∈ A such that x ≤ y ∧ y ≤ z} : for x , z ∈ A

such that x ≤ z ∧ z ≤ 7}

As mentioned above, we can use Kuratowski pairing, and therefore

pairs and tuples are allowed in hereditarily definable sets, which

allows us to talk about structures such as graphs, e.g. the directed

clique on all atoms (A,A2). A formal definition of hereditarily de-

finable sets is given in Section 2. Hereditarily definable sets are a

flexible and easy to use formalism for representing some possibly

infinite data structures. The goal of this paper is to define what it

means for an operation on hereditarily definable sets to be com-

putable. A second goal, and the main original contribution of this

paper, is to propose a definition of “polynomial time” computation.

Acknowledgements. The authors would like to thank Andreas Blass,
Anuj Dawar and Erich Grädel for helpful discussions, as well as

the Simons Institute for hosting the semester Logical Structures in
Computation, where these discussions were held. We are also very

grateful to an anonymous referee who observed that our original

formulation of Theorem 3.9 can be made more general.

Background. This paper is part of the research programme on com-

putation in sets with atoms, whose original motivation was the

observation [4, 7] that various automata models over infinite alpha-

bets can be viewed as “finite” automata under a suitable relaxation

of finiteness (called orbit finiteness, which is essentially the same

thing as hereditary definability) and that standard algorithms over

finite objects (such as graph reachability, automaton emptiness, or

automaton minimisation) extend transparently to the setting of

hereditarily definable sets. An extended description of this topic

can be found in the lecture notes [5].

We would like to underline that our main focus is on hereditarily

definable sets over atoms such as (N,=) or maybe (Q, <), which are

the central examples in the theory of sets with atoms. Sometimes,

we can prove results with fewer assumptions, e.g. oligomorphism,

or a decidable first-order theory. Nevertheless, the number of as-

sumptions grows toward the end of the paper, and the final results

are only given for (N,=).

Computability. The first contribution of this paper is a discussion

of computability over hereditarily definable sets. This is not the

first approach to this question. There are, in fact, already two pro-

gramming languages that manipulate hereditarily definable sets: a

functional programming language [6] and an imperative program-

ming language [8, 17]. Furthemore, these programming languages

have been implemented: the functional programming language

as an extension of Haskell [16], and the imperative programming

language as a C++ library [17]. In fact, [17] provides more than

just a description of an implementation; it also shows how the

programming language works for arbitrary logical structures with

1

https://doi.org/10.1145/3209108.3209190

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk and Szymon Toruńczyk

a decidable first-order theory, e.g. Presburger Arithmetic, and not

just homogeneous ones as assumed in [8].

Our point of departure is the programming language from [8], ex-

tended to logical structures that are not necessarily homogeneous,

which we call here definable while programs. In such a program,

there is only one data type for the variables, namely hereditarily de-

finable sets. There are the standard instructions of while programs

like if andwhile, and there is a nonstandard for x ∈ X instruction

which executes a block of code in parallel ranging over possibly

infinitely many elements x of a hereditarily definable set X . These

instructions can be nested arbitrarily. Our first contribution is a

simplified model, equivalent to definable while programs, which

we call definable state machines, which operate by performing a

sequence of simple operations.

In [8, 17] it was shown – including an implementation – that de-

finable while programs can be executed on a “normal computer”, i.e.,

a Turing machine. The next question we ask in this paper is: are de-

finable while programs computationally complete? Could one add

features, in a way which would allow new computable functions,

but so that the programs could still be executed on a normal com-

puter? The second contribution of this paper is Theorem 3.9 which

shows that definable while programs are computationally com-

plete in the following sense: if a function on hereditarily definable

sets can be computed on a normal computer and it is equivariant

(i.e. invariant under automorphisms of the atoms), then it can be

computed by a definable while program.

Polynomial-time computation. The last and principal contribution

of this paper is a study of what it means to compute a function

on hereditarily definable sets in polynomial time. One natural idea

would be to have a polynomial-time algorithm, in the usual sense,

which inputs an expression such as

α = {{x} : for x ∈ A such that true} (1)

and then produces the output (either a new expression, in case

of functions from hereditarily definable sets to hereditarily defin-

able sets, or a yes/no value for Boolean questions). An important

difficulty is that such a function should not depend on the rep-

resentation of the input. For example, the set defined by α can

alternatively be represented by the expression

β = {{x ,y} : for x ,y ∈ A such that x = y}. (2)

Since these are the same sets, then the outputs should be the same

sets. Unfortunately, deciding if two expressions represent the same

hereditarily definable set is a pspace-complete problem, which

shows that polynomial-time algorithms manipulating such expres-

sions have very limited capabilities, andwould only allowmodelling

the most basic functions like the identity function or constant func-

tions. Even when this problem with ambiguity is eliminated by

requiring the inputs to be of a very restricted form, e.g. unnested

sets of tuples, guarded by quantifier-free formulas, certain basic

problems, such as reachability in graphs, remains pspace-hard. It

would be disappointing to have a polynomial-time complexity class

that would not contain graph reachability. To work around the

pspace-hardness, we use parametrised complexity. We identify a

parameter for hereditarily definable sets, which we call dimension.

Roughly speaking, the dimension of an expression is the number of

variables that it uses. For example, the expression α defined above

in (1) has dimension 1, even though suboptimal expressions, such

as β , might need more variables. Our proposal for polynomial time

is that the running time is bounded by a function f (d,n) where d
is the dimension of the input representation and n is the size of the

input representation (the representation might have larger than

necessary dimension and size); subject to the restriction that for ev-

ery fixed d the function f (d, _) is polynomial, although the degree

of the polynomial is allowed to depend on d . For this complexity

class (of functions on hereditarily definable sets) we introduce the

name fixed-dimension polynomial. In Section 4 we describe this

complexity class, and show that it is robust and captures natu-

ral problems like graph reachability, automaton minimisation or

emptiness for context free languages. We also rule out alternative

definitions, including one where the degree of the polynomial is

fixed independently of d .

Connection to finite model theory. A special case of a hereditarily

definable set is one which is hereditarily finite, possibly using the

atoms. For example, if the atoms are (N,=), then the undirected

clique on vertices {1, 2, 7} is an example of a hereditarily definable

set which is also hereditarily finite. If an algorithm inputs a rep-

resentation of a set as an expression, then the representation will

necessarily have some ordering on the vertices, e.g. {1, 2, 7} and

{2, 1, 7} are two different representations of the same set. This leads

us to the central question in finite model theory [13]: is there some

logic which captures polynomial time, i.e. exactly those properties

of finite structures (e.g. graphs) that can be computed in polyno-

mial time in a way that is invariant under possible representations.

This question can be viewed as part of our setting in the follow-

ing way. In Fact 1 we show that a class L of finite graphs is in

polynomial time (in the sense of finite model theory) if and only if

membership of a hereditarily definable set inL is in our complexity

class of fixed-dimension polynomial time. The reason is that all

finite graphs can be represented by expressions of dimension zero;

and over fixed-dimension there is no difference between the two

complexity classes. The message is that the setting of finite model

theory can be viewed as the dimension zero case of our setting.

Resource bounded definable while programs. The main technical

contribution of this paper is a study of resource bounded definable

while programs. We show that if our definable while programs are

restricted to hereditarily finite sets and equipped with polynomial

bounds on the memory and time used, then they have the same ex-

pressive power as Choiceless Polynomial Time (c̃pt), an important

logic that is contained in polynomial time [3]. Adding counting to

the while programs leads to equivalence with the counting version

of c̃pt. What is more, the definition of polynomial resource bounds

can be extended to possibly infinite hereditarily definable sets, and

we show that while programs with such polynomial bounds are

contained in the complexity class of fixed-dimension polynomial

time. We do not know if they capture the entire complexity class,

and we dare not make any such conjectures. Proving such a capture

result would prove that c̃pt with counting captures polynomial

time on finite structures, thus solving a central open problem in

finite model theory.

2 Basic definitions
Suppose that A is a logical structure, whose elements will be called

atoms. Call A effective if its universe is a decidable subset of 2
∗

and there is an algorithm which inputs a first-order formula φ,
and a valuation of its free variables in A, and decides whether the

2

On computability and tractability for infinite sets LICS ’18, July 9–12, 2018, Oxford, United Kingdom

valuation satisfies φ in A. Call a structure effectively presentable if
it is isomorphic to some effective structure. Examples of effectively

presentable structures include (N,=), the rational numbers with

order, (Q, ≤), the random graph, Presburger arithmetic (N,+) and
Skolem arithmetic (N,×).

Set builder expressions and hereditarily definable sets. Fix a

logical structure A for the atoms. Fix some countably infinite set of

variables, which are meant to range over atoms. Define set builder
expressions over A as follows by structural induction:

Atom. Every atom a ∈ A is a set builder expression, called an atom
expression.
Variable. Every variable is a set builder expression, called a variable
expression.
Set expression. Let x1, . . . ,xn ,y1, . . . ,ym be distinct variables,

which contain the free variables in a first-order formula φ and an

already defined set builder expression α . The formula φ is over the

vocabulary of A which may use parameters from the atoms. Then

{α(x1, . . . ,xn ,y1, . . . ,ym) : for y1, . . . ,ym ∈ A

such that φ(x1, . . . ,xn ,y1, . . . ,ym)} (3)

is a set builder expression, called a set expression. The free variables
are x1, . . . ,xn and the variables y1, . . . ,ym are called bound. The

formula φ is called the guard of the expression. A special case of a

set expression is when there are zero bound variables, i.e.m = 0, in

which case we write it as a singleton {α(x1, . . . ,xn)}.
Union expression. If α1, . . . ,αn are set expressions, then α1 ∪

· · · ∪ αn is a set builder expression. Such an expression is called a

union expression.

For a set builder expression α with free variables x1, . . . ,xn , the
semantics of α is a function which takes n arguments a1, . . . ,an
and produces the corresponding set α(a1, . . . ,an), defined in the

natural way, which is either an atom, a set of atoms, a set of sets

of atoms, etc. If α has no free variables, then this function takes

no arguments, and we say that α defines the set α(). Note that the
same set can be defined by different set builder expressions.

Definition 2.1 (Hereditarily definable sets). A hereditarily defin-
able set over a logical structure A is any atom or set defined by a

set builder expression without free variables. We write hdefA for

the hereditarily definable sets over A, and setbA for the set builder

expressions over A without free variables.

An atom a ∈ A can appear in a set builder expression in two

ways: either as a subexpression of type “atom”, or as a parameter

in a guard in some subexpression of type “set expression”. In either

case the atom is called a parameter of the expression. Recall that set
expressions can be singletons, which allows us to create hereditarily

finite sets (a set is called hereditarily finite if it is finite, its elements

are finite, and so on), e.g. {{5} ∪ {6}} ∪ {5} is a hereditarily defin-

able set with zero free or bound variables and parameters 5, 6. This

set is the same as {{5, 6}, 5}, which is the same as the Kuratowski

pair (5, 6). In future examples we will use the more convenient ex-

pressions (5, 6) for {{5, 6}, 5}, but these should be seen as syntactic

sugar. Using this syntactic sugar, we can write directed graphs as

hereditarily definable sets, e.g. ({1, 2, 3, 7}, {(1, 2), (2, 3), (3, 7)}) is a

hereditarily definable set which describes a directed path of length

3. In this example, the parameters are 1, 2, 3, 7 and there are no free

or bound variables.

The guards in a set builder expression are allowed to use quan-

tifiers. For example if the atoms are Presburger arithmetic (N,+)
then

{x : for x ∈ A such that ∃y y + y = x ∧ y + y , y}

defines the set of nonzero even numbers. The quantified variables

are also counted as bound variables, e.g. in the above set builder

expression both variables x and y are bound. Another example

of a hereditarily definable set over Presburger arithmetic is the

configuration graph of any vector addition system (vas), or of a

Minsky machine.

3 Computable functions on hereditarily
definable sets

We define two notions of computability of functions on hereditarily

definable sets: by means of Turing machines, and by means of a

programming language called definable while programs.

3.1 Computable functions
A set builder expression can be written down so that it can be input

and output by algorithms; assuming that there is some way to

represent the parameters. In particular, ifA is an effective structure,

then we can represent set builder expressions as bit strings and

it makes sense to talk about algorithms that input or output set

builder expressions.

Definition 3.1 (Computatable function on hereditarily definable

sets). Let A be an effective structure. A function F : hdefA →

hdefA is called computable if there is a function F ′ : setbA →

setbA which is computable in the normal sense (i.e. by a Turing

machine) such that for every α ∈ setbA representing a hereditarily

definable set x , F ′(α) is a set builder expression which defines the

hereditarily definable set F (x).

The above definition talks about total functions; the extension

to partial functions (where the Turing machine does not terminate

on inputs with undefined values) is defined in the natural way.

Note that the notion above depends on a particular presentation

of an effectively presentable structure A. In particular, given two

effective structures A,A′ and an isomorphism α between them, the

functions computable in A may not correspond to the functions

computable in A′ via the isomorphism α , if the isomorphism is not

computable.

Since hereditarily definable sets are closed under taking tuples,

one can talk about computable functions that go from tuples of

hereditarily definable sets to hereditarily definable sets. For exam-

ple, the functions x ∩ y, x − y and

⋃
x are computable, as is easy

to see, and also follows from Theorem 3.5 below. Natural numbers

can be viewed as special cases of hereditarily definable sets, e.g. by

using von Neumann numerals ∅, {∅}, {∅, {∅}}, etc. (those should

not be confused with natural numbers which may appear in atoms,

e.g. if the atoms are (N,=)). Using such an encoding, we say that a

subset L ⊆ hdefA is computable if its characteristic function (which

is total) into the booleans {0, 1} is computable.

3.2 Definable while programs
A disadvantage of Definition 3.1 is that that it requires computing

on representations (i.e. set builder expressions); in particular each

algorithm needs to explicitly implement parsing of the inputs, and

operations like computing x ∩ y or testing x = y on the level of

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk and Szymon Toruńczyk

set builder expressions. To avoid this, we will use definable while
programs as proposed in [8, 17]. The idea is to add a layer of abstrac-

tion on top of set builder expressions which allows the programmer

to work directly with hereditarily definable sets. Before describing

the programming language, consider two examples.

Example 3.2. The code below uses the atoms (Q, <). After execut-
ing it, the variable X will store the hereditarily definable set of all

intervals of the form (−∞;a), for a ∈ Q. This example illustrates

the two key properties of the programming language: variables

store hereditarily definable sets, and the for loop may range across

an infinite set.

A := A;
X := ∅;
for a in A do

I := ∅;
for b in A do

if b < a then
I := I ∪ {b};

X := X ∪ {I}

Example 3.3. For the code below, the choice ofA is not important.

The program inputs a graph stored in variables V and E as well as
a set of source vertices S, and computes in variable R the vertices
reachable from the sources. The program terminates if and only if

there is some n such that every vertex is connected to S by a path

of length n, or by no path at all.

R := S;
Old := ∅;
while R != Old do

Old := R;
for v in R do

for w in V do
if {v,w} ∈ E then

R := R∪{w}

Syntax. We now present the syntax of definable while programs.

Fix a logical structure A of atoms. We assume that there is a count-

ably infinite set of names for program variables. Program variables

are untyped, i.e. every program variable stores a hereditarily defin-

able set. Although cumbersome, one can encode other data struc-

tures using hereditarily definable sets, e.g. the natural numbers

can be encoded by von Neumann numerals. A reasonable imple-

mentation, such as [17], has more features, such as booleans or

integer arithmetic. Below we describe the possible instructions in a

minimalistic version of the language.

Expressions. We consider expressions of two types: terms and
conditions. A term e may be a variable, a constant ∅ or A, inter-
preted as the hereditarily definable set that contains all elements in

the universe of A. Terms can be built up using Boolean operations

and singleton, e1 ∪ e2, e1 ∩ e2, e1 − e2, {e1}, with the expected se-

mantics. Additionally, for each function symbol f of arity n in the

signature of A, there is a term f (e1, . . . , en), which has the follow-

ing semantics: if at least one ei does not represent an atom, then

f (e1, . . . , en) evaluates to ∅; otherwise, if all expressions e1, . . . , en
evaluate to atoms, then f (e1, . . . , en) evaluates to the value of f on

the corresponding atom tuple.

A condition is a boolean combination using ∧,∨,¬ of statements

of the form e1 = e2, e1 ∈ e2, or R(e1, . . . , en), where e1, e2 are terms

and R is a relation symbol in the vocabulary of A of arity n, and
R(x1, . . . ,xn) denotes that the tuple (x1, . . . ,xn) belongs to the

interpretation of the symbol R in A. (We adopt the convention that

R is false when at least one of its arguments is not an atom.)

Assignment. If x is a program variable and e a term, then x :=e
is an instruction, which loads the value of the expression e into the

variable x .
Sequential composition. If I and J are already defined programs,

then also I;J is a program which first executes I and then J.
Control flow. Suppose that c is a condition, I and J are already

defined programs. Then the following are programs:

if c then I else J while c do I

The for loop. The nonstandard construct in the programming

language is the following for loop. Suppose that x is a variable, e
a term, and I is an already defined program. Then the following is

also a program:

for x in e do I

The idea behind this program is that it executes I in parallel for all

elements of the set represented by e , with the results of the parallel

executions being aggregated using set union.

We remark that our list of operations allowed in the expressions

is redundant – a smaller, equivalent set of operations would al-

low only A, x ∪ y, f (x1, . . . ,xn) and {x} as terms and x = y and

R(x1, . . . ,xn) as conditionals, where x ,y,x1, . . . ,xn are variables,

and not expressions. However, we allow a more verbose syntax for

convenience.

Semantics. We now present the formal semantics of definable

while programs. A program state is a function which assigns hered-

itarily definable sets to the program variables appearing in the

program. If γ is a program state and e is a term or a condition, then

the semantics [[e]]γ is defined in the natural way, by evaluating

the expression e with values γ (x) substituted for the variables x .
Intuitively, the for loop splits a single program state into many

parallel threads. This can be formalized by introducing superstates,
which keep track of many threads simultaneously. A superstate S is

an indexed family (Sτ)τ ∈T of states; the elements of the indexing

set T are called the threads of S . Intuitively speaking, the index τ is

going to be a stack of hereditarily definable sets, corresponding to

the values that are bound in successive nestings of the for loops.
The operational semantics of definable while programs is given

by the rules listed in Figure 1 on page 5. The relation S ›−[[I]]→ S ′

denotes that performing the instruction I in superstate S results in

superstate S ′. This is a partial function from the first two arguments

S and I to the third argument S ′; it is partial because while loops
might not terminate. The functions Split and Aggregate used in

Figure 1 are explained below.

The intuition behind the operation Split(S,x , e) is that it de-

scribes what will happen if all threads in a superstate S execute

an a loop of the form for x ∈ e . Let S be a superstate, let x be a

program variable and let e be an expression. Let Split(S,x , e) be the
superstate T defined as follows. The threads of T are pairs (τ ,v)
where τ is a thread of the superstate S and v is an element of the

set represented by expression e in the program state corresponding

to thread τ , i.e. v ∈ [[e]]Sτ . The program state corresponding to

thread (τ ,v) in the superstateT is the following map from program

4

On computability and tractability for infinite sets LICS ’18, July 9–12, 2018, Oxford, United Kingdom

∅ ›−[[I]]→ ∅
(no-threads)

S ›−[[I1]]→ S ′ S ′ ›−[[I2]]→ S ′′

S ›−[[I1; I2]]→ S ′′
(sequencing)

S ›−[[x:=e]]→ S[x/e]
(assignment)

S[c] ›−[[I]]→ S+ S[¬c] ›−[[J]]→ S−

S ›−[[if c then I else J]]→ S+ ∪ S−
(if-then-else)

S[c] ›−[[I]]→ S ′ S ′ ›−[[while c do I]]→ S ′′

S ›−[[while c do I]]→ S ′′ ∪ S[¬c]
(while)

Split(S,x , e) ›−[[I]]→ S ′

S ›−[[for x in e do I]]→ Aggregate(S ′)
(for)

Figure 1. Structural operational semantics of definable while programs. The notation used in the specific rules above is defined below.

(no-threads): ∅ denotes the superstate with empty set of threads. (assignment): if e is a term and x is a variable, then by S[x/e] we denote
the superstate S ′ such that for every thread τ of S , S ′τ (x) = [[e]]Sτ and S ′τ (y) = Sτ (y) for y , x . (if-then-else) and (while): if S is a superstate

and c is a condition, then by S[c] we denote the superstate obtained from S by restricting to those threads τ for which [[c]]Sτ evaluates to true.

variables to hereditarily definable sets:

y 7→

{
Sτ (y) if y , x

v otherwise

The operation Aggregate(S ′) performs an inverse operation to

split; intuitively speaking it says what happens after finishing the

execution of a for loop. The operation is only defined if S ′ is a
superstate where every thread is of the form (τ ,v), for some τ and

v . The result of the operation Aggregate(S ′) is a new superstate S
defined as follows. The threads of S are threads τ such that (τ ,v) is
a thread of S ′ for some v . The value of a variable x in the program

state corresponding to thread τ in S is defined as follows. Consider

the possible values of variable x in threads of S ′ that begin with τ ,
i.e.

{S ′
(τ ,v)(x) : v is such that (τ ,v) is a thread of S ′}. (4)

If the set above contains one element, i.e. all threads beginning

with τ agree on variable x , and this element is furthermore an atom

a, then we define the value of variable x in thread τ of T to be a.
Otherwise (i.e. either some thread beginning with τ stores a non-

atom in variable x , or threads beginning with τ disagree on their

contents) then the value of variable x in thread τ of T is defined to

be the union of the set in (4), i.e. the set of elements that belong to

at least one set from (4).

Example 3.4. Suppose that S ′ is a superstate where the threads
are all pairs of atoms (a,b). Let S be the superstate Aggregate(S ′).
The threads of S are individual atoms a.

• Assume that for program variable x , the program state in-

dexed by (a,b) in S ′ stores the set {b}. Then the program

state indexed by a in S stores the following set in variable x :

A =
⋃
b ∈A

{b}

• Assume that for program variable y, the program state in-

dexed by (a,b) in S ′ stores the atom b. Then the program

state indexed by a in S stores the following set in variable y:

∅ =
⋃
b ∈A

b .

This set is empty because an atom has no elements.

• Assume that for program variable y, the program state in-

dexed by (a,b) in S ′ stores the atom a. Then the program

state indexed by a in S also stores a in variable z, because all
threads beginning with a have the same value in variable z.

3.3 Functions computed by definable while programs
A definable while program P is an instruction Iwith a distinguished
tuple of input variables x1, . . . ,xn and a distinguished tuple of out-
put variables y1, . . . ,ym . Such a program defines a partial function

which maps n-tuples of sets tom-tuples of sets, as expected. For-

mally, for a given tuple u1, . . . ,un of sets, let Sū be the superstate

with one thread denoted ε , such that Sūε is the program state which

assigns ui to the variable xi , and ∅ to all remaining variables. If

Sū ›−[[P]]→ S , then S also has only one thread ε , and we say that

the result of the definable while program P on input u1, . . . ,un
is the tuple of values v1, . . . ,vm , where vi = Sε (yi). We also say

that the program P computes the partial function mapping a tuple

u1, . . . ,un to the result v1, . . . ,vm . We will usually restrict to the

case n =m = 1 for simplicity.

Note that according to the above definition, it makes sense to

run definable while programs on any input sets, not necessarily

hereditarily definable ones. It is not difficult to show that if the input

sets are hereditarily definable, then the result (if defined) is a tuple

of sets which are again hereditarily definable. Therefore, a definable

while program with one input variable and one output variable

induces a partial function f : hdefA→ hdefA. The following result
shows that definable while programs compute functions which are

computable in the sense of Definition 3.1.

Theorem3.5. Assume thatA is effective. Then every partial function
f : hdefA→ hdefAwhich is computed by a definable while program
over A is computable.

Theorem 3.5 was shown in [8] under a stronger assumption

that A is homogeneous and effective, and for arbitrary effective

atoms in [17], although for a slightly different semantics of while

programs. We will show a partial converse to the above theorem in

Theorem 3.9.

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk and Szymon Toruńczyk

3.4 Resource consumption
One of the principal goals of this paper is to define polynomial

time computation for hereditarily definable sets, and therefore we

need some way of bounding the resources of while programs. In

this section, we begin by defining the resource consumption for a

definable while programs as a hereditarily definable set. Later in

Section 4 we discuss how to measure the resource consumption

numerically, in the special case when A is (N,=).
Let A be an arbitrary logical structure. Suppose that P is a while

program, which uses program variables x1, . . . ,xn and no others.

Define a new program P’ as follows. It has the same program vari-

ables as P, plus two fresh program variables (initially storing empty

sets) called time and space. The code of P’ is the same as P, except
that after each instruction we append the following code:

time := time ∪ {time};

space := space ∪ {x1, . . . ,xn }

The idea is that the time variable stores an instruction counter rep-

resented as a von Neumann integer; and this counter is incremented

after each instruction. The space variable stores all sets that ever
appeared during the computation. The input variables of P’ are the
same as of P, whereas the output variables are the variables time
and space. For a while program P with n input variables and an n-
tuple x̄ of hereditarily definable sets x1, . . . ,xn ∈ hdefA, define the
time consumption and the space consumption of P over x̄ to be the

pair of values produced by the program P’ on input x1, . . . ,xn . The
resource consumption of P over x̄ is the union of the time consump-

tion and the space consumption. We denote the time, space and

resource consumption by time(P, x̄), space(P, x̄), and resource(P, x̄),
respectively. These values are undefined if the program does not

terminate on x1, . . . ,xn . Note that the time consumption is a von

Neumann encoding of a natural number, but space consumption

has no immediate numerical meaning so far.

Constant time operations. We distinguish a special class of func-

tions which can be defined by a while programwithoutwhile loops.
Say that a function f which maps n-tuples of hereditarily definable

sets to m-tuples of hereditarily definable sets is a constant time
operation if there is a definable while program Pwhich does not use

while loops and defines f , i.e., f (u1,u2, . . . ,un) = (v1, . . . ,vm) if

and only if P outputs v1, . . . ,vm given input u1, . . . ,un . Note that
the time consumption of a constant time operation is bounded by a

constant, as the name suggests.

Example 3.6. The following functions are constant time opera-

tions:

• The function pair which maps a pair of inputs x ,y to the

Kuratowski encoding of (x ,y), that is {x , {x ,y}}.
• The reverse operation, unpair which returns a pair x ,y if

the argument is the Kuratowski encoding of (x ,y), and the

empty set otherwise,

• The Cartesian product x ,y 7→ x × y, as well as boolean
operations x ,y 7→ x ∪ y, x ,y 7→ x ∩ y, x ,y 7→ x − y, and
x 7→

⋃
x .

3.5 Definable state machines
We introduce a sequential model of computation equivalent to

definable while programs, but more in the spirit of Turing machines

and similar to abstract state machines introduced by Gurevich (see

Section 5 for a discussion). A definable state machine M consists of

four constant time operations Input, Output, Step, and Halt, where

each takes one input and one output. For a hereditarily definable

set x given on input, define the nth state qn of the run of M on

input x inductively: q0 = Input(x) and, for n ≥ 0, if qn is defined

and Halt(qn) = ∅, then qn+1 = Step(qn). The machine halts on
input x if the run is finite, in which case we define the output as
Output(qn), where qn is the last state of the run.

Definable statemachines can be seen as a special case of definable

while programs with one input variable, one output variable and

with only one while loop, of the form

I ; while (x , ∅) do J ; K ,

where I , J ,K are constant time operations. Conversely, we show

that definable while programs can be simulated by definable state

machines, preserving the used resources.

Theorem 3.7. Fix a logical structure A. For every definable while
program P there is a definable state machineM such that for every
hereditarily definable set x ,M halts on x if and only if P halts on x .
Moreover, ifM halts on x , then the following properties hold:

• The output ofM on x is equal to the output of P on x ,
• The number of steps performed byM on input x is polynomial
in time(P,x),

• Each state is a subset of L(space(P,x)), where L is a constant
time operation depending only on P.

3.6 While programs are computationally complete
In this section, we restrict our attention to atoms that are effectively
atomic structures, as defined below.

An automorphism of A is defined to be any permutation of its

universe which preserves and reflects all relations and preserves

the functions; these automorphisms form a group. If this group

acts on a set X , then we say that two elements x ,y ∈ X are in the

same orbit of the action if there is an atom automorphism π such

that π · x = y. This defines an equivalence relation on X , whose
equivalence classes are called orbits of X . The orbit containing an

element x ∈ X is called the orbit of x in X .

For every number n, the automorphisms of A act on An compo-

nentwise. We say that a first-order formula φ(x1, . . . ,xn) defines
the orbit of (a1, . . . ,an) ∈ A

n
if the set of n-tuples that satisfy φ

in A is equal to the orbit of (a1, . . . ,an) in A
n
. Countable struc-

tures with the property that for every tuple (a1, . . . ,an) ∈ A
n
the

orbit of (a1, . . . ,an) is definable by some first-order formula are

called atomic structures1 in model theory [15]. Example atomic

structures include (N, ≤) and (N,+), and all oligomorphic struc-

tures
2
, i.e., structures in which there are only finitely many orbits

of n-tuples, for each fixed n, such as (N,=), (Q, ≤), or the random
graph.

Definition 3.8. A structure A is effectively atomic if it is effective
and there is an algorithm which given an n-tuple (a1, . . . ,an) of
elements of A outputs a first-order formula φ(x1, . . . ,xn) defining
the orbit of (a1, . . . ,an).

All the structures mentioned above are effectively atomic.

1
There is no connection between the use of the term atomic here to our notion of

atoms.
2
Such structures are also called ω-categorical, due to the result of Engeler, Ryll-

Nardzewski and Svenonius, cf. [15].

6

On computability and tractability for infinite sets LICS ’18, July 9–12, 2018, Oxford, United Kingdom

If x is a hereditarily definable set defined by a set builder expres-

sion α and π is an atom automorphism, then π can be applied to

the atoms in x , to the atoms in the elements of x , etc. recursively,
yielding another hereditarily definable set π · x , which can be de-

fined by the set builder expression α in which the parameters are

mapped via π . Therefore, the group of atom automorphisms acts

on hereditarily definable sets.

A (possibly partial) function f from hereditarily definable sets to

hereditarily definable sets is called equivariant if π · f (x) = f (π ·x)
holds for every hereditarily definable x and atom automorphism π .
The semantics of definable while programs is invariant under atom

automorphisms, and hence we see that every f computed by such a

program is equivariant. Theorem 3.9 below shows that f will also be
computable in the sense of Definition 3.1, and furthermore, under

suitable assumptions on the atoms, all equivariant computable

functions are of this form.

Theorem 3.9 (Computational completeness of definable while

programs). Assume that A is an effectively atomic structure. Then
the following conditions are equivalent for every partial function
f : hdefA→ hdefA.

1. f is computed by a while program over A.
2. f is equivariant and computable.

Recall that Theorem 3.5 shows the implication 1→2 when A
is only assumed to be effective. The original contribution is the

implication 2→1. Roughly speaking, effective atomicity is used to

give a while program which inputs a hereditarily definable set x
and reverse engineers it to obtain a binary string describing a set

builder expression for x . The proof of the theorem is deferred to

the full version of the paper.

4 Fixed-dimension polynomial functions on
hereditarily definable sets

In the previous sectionwe discussed computable functions on hered-

itarily definable sets, without bounding the resources used by the

computation. We now turn to the main contribution of this paper:

a proposal for “polynomial time” computation.

The first idea that comes to mind is to consider to take Defi-

nition 3.1 and simply add the requirement that F ′ is computable

in polynomial time. This is not a good idea, as long as the atom

structure is nontrivial. The reason is that when A has at least two

elements, then even emptiness is hard: it is pspace-hard to check if

a given set builder expression describes the empty set. This lower

bound follows from a straightforward reduction from qbf. For this

reason, all but the most trivial transformations on hereditarily de-

finable sets are going to be pspace-hard if we measure running

time in the traditional way. Our approach to this problem is to use

the setting of parametrised complexity, where the running time of

the algorithm is measured only when the value of a certain param-

eter is fixed. The parameter used is the dimension of a set builder

expression, as defined below.

Definition 4.1 (Dimension and size of set builder expressions).
Define the dimension dimα of a set builder expression α to be the

number of distinct variables that it uses. This includes both the

variables used in set expressions, as well as the quantified variables

used in guards. Define the size ||α || of a set builder expression α to

be the number of distinct subexpressions in it plus the number of

distinct subformulas of the formulas used in the guards.

In the above definition it is important that we count distinct vari-

ables, i.e., if the same variable is reused by binding it several times,

then it only gets counted once. It is also important that dimension

does not count parameters. The rough idea why parameters are not

counted is that counting parameters would break the connections

to finite model theory as stated in Fact 1 and Theorem 2. Note

also how in the definition of ||α || we count the number of distinct

subexpressions and subformulas, as opposed to simply counting

the number of symbols needed to write the expression down. The

latter method can yield exponentially larger sizes, as witnessed by

von Neumann numerals. By analogy, our method of counting the

size is similar to circuit size as opposed to formula size.

Example 4.2. All of these examples are for A being the ordered

rational numbers. The set builder expression

{1, 2, {2, 4}, {1, 2, {5}}}

has dimension zero, because it uses no variables. The following set

builder expression has dimension 2, because it uses variables x ,y,
even though variable x gets bound a second time:

{{x} ∪ {x : for x ∈ A such that x , y} : for x ,y ∈ A

such that x , y ∧ x , 5}.

The following expression has dimension 4 because of the variables

used in the guards:

{x : for x ∈ A such that ∃y ∃z ∃u 5 < y < z < u < x}.

In the example above, the guard could be replaced by the quantifier-

free formula 5 < x , reducing the dimension to 1.

Definition 4.3 (Fixed-dimension polynomial algorithm). Let A be

an effective structure. An algorithm which inputs and outputs set

builder expressions is called fixed-dimension polynomial if there
exist functions

f : N2 → N д : N→ N

with the following properties:

1. the function f is polynomial once the first argument is fixed.

2. if the input is α ∈ setbA then:

• the running time of the algorithm is at most f (dimα , ||α ||);
• the dimension of output expression is at most д(dimα).

A total function F : hdefA→ hdefA is called fixed-dimension poly-
nomial if there is a fixed-dimension polynomial algorithm which

inputs a set builder expression α and outputs a set builder expres-

sion representing the value of F on the set defined by α .

A typical example of f would be (k,n) 7→ nk . It is not hard to

see that fixed-dimension polynomial functions are closed under

compositions.

An algorithm which always returns 0 or 1 (encoded as ∅ and {∅})

can be seen as a language recognizer. Note that a language of set

builder expressions is recognized by a fixed-dimension polynomial

algorithm if it belongs to the class xp from parametrised complexity,

with the parameter being dimension. An alternative solution would

be to use fixed-dimension tractability, i.e. algorithms with running

time at most f (dimα) · ||α ||c for some computable f : N→ N and

some c ∈ N. The following lemma shows that the alternate solution

is a bad idea. For the definition of the W hierarchy and background

on parametrised complexity, see [9].

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk and Szymon Toruńczyk

Lemma 4.4. If theW hierarchy does not collapse and A is infinite,
then no fixed-dimension tractable algorithm can decide if a set builder
expression defines the empty set.

From now on we do not consider fixed-parameter tractable algo-

rithms, and study only fixed-dimension polynomial ones.

Example 4.5. Assume that the atoms are (N,=). Then the fol-

lowing operations on pairs of hereditarily definable sets x ,y are

fixed-dimension polynomial: testing x = y, x ∈ y and x ⊆ y, as
well as computing x ∩ y,x ∪ y,x − y. These are special cases of
Lemma 4.10 below, which states that every constant time operation

is fixed-dimension polynomial. It is very important that we use the

atoms (N,=). For some oligomorphic structures such as the random

graph, set emptiness is np-hard even for dimension 1 inputs.

When the atoms are (N,=), the following problems are also fixed-

dimension polynomial for inputs consisting of hereditarily defin-

able objects: graph reachability, automata emptiness, context-free

grammar emptiness, automata minimisation. This follows from 4.11

below, as all these problems can be implemented by the usual fix-

point algorithms. Note that all these problems become undecidable

when the atoms are Presburger arithmetic, or even N with the

successor relation.

Connection to finite model theory. The central question in fi-

nite model theory is understanding which properties of structures

(typically, graphs are considered without loss of generality) can be

decided in polynomial time. More precisely, a class of graphs is said

to be in polynomial time if there is a polynomial-time algorithm (say,

Turing machine), which decides membership given an incidence

matrix of the graph, such that the algorithm gives the same answer

for incidence matrices describing isomorphic graphs. The following

observation relates polynomial-time computation to our setting.

Fact 1. Assume that the atomsA are (N,=). A class L of finite graphs
is in polynomial-time if and only if there is a fixed-dimension poly-
nomial (equivalently, fixed-dimension tractable) algorithm deciding
membership in {G ∈ L : all vertices are from A}

The reason for the above fact is that, when all vertices are from

A, then a graph has dimension zero; and for such inputs fixed-

dimension polynomial (and tractable) collapses to polynomial.

4.1 Tractable while programs
In the previous section, we defined what it meant for a function

hdefA→ hdefA to be computable in fixed-dimension polynomial

time. In this section we define a resource bounded version of while

programs which can only compute fixed-dimension polynomial

time functions. Such programs are easier to write because they

directly talk about hereditarily definable sets and not their repre-

sentations.

The results we present in this section assume that the atoms A
are (N,=). One important property of these particular atoms is the

existence of least supports, defined below. We say that a finite set

of atoms S supports a hereditarily definable set x if π · x = x holds

for every atom permutation which fixes S pointwise. In particular,

the parameters appearing in a set builder expression α support the

hereditarily definable set defined by α . We say that A admit least
supports if for every x ∈ hdefA there is a finite set of atoms, called

its least support, which supports x and is contained in every support

of x . Existence of least supports for (N,=) is shown It is shown

in [18] that (N,=) admit least supports.

Dimension and size of hereditarily definable sets. In Section 3.4
we have defined the resource consumption of a definable while

program, which is a hereditarily definable set. When defining re-

source bounded while programs, we will want to say that, on input

x ∈ hdefA, the resource consumption of a program is bounded by

a polynomial in the size of x , whose degree is allowed to depend

on the dimension of x . For this to make sense, we need to be able

to talk about the dimension of x , as well as the size of x and its

memory consumption, seen as natural numbers. In other words,

we need notions of dimension and size for hereditarily definable

sets themselves, and not for the set builder expressions defining

them (as we have done before). One approach would be to use the

dimension and size of expressions that are optimal in some sense.

The following definition proposes a different approach; albeit one

that strongly depends on the fact that the atoms (N,=) admit least

supports.

Definition 4.6 (Dimension and size of hereditarily definable sets).
Let A be (N,=) and let x ∈ hdefA. Let x∗ be the transitive closure
of x , i.e. the set which contains all elements of x , all elements of all

elements of x , and so on recursively. Define the dimension of x to

be

dimx
def

= max

y∈x∗
| sup(y) − sup(x)|,

where sup(·) denotes the least support. Define the orbit size of x ,
denoted by ||x ||, to be the number of orbits of elements y ∈ x∗ with
respect to the group of those atom automorphisms which are the

identity on the least support of x .

The following lemma is the key technical result used in the

proof of our main result, Theorem 4.9 below. It shows that the

size and dimension of a hereditarily definable set, as given above,

is approximately the same as the optimal size and dimension of

a set builder expression that defines it. Furthermore, the optimal

expression can be computed in fixed-dimension polynomial time.

Therefore, up to fixed-dimension polynomial corrections, there is a

robust notion of “size” for hereditarily definable sets; in particular

the alternative approach discussed before Definition 4.6 would be

essentially equivalent.

Lemma 4.7. There exists a function f : N2 → N which is polyno-
mial when the first coordinate is fixed with the following properties.

1. For every x ∈ hdefA and α ∈ setbA defining x , dimx ≤

dimα and ||x || ≤ f (dimα , ||α ||).
2. For every x ∈ hdefA there exists some α ∈ setbA which de-

fines it such that dimα ≤ 2 dimx and ||α || ≤ f (dimx , ||x ||).
Furthermore, α can be computed in fixed-dimension polyno-
mial time based on a set builder expression representing x .

Resource bounded while programs. Having defined the resource
consumption of a while program, as a hereditarily definable set, and

knowing how to measure the size and dimension of a hereditarily

definable set, we can introduce our proposal for resource bounded

while programs.

Definition 4.8. Assume that A is (N,=). We say that a while pro-

gram P with a single input variable is fixed-dimension polynomial if
there is a function f : N2 → N, which is polynomial once the first

argument is fixed, and a computable function д : N→ N, such that

dim(resource(P,x)) ≤ д(dimx) and

||resource(P,x)|| ≤ f (dimx , ||x ||) for x ∈ hdefA.
8

On computability and tractability for infinite sets LICS ’18, July 9–12, 2018, Oxford, United Kingdom

We can extend while programs with a counting expression,

which is a term of the form |x |, whose semantics is the von Neu-

mann numeral representing the size of x when x is a finite set, and

{{∅}} if x is an infinite set. This operation can be simulated by a

definable while program, but it would take exponential resources to

do it, even for x of dimension zero. If such an operation is allowed,

then we talk about definable while programs with counting. Theo-
rem 3.7 remains valid for while programs with counting, where the

definable state machines can use counting expressions in the oper-

ations Input,Output, Step,Halt. Definition 4.8 is easily extended to

programs with counting.

The following theorem is our main result.

Theorem 4.9. Assume that the atoms are (N,=). For every while
program with counting which is fixed-dimension polynomial (in the
sense of Definition 4.8), the function it computes is fixed-dimension
polynomial (in the sense of Definition 4.3).

We make no conjectures about the converse implication, when

it comes to decision problems (for general computational problem,

a negative result follows from Rossmann’s result, see below). The-

orem 4.9 follows rather easily from Theorem 3.7, Lemma 4.7, and

Lemma 4.10 below. The proofs are deferred to the full version of

the paper.

Lemma 4.10. Assume that the atoms are (N,=). Every constant time
operation is fixed-dimension polynomial.

Fixpoint operations. As an example of a class of fixed-dimension

polynomial computable functionswe consider bounded least fixpoint
operations, defined below.

Let Input, Bound, Step, Output be constant time operations. De-

fine the function f which, given inputx , proceeds in steps as follows.
Let q0 = Input(x), and inductively define qn+1 as qn ∪ Step(qn).
If qn ⊈ Bound(x) for some n, then f (x) is undefined. Otherwise,
q0 ⊆ q1 ⊆ q2 ⊆ . . . ⊆ Bound(x). As the atoms (N,=) are oligomor-

phic, it is easy to see that the sequence q0,q1, . . . must stabilize, i.e.,

there is an n such that qn = qn+1. Define f (x) as Output(qn). This
finishes the definition of the bounded fixpoint operation f defined

by Input, Bound, Step and Output.

As an example, the program in Example 3.3 implementing graph

reachability computes a function which is bounded fixpoint op-

eration. Other examples include emptiness of context-free gram-

mars and the reachability problem for tree automata. Clearly, every

bounded fixpoint operation f is computable by a definable while

program.

Lemma 4.11. Assume that the atoms are (N,=). Every bounded
least fixpoint operation is fixed-dimension polynomial.

Proof. Let f be a least fixpoint operation given by the constant

time operations Input, Bound, Step, Output. Let P be the natural

implementation of f as a definable while program, obtained from

implementations of the four operations.

We need to bound the time and space consumption of P on

a given input x . To bound the time, it is sufficient to bound the

number n for which stabilization occurs, i.e., qn = qn+1, since the

output f (x) is computed by a composition of n + 2 constant time

operations. Let S0 be the set of atoms which occur as parameters

in the definitions of the operations Input, Bound, Step, Output. It is

easy to show by induction that if S is the least support of x , then
for each i , the set qi is again supported by S ∪ S0. Also, the set

Bound(x) is supported by S ∪ S0. As qi ⊆ Bound(x), it follows that
qi is a union of orbits of Bound(x) under the action of the group

G = {π : π is a permutation of A fixes all atoms from S ∪ S0}

As the sets qi form an increasing chain, it follows that the moment

of stabilization n is bounded by the number of orbits of Bound(x)
under the action of G. We will show that this number of orbits is

fixed dimension polynomial.

Consider the operation д which maps an input x to the triple

(x ,Bound(x), S0). This is clearly a constant time operation, com-

putable by a definable while program B obtained from the while

program defining Bound. By Lemma 4.11, the operation д is fixed-

dimension polynomial, so ||resource(B,x)|| ≤ p(dimx , ||x ||) for some

function p : N2 → N which is polynomial whenever the first

coordinate is fixed. As д(x) ⊆ resource(B,x) and S ∪ S0 is the

least support of д(x), it follows that the number of orbits of д(x)
under the action of G is equal to ||д(x)||, which is bounded by

||resource(B,x)|| ≤ p(dimx , ||x ||). Therefore, the number of steps

performed by the least fixpoint computation of f (x) is bounded
by p(dimx , ||x ||). As each step is computed by a constant time op-

eration, it follows from Lemma 4.11 that the running time of P
on x is bounded by p′(dimx , ||x ||), for some function p′ which is

polynomial in the second component.

As for the space consumption, from the above discussions it

follows that space(P,x) ⊆ space(B,x) and the least support of

space(P,x) is contained in the least support of space(B,x). In par-

ticular, ||space(P,x)|| ≤ ||space(B,x)|| ≤ p(dimx , ||x ||).
The existence of a computable bound on dim(resource(P,x)) is

immediately obtained from the corresponding computable bounds

for the operations Step, Bound, Input, and Output. □

5 Connections to Choiceless Polynomial Time
and Abstract State Machines

This section is devoted to a brief discussion of related work, namely

Choiceless Polynomial Time (c̃pt) and Abstract State Machines. We

describe how these formalisms compare to ours, on a syntactic level.

We observe that c̃pt is a fragment of definable while programs and

observe that a converse implication to Theorem 4.9 would resolve

an open problem concerning c̃pt. We defer to the recent survey [11]

for an overview of c̃pt, and to [2] for a discussion of Abstract State

Machines.

Choiceless Polynomial Time. Recall that hereditarily definable

sets of dimension zero are the same as hereditarily finite sets. Over

hereditarily finite sets, we already have a proposal for polynomial

time computation, namely c̃pt, or more accurately c̃pt+c. Let A =
(N,=). Below, we consider finite relational structures are over a
fixed signature, and assume that their elements are elements of A.
In particular, they are hereditarily finite sets over A. In this way,

c̃pt and c̃pt+c take as their inputs finite relational structures, and

output hereditarily finite sets. We omit the definitions here, and

refer to [19] for a compact definition. We now briefly discuss the

relationship to definable while programs. The definitions of c̃pt

and c̃pt+c are based on the notion of comprehension terms. It is
clear that constant time operations not using the constant A are

equivalent in expressive power to comprehension terms. A c̃pt

program is specified by three comprehension terms, Step, Halt,

and Out, and, given an input, proceeds by applying to the current

value the term Step until Halt produces true, and the produced

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk and Szymon Toruńczyk

output is obtained by applying the term Out to the current value.

Moreover, it is required that both the running time and the space

consumption (defined in the same way as in our paper) are bounded

by a polynomial in terms of the number of elements of the input

structure. Note that if a finite relational structure K has n elements,

then ||K|| is bounded by poly(n) for a polynomial depending only

on the signature of K.
The following fact therefore summarizes the correspondence

between c̃pt and definable while programs.

Fact 2. A partial function mapping finite structures over a fixed
relational signature to hereditarily finite sets is in c̃pt if and only if it
is computed by a definable while program P not using the constant A,
such that

||resource(P,x)|| ≤ poly(||x ||).

The equivalence also holds if both formalisms are enriched with count-
ing.

Proof sketch. By Theorem 3.7, we may replace definable while pro-

grams by definable state machines in the formulation. The state-

ment then follows, as comprehension terms are equivalent to con-

stant time operations, and the resource bounds are calculated in

the same way, up to a polynomial. □

The above fact shows that c̃pt (or c̃pt+c) can be seen as the

dimension zero case of resource-bounded definable while programs,

as all the values occurring in the computation are zero-dimensional

sets, i.e., hereditarily finite sets. Another use of the theorem is that

it provides an alternative presentation of c̃pt (or c̃pt+c), which we

believe is more programmer-friendly. Furthermore, it provides a

new angle at attacking the open problem whether c̃pt+c captures

polynomial time: although Rossman [19] proved that c̃pt+c cannot

define all functions which are polynomial-time computable, for

decision problems, the analogous question remains open (cf. Prob-

lem 3 in [13]). By Fact 2 and Fact 1, proving a converse implication

in Theorem 4.9 for decision problems would provide a positive

answer to the problem. Although probably proving this is not more

feasible than resolving the open problem, it might be the case that

refuting the converse implication is easier than separating c̃pt+c

from polynomial time.

Abstract State Machines. Note that the syntax and semantics of

definable while programs make sense even when we allow the

inputs to be arbitrary sets, not just hereditarily definable ones. Call

such unrestricted while programs abstract while programs over A,
where A is a fixed background logical structure. Unless specified

otherwise, we assume A = ∅, and then simply talk about abstract
while programs. Similarly, allowing definable state machines to

input arbitrary sets yields a model which we shall call abstract state
machines (over A). Note that Theorem 3.7 remains valid in this

setting, so abstract while programs are equivalent to abstract state

machines, and the equivalence preserves time and space resources.

Abstract state machines as defined above are very similar to the

ASM’s of Gurevich. Note that there are many variants of ASM’s,

aimed at modeling sequential computation [14], parallel computa-

tion [1], distributed computation [10], quantum computation [12],

etc. Furthermore, many of those models are equipped with various

features which are meant to make them useful in practice (such

as interaction). Our abstract state machines are very closely con-

nected to the parallel ASM’s defined by Blass and Gurevich [1].

Our for operation corresponds to the operation do-forall of par-
allel ASM’s. We omit the definitions here. We only remark that

one difference is that in ASM’s, states are required to be logical

(first-order) structures, whereas in our machines, states are sets. As

everything in mathematics, logical structures can be seen as sets.

Conversely, a set x can be viewed as a relational structure (x∗, ∈,x),
as follows. The universe is the transitive closure x∗ of x , consisting
of all elements of x , elements of elements of x , etc. The relation
∈ is the binary membership relation among elements of x∗. The
relation x is a unary predicate selecting those elements of x∗ which
are elements of x .

Another difference is that in parallel ASM’s, the semantics of

aggregation is based on multisets, rather than on sets.

References
[1] Andreas Blass and Yuri Gurevich. 2003. Abstract State Machines Capture Parallel

Algorithms. ACM Trans. Comput. Logic 4, 4 (Oct. 2003), 578–651.
[2] Andreas Blass, Yuri Gurevich, and Jan Van den Bussche. 2000. Abstract State

Machines and Computationally Complete Query Languages. In Abstract State
Machines - Theory and Applications, Yuri Gurevich, Philipp W. Kutter, Martin

Odersky, and Lothar Thiele (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

22–33.

[3] Andreas Blass, Yuri Gurevich, and Saharon Shelah. 1999. Choiceless polynomial

time. Annals of Pure and Applied Logic 100, 1-3 (1999), 141–187.
[4] Mikołaj Bojańczyk. 2011. Data Monoids. In 28th International Symposium on

Theoretical Aspects of Computer Science, STACS 2011, March 10-12, 2011, Dortmund,
Germany. 105–116.

[5] Mikołaj Bojańczyk. 2017. Lecture Notes on Sets with Atoms. (2017). Available at

https://www.mimuw.edu.pl/~bojan/.
[6] Mikołaj Bojańczyk, Laurent Braud, Bartek Klin, and Slawomir Lasota. 2012. To-

wards nominal computation. In Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22-28, 2012. 401–412.

[7] Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. 2011. Automata with

Group Actions. In Proceedings of the 26th Annual IEEE Symposium on Logic in
Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada. 355–364.

[8] Mikołaj Bojańczyk and Szymon Toruńczyk. 2012. Imperative Programming

in Sets with Atoms. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012,
Hyderabad, India. 4–15.

[9] Rodney G. Downey and M. R. Fellows. 2012. Parameterized Complexity. Springer
Publishing Company, Incorporated.

[10] Andreas Glausch and Wolfgang Reisig. 2009. An ASM-Characterization of a Class
of Distributed Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg, 50–64.

[11] Erich Grädel and Martin Grohe. 2015. Is Polynomial Time Choiceless? Springer

International Publishing, Cham, 193–209.

[12] Erich Grädel and Antje Nowack. 2003. Quantum Computing and Abstract State

Machines. In Abstract State Machines 2003, Egon Börger, Angelo Gargantini, and

Elvinia Riccobene (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 309–323.

[13] Martin Grohe. 2008. The Quest for a Logic Capturing PTIME. In Proceedings of
the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS
2008, 24-27 June 2008, Pittsburgh, PA, USA. 267–271.

[14] Yuri Gurevich. 1995. Specification and Validation Methods. Oxford University

Press, Inc., New York, NY, USA, Chapter Evolving Algebras 1993: Lipari Guide,

9–36.

[15] Wiflrid Hodges. 1993. Model Theory. Cambridge University Press.

[16] Bartek Klin and Michal Szynwelski. 2016. SMT Solving for Functional Program-

ming over Infinite Structures. In Proceedings 6th Workshop on Mathematically
Structured Functional Programming, MSFP@ETAPS 2016, Eindhoven, Netherlands,
8th April 2016. 57–75.

[17] Eryk Kopczynski and Szymon Toruńczyk. 2017. LOIS: syntax and semantics. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. 586–598.

[18] Andrew M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, New York, NY, USA.

[19] Benjamin Rossman. 2010. Choiceless Computation and Symmetry. Springer Berlin
Heidelberg, Berlin, Heidelberg, 565–580.

10

https://www.mimuw.edu.pl/~bojan/

	Abstract
	1 Introduction
	2 Basic definitions
	3 Computable functions on hereditarily definable sets
	3.1 Computable functions
	3.2 Definable while programs
	3.3 Functions computed by definable while programs
	3.4 Resource consumption
	3.5 Definable state machines
	3.6 While programs are computationally complete

	4 Fixed-dimension polynomial functions on hereditarily definable sets
	4.1 Tractable while programs

	5 Connections to Choiceless Polynomial Time and Abstract State Machines
	References

