
Definable decompositions for graphs of bounded linear

cliquewidth
∗

Mikołaj Bojańczyk
Institute of Informatics, University of

Warsaw, Poland
bojan@mimuw.edu.pl

Martin Grohe
Department of Computer Science, RWTH

Aachen University, Germany
grohe@informatik.rwth-aachen.de

Michał Pilipczuk
Institute of Informatics, University of

Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Abstract

We prove that for every positive integer k , there exists an mso1-
transduction that given a graph of linear cliquewidth at most k
outputs, nondeterministically, some clique decomposition of the
graph of width bounded by a function of k . A direct corollary of
this result is the equivalence of the notions of cmso1-definability
and recognizability on graphs of bounded linear cliquewidth.

1 Introduction

Hierarchical decompositions of graphs have come to play an in-
creasingly important role in logic, algorithms and many other areas
of computer science. The treelike structure they impose often al-
lows to process the data much more efficiently. The best-known
and arguably most important graph decompositions are tree decom-
positions, which play a central role in a research direction at the
boundary between logic, graph grammars, and generalizations of
automata theory to graphs that was pioneered by Courcelle in the
1990s (see [6]).

A drawback of tree decompositions is that they only yield mean-
ingful results for sparse graphs. A suitable form of decomposition
that also applies to dense graphs and that has a similarly nice, yet
less developed Courcelle-style theory, is that of clique decomposi-
tions, introduced by Courcelle and Olariu [8]. A clique decomposi-
tion of a graph is a term in a suitable algebra consisting of (roughly)
the following operations for constructing and manipulating colored
graphs: (i) disjoint union; (ii) for a pair of colors i, j , simultaneously
add an edge for every pair (i-colored vertex, j-colored vertex); and
(iii) apply recolorings to entire colors. A natural notion of width for
such a clique decomposition is the total number of colors used. The
cliquewidth of a graph is the smallest width of a clique decomposi-
tion for it. An alternative notion of graph decomposition that also
works well for dense graphs is that of rank decompositions intro-
duced by Oum and Seymour [12, 13]. The corresponding notion of
rankwidth turned out to be functionally equivalent to cliquewidth,

∗The work of M. Bojańczyk and Mi. Pilipczuk was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (ERC consolidator grant LIPA, agreement no. 683080). Mi. Pilipczuk was
supported by the Foundation for Polish Science via the START stipend programme.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209135

that is, bounded cliquewidth is the same as bounded rankwidth.
Bounded width clique or rank decompositions may be viewed as
hierarchical decompositions that minimize “modular complexity”
of cuts in the decomposition, in the same way as treewidth corre-
sponds to hierarchical decompositions using vertex cuts, where the
complexity of a cut is its size.

Cliquewidth is tightly connected to mso1 logic on graphs, in the
same way as the mso2 logic is connected to treewidth. Recall that
in mso1, one can quantify over vertices and sets of vertices, and
check their adjacency, while mso2 also allows quantification over
sets of edges. Both these logics can be viewed as plain mso logic
on two different encodings of graphs as relational structures: for
mso1 the encoding uses only vertices as the universe and has a
binary adjacency relation, while for mso2 the encoding uses both
vertices and edges as the universe and has an incidence relation
binding every edge with its endpoints. These two logics are con-
nected to cliquewidth and treewidth as follows. If a graph property
Π is definable in mso2, then tree decompositions of graphs in Π can
be recognized by a finite state device (tree automaton). This leads,
for instance, to a fixed-parameter model checking algorithm for
mso2-definable properties on graphs of bounded treewidth [5]. This
notion of recognizability, where tree decompositions are processed,
is called HR-recognizability [6]. Similarly, if Π is mso1-definable,
then clique decompositions of graphs in Π can be recognized by
a finite state device. This notion of recognizability is called VR-
recognizability [6], and it yields a fixed-parameter model check-
ing algorithm for mso1-definable properties on graphs of bounded
cliquewidth [7].

Courcelle [5] conjectured that mso2-definability and recogniz-
ability for tree decompositions (i.e. HR-recognizability) are equiv-
alent for every graph class of bounded treewidth, provided that
mso2 is extended by counting predicates of the form “the size of
X is divisible by p”, for every integer p (this logic is called cmso2).
This conjecture has been resolved by two of the current authors [3].
More precisely, in [3] it was shown that for every k there exists
an mso transduction which inputs a graph of treewidth at most k
and (nondeterministically) outputs its tree decomposition of width
bounded by a function of k . The graph is given via its incidence en-
coding. The conjecture of Courcelle then follows by composing this
transduction with guessing the run of an automaton recognizing
the property in question on the output decomposition.

The same question can be asked about cliquewidth: is it true that
every property of graphs of bounded cliquewidth is mso1-definable
if and only if it is (VR-)recognizable? The present paper discusses
this question, proving a special case of the equivalence, namely for
bounded linear cliquewidth.

Our contribution. Our main result (Theorem 3.3) is that for every
k ∈ N, there is an mso-transduction that inputs a graph of linear
cliquewidth at most k , and outputs a clique decomposition of it

1

https://doi.org/10.1145/3209108.3209135

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk

which has width bounded by a function of k . Here, we use the
adjacency encoding of the graph. The linear cliquewidth of a graph
is a linearized variant of cliquewidth, similarly as pathwidth is a
linearized variant of treewidth; see Section 2 for definition and [1,
9–11] for more background. A direct consequence of this result
(Theorem 3.5) is that every property of graphs of bounded linear
cliquewidth is cmso1-definable if and only if it is (VR-)recognizable.
This gives a partial positive answer to the question above.

The proof of our main result shares one key idea with the proof
of the mso2-definability of tree decompositions, or more precisely,
its pathwidth part [3, Lemma 2.5]. This is the use of Simon’s Factor-
ization Forest Theorem [14]. We view a linear clique decomposition
of width k as a word over a finite alphabet and use the factorization
theorem to construct a nested factorization of this word of depth
bounded in terms of k . The overall mso transduction computing
a decomposition is then constructed by induction on the nesting
depth of this factorization. The technical challenge in this paper
is to analyze the composition of “subdecompositions”, which is
significantly more complicated in the cliquewidth case than in the
treewidth/pathwidth case of [3]. In a path decomposition, each
node of the path (over which we decompose) naturally corresponds
to a separation of the graph, with the bag at the node being the
separator. Thus, in the pathwidth case, each separation appearing
in the decomposition essentially can be described by a tuple of
vertices in the separator, with the left and the right side being es-
sentially independent; this is a simple and easy to handle object.
The difficulty in the cliquewidth case is that “separations” appear-
ing in a linear clique decomposition are partitions of the vertex set
into two sides with small “modular complexity”: each side can be
partitioned further into a bounded number of parts so that vertices
from the same part have exactly the same neighbors on the other
side. Such separations are much harder to control combinatorially,
and hence capturing them using the resources of mso requires more
insight into the combinatorics of linear cliquewidth.

Full version. In this extended abstract we only sketch our results,
while complete arguments can be found in the full version, which
is available as a preprint on arXiv [2]. Statements whose proofs are
deferred to the full version are marked with ⋆.

2 Preliminaries

Graphs and cliquewidth. All graphs considered in this paper are
finite and simple. For the most part we use undirected graphs, if
we use directed graphs then we remark this explicitly. We write [k]
for {1,2, . . . ,k } and

(X
1,2
)
for the family of nonempty subsets of a

set X of size at most 2.
A k-colored graph is a graph with each vertex assigned a color

from [k]. On k-colored graphs we define the following operations.

• Recolor. For every function ϕ : [k] → [k] there is a unary
operation which inputs one k-colored graph and outputs the
same graph where each vertex is recolored to the image of
its original color under ϕ.
• Join. For every family of subsets S ⊆

([k]
1,2
)
there is an oper-

ation that inputs a family of k-colored graphs, of arbitrary
finite size, and outputs a single k-colored graph constructed
as follows. Take the disjoint union of the input graphs and
for each {i, j} ∈ S (possibly i = j), add an edge between every

Figure 1. A graph of linear cliquewidth 3

pair of vertices that have colors i and j, respectively, and
originate from different input graphs.
• Constant. For each color i ∈ [k] there is a constant which
represents a graph on a single vertex with color i .

Define a width-k clique decomposition to be a (rooted) tree where
nodes are labelled by operation names in an arity preserving way,
that is, all constants are leaves and all recolor operations have
exactly one child. The tree does not have any order on siblings,
because Join is a commutative operation. For a clique decompo-
sition, we define its result to be the k-colored graph obtained by
evaluating the operations in the decomposition. The cliquewidth
of a graph is the minimum number k for which there is a width-k
clique decomposition whose result is (some coloring of) the graph.

We remark that we somewhat diverge from the original defini-
tion of cliquewidth [8] in the following way. In [8], there is one
binary disjoint union operation that just adds two input k-colored
graphs, and for each pair of different colors i, j there is a unary op-
eration that creates an edge between every pair of vertices of colors
i and j, respectively. For our purposes, we need to have a union
operation that takes an arbitrary number of input graphs. This is
because an mso transduction constructing a clique decomposition
cannot break symmetries and join isomorphic parts of the graph
in some arbitrarily chosen order, which would be necessary if we
used binary disjoint union operations. Another difference is that
our join does simultaneously two operations: it takes the disjoint
union of several inputs, and adds edges between them. When using
binary joins, the two operations can be separated by introducing
temporary colors; however when the number of arguments is un-
bounded such a separation is not possible. It is easy to show that
our definition of cliquewidth is at multiplicative factor at most 2
from the original definition.

Linear cliquewidth is a linearized variant of cliquewidth, where
we allow only restricted joins that add only a single vertex. More
precisely, we replace the Join and Constant operations with one
unary operation Add Vertex. This operation is parameterized by
a color i ∈ [k] and a color subset X ⊆ [k], and it adds to the graph
a new vertex of color i , adjacent exactly to vertices with colors
belonging to X . A width-k linear clique decomposition is a word
consisting of Add Vertex and Recolor operations, and the result of
such a decomposition is the k-colored graph obtained by evaluating
the operations over the empty graph. The linear cliquewidth of a
graph is defined just like cliquewidth, but we consider only linear
clique decompositions. Note that we can transform any linear clique
decomposition of widthk to a clique decomposition of width atmost
(k + 1) by replacing each subterm Add Vertexi,X (θ) by the term

Recolorj 7→i

(
Join{ {j,x } : x ∈X }

(
θ ,Constantj

))
,

where j is a color not occurring in θ . It follows that the linear
cliquewidth of a graph is at least its cliquewidth minus one.

2

Definable decompositions for graphs of bounded linear cliquewidth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Example 2.1. Consider the graphG displayed in Figure 1. We first
argue that its cliquewidth is at most 3, and then show that also its
linear cliquewidth is at most 3.

Let us construct a clique decomposition of G of width 3. The
following three terms θ1,θ2,θ3 construct the three 4-cliques of G
with appropriate colors:

θ1 = Join{ {1}, {1,2} }

({
Color1,Color1,Color1,Color2

})
,

θ2 = Join{ {1}, {1,2}, {1,3}, {2,3} }

({
Color1,Color1,Color2,Color3

})
,

θ3 = Join{ {1}, {1,3} }

({
Color1,Color1,Color1,Color3

})
.

Then the term
Join{ {2}, {3} } ({θ1,θ2,θ3})

is a width-3 clique decomposition of the graph G.
For a linear clique decomposition, it is convenient to denote the

unary operation Add Vertexi,X of adding a vertex of color i and
connecting it to all vertices of color X by ai,X and the recoloring
operation by rϕ . Moreover, we apply both operations by multipli-
cation from left to right, omitting parenthesis. This way, we may
view a linear clique decomposition of width k as a word over the
finite alphabet

{ai,X | i ∈ [k],X ⊆ 2[k]} ∪ {rϕ | ϕ : [k]→ [k]}.

With this notation, our linear clique decomposition of the graph G
is the concatenation of the following three sequences of operations,
constructing the three consecutive cliques:

first clique: a1,∅a1, {1}a1, {1}a2, {1} ,

second clique: a3, {2}r {2 7→1,3 7→2}a2, {2}a2, {2}a3, {2}r {2 7→1,3 7→2} ,

third clique: a3, {2}a3, {3}a3, {3}a3, {3} .

Relational structures and logic. A vocabulary is a set of relation
names, each one with associated arity that is a nonnegative integer.
A relational structure over the vocabulary Σ consists of a set called
the universe, and for each relation name in the vocabulary, an
associated relation of the same arity over the universe. Note the
possibility of relations of arity zero, such a relation stores a single
bit of information about the structure. A graph is encoded as a
relational structure as follows: the universe is the vertex set and
there is one symmetric binary relation encoding adjacency.

A width-k clique decomposition of a graph is modeled as a rela-
tional structure whose universe is the set of nodes of the decomposi-
tion, there is a binary predicate “child”, and for each operation from
the definition of a clique decomposition there is a unary predicate
(the set of these predicates depends on k) which selects nodes that
use this operation. Note that the graph itself is not included in this
structure, but it is straightforward to reconstruct it using an mso
transduction (see below).

To describe properties of relational structures, we use monadic
second-order logic (mso). This logic allows quantification both over
single elements of the universe and also over subsets of the universe.
For a precise definition of mso, see [6]. We also use counting mso,
denoted also by cmso, which is the extension ofmsowith predicates
of the form “the size of X is divisible by p” for every p ∈ N.

MSO transductions. Weuse the same notion ofmso transductions
as in [3, 4]. A transduction with input vocabulary Σ and output

vocabulary Γ is a set of pairs

(input structure over Σ, output structure over Γ)

which is invariant under isomorphism of relational structures. Note
that a transduction is a relation and not necessarily a function,
thus it can have many different (or zero) possible outputs for the
same input. An mso transduction is any transduction that can be
obtained by composing a finite number of atomic transductions
of the following kinds (precise definitions can be found in the
full version):

1. Filtering. Check if some mso sentence is satisfied in the
structure and discard it if it is not the case.

2. Restriction. Restrict the universe to elements satisfying
some mso formula with one free variable

3. Mso interpretation. Add a new relation to the structure
with interpretation given by an mso formula.

4. Copying. Copy the structure a fixed number of times.
5. Coloring. Nondeterministically add a unary predicate to

the structure; for every possible such unary predicate there
is one output.

Note that kind 1 is a partial function, kinds 2, 3, 4 are functions,
and kind 5 is a relation. While our mso transductions differ syn-
tactically from those used in the literature, see e.g. Courcelle and
Engelfriet [6], they describe the same class of transductions.

An mso-transduction is deterministic if it uses no coloring. A
deterministicmso-transduction is a partial function, that is, for each
input structure there is at most one output structure.

Each element v ′ of an output of an mso-transduction is either
equal to some element v of the input structure, or is a copy of some
element v of the input structure. We call this element v the origin
of v ′. Thus we have a well-defined origin mapping from the output
structure to the input structure. In general, this mapping is neither
injective nor surjective.

Define the size of an atomic mso transduction to be the size
of its input and output vocabularies, plus the maximal quantifier
rank of mso formulas that appear in it (if the atomic type uses mso
formulas). Let the size of an mso transduction to be the sum of sizes
of atomic transductions that compose to the transduction. Note that
there are finitely many mso transductions of a given size, as there
are finitely many mso formulas (up to logical equivalence) once the
vocabulary, the free variables, and the quantifier rank are fixed.

The composition of two mso transductions is an mso transduc-
tion by definition. Another property that we use, as expressed in the
following lemma, is that the union of two mso transductions is also
an mso transduction; recall that here we regard mso transductions
as relations between input and output structures. This property
is Lemma 7.18 from [6]. Since our notion of an mso transduction
is a bit different from the one used in [6], we give a proof in the
full version.

Lemma 2.2 (⋆). The union of two mso transductions with same
input and output vocabularies is also an mso transduction.

The key property of mso transductions is that cmso- and mso-
definable properties are closed under taking inverse images over
mso transductions. More precisely, we have:

Lemma 2.3 (Backwards Translation Theorem, [6]). Let I be an
mso transduction with input vocabulary Σ and output vocabulary Γ.
Then for every mso (resp. cmso) sentence ψ over Γ there exists an

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk

mso (resp. cmso) sentence φ = I−1 (ψ) over Σ such that φ holds in
exactly those Σ-structures on which I produces at least one output
satisfyingψ .

Simon Lemma. As we mentioned in Section 1, the main technical
tool used in this work will be Simon’s Factorization Theorem [14].
We use the following variant, which is an easy corollary of the
original statement. Recall that a semigroup is an algebra with one
associative binary operation, usually denoted as multiplication, and
that an idempotent in a semigroup is an element e such that e ·e = e .
Lemma 2.4 (Simon Lemma, ⋆). Suppose that S and T are semi-
groups, where S is finitely generated (but possibly infinite) and T is
finite. Suppose further that h : S → T is a semigroup homomorphism
and f : N→ N and µ : S → N are functions such that

µ (s1 · . . . · sn) ⩽ f (max
i ∈[n]

µ (si)) (1)

holds whenever n = 2 or there is some idempotent e ∈ T such that
e = h(s1) = . . . = h(sn). Then µ has finite range, i.e. there exists
K ∈ N such that µ (s) ⩽ K for all s ∈ S .

3 Main results

Statement of the main result. Our main result is that for every
k , there is an mso transduction which maps every graph of linear
cliquewidth k to a nonempty set of its clique decompositions. The
width of these decompositions is bounded by a function of k ; we do
not achieve the optimal value k . To state this result, we introduce a
graph parameter, called definable cliquewidth, which measures the
size of an mso transduction necessary to transform the graph into
its clique decomposition.

Recall that we model a width-k clique decomposition of a graph
as a (rooted) tree labelled by an alphabet of operations depending
on k . Such a clique decomposition t constructs a graph Gt whose
vertices are the leaves of the tree. More generally, we say that t is a
clique decomposition of a graph G if there is an isomorphism from
Gt to G.
Definition 3.1 (Decomposer). A width-k decomposer is an mso
transduction D from the vocabulary of graphs to the vocabulary
of width-k clique decompositions such that for every input-output
pair (G,t) of D the following two conditions are satisfied.
(a) t is a width-k clique decomposition of G.
(b) The origin mapping from t to G restricted to the leaves of t is

an isomorphism from Gt to G.
Condition (b) in the definition of decomposers may seem un-

necessarily restrictive, but it will turn out to be very useful in the
technical arguments. Furthermore, natural transductions satisfying
(a) also tend to satisfy (b), because usually such transduction pro-
ceed by building the tree of a clique decomposition on top of the
input graph.
Definition 3.2. The definable cliquewidth of a graph G, denoted
by dcw(G), is the smallest size of a decomposer which produces at
least one output on G.

Observe that the size of a decomposer (as a particular mso-
transduction) is an upper bound for its width, as the size of a trans-
duction is larger than the size of its output vocabulary. Thus, the
definable cliquewidth of a graph is always at least its cliquewidth.

Note that there are finitely many decomposers of a given size,
and decomposers are closed under union by Lemma 2.2. Therefore,

for every k there is a single decomposer which produces at least
one output on every graph with definable cliquewidth at most k ,
namely one can take the union of all decomposers of size at most k .

The main technical result of this paper is the following.

Theorem 3.3. For every k ∈ N there exists a decomposer D which
has at least one output for every graph of linear cliquewidth at most
k . In other words, the definable cliquewidth of a graph is bounded by
a function of its linear cliquewidth.

This result could be improved in two ways: first, we could make
the transduction produce results for graphs of bounded cliquewidth
(and not bounded linear cliquewidth), and second, we could produce
clique decompositions of optimum width. We leave both of these
improvements to future work. Note that it is impossible to find a
decomposer which produces a linear clique decomposition for every
graph of linear cliquewidth k ; the reason is that such a decomposer
would impose a total order on the vertex set, and this is impossible
for some graphs, e.g. large independent sets.

We remark that, similarly to the case of treewidth [3], our proof
is effective: the decomposer D can be computed from k . In this
extended abstract we omit the discussion of computability issues
and refer the reader to the full version for details.

Recognizability. We now state an important corollary of the main
theorem, namely that for graph classes with linear cliquewidth,
being definable in (counting) mso is the same as being recognizable.
Let us first define the notion of recognizability that we use. For
k ∈ N, define a k-context to be a width-k clique decomposition
with one distinguished leaf. If t is a k-context and G is a k-colored
graph, then t[G] is defined to be the k-colored graph obtained by
replacing the distinguished leaf of t byG , and then applying all the
operations in t .

Definition 3.4 (Recognizability, see [6], Def. 4.29). Let L be a class
of graphs. Two k-colored graphs G1,G2 are called L-equivalent
if for every k-context t we have t[G1] ∈ L iff t[G2] ∈ L, where
membership in L is tested after ignoring the coloring. We say that L
is recognizable if for everyk ∈ N there are finitelymany equivalence
classes of L-equivalence.

Theorem 5.68(2) in [6] shows that if a class of graphs is definable
in mso (in the sense used here, i.e., mso1), then it is recognizable (in
the sense of Definition 3.4). The converse implication is not true,
e.g., there are uncountably many recognizable graph classes. It is a
simple corollary of our main theorem that the converse implication
is true under the assumption of bounded linear cliquewidth.

Theorem 3.5. If L is a class of graphs of bounded linear cliquewidth,
then L is recognizable if and only if it is definable in cmso.

Proof. Asmentioned above, the right-to-left implication is true even
without assuming a bound on linear cliquewidth. For the converse,
we use the following claim; since the proof is completely standard,
we only sketch it.

Claim 1. If a class of graphs L is recognizable, then for every k the
following language Lk of labelled trees is definable in cmso.

Lk = {t : t is a tree that is a width-k clique decomposition

whose resulting graph is in L}

Proof sketch. The language Lk is a set of (unranked) trees without
sibling order. Define L̃k to be the language of sibling-ordered trees

4

Definable decompositions for graphs of bounded linear cliquewidth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

such that if the sibling order is ignored, then the resulting tree
belongs Lk . Using the assumption that L is recognizable, one shows
that L̃k is definable inmso; the idea is that using the sibling order an
mso formula can convert a tree into onewhich has binary branching,
and then compute for each subtree its L-equivalence class. As shown
in [5], if a language of sibling-ordered trees is definable in mso and
invariant under reordering siblings, then the language of sibling-
unordered trees obtained from it by ignoring the sibling order is
definable in cmso without using the sibling order. Applying this to
L̃k and Lk we obtain the claim. ⌟

Using Claim 1, we complete the left-to-right implication. Assume
every graph from L has linear cliquewidth at most k . Apply Theo-
rem 3.3, yielding a decomposer D from graphs to width-ℓ clique
decompositions which produces at least one output for every graph
in L. Apply Claim 1 to L and ℓ. SinceD produces at least one output
for every graph in L, we have that L is the inverse image underD of
the language Lℓ in the conclusion of the claim. It follows from the
Backwards Translation Theorem that L is definable in cmso. □

4 The proof strategy

In this section we present the proof strategy for our main contribu-
tion, Theorem 3.3.

A linear clique decomposition of width k , being a single path,
can be viewed as a sequence of instructions. For such sequences
of instructions (actually, for a similar but slightly more general
object), we will use the name k-derivations. Intuitively speaking, a
k-derivation corresponds to an infix of a linear clique decomposi-
tion of width k . We can concatenate k-derivations, which means
that the set of k-derivations is endowed with a semigroup structure.
The main idea is to use Simon’s Factorization Theorem [14], in the
flavor delivered by the Simon Lemma (Lemma 2.4), to factorize this
product into a tree of bounded depth, so that definable clique decom-
positions of factors can be constructed via a bottom-up induction
over the factorization.

Roughly speaking, the Simon Lemma is used to prove Theo-
rem 3.3 as follows. As the semigroup S we use k-derivations. As the
homomorphism h, we use a notion abstraction, which maps each
k-derivation to a bounded-size combinatorial object consisting of
all the information we need to remember about it. Composing k-
derivations naturally corresponds to composing their abstractions,
which formally means that the set of abstractions, whose size is
bounded in terms of k , can be endowed with a semigroup structure
so that taking an abstraction of a k-derivation is a semigroup homo-
morphism. By taking µ to be the definable cliquewidth of a graph,
we use the Simon Lemma to show that µ has a finite range on the
set of all k-derivations, i.e. there is a finite upper bound on the
definable cliquewidth of all k-derivations. To this end, we need to
prove that the assumptions of the Simon Lemma are satisfied, that
is, condition (1) is satisfied when either n = 2 or all the abstractions
of all k-derivations in the product are equal to some idempotent in
the semigroup of abstractions.

Below we give a more detailed implementation of the plan, in-
cluding definitions of k-derivations and their abstractions. For the
rest of the paper we fix k ∈ N. Our goal is to show that graphs of
linear cliquewidth at most k have bounded definable cliquewidth.

Derivations. We first introduce k-derivations.

Definition 4.1. A k-derivation σ is a triple (G,λ,ϕ), where

recoloring pro�les underlying graph

{{{

edges in the underlying graph

a blue coloured vertex in the
underlying graph, which has
blue and yellow in its pro�le

the recoloring takes yellow to red,
and takes red to itself

Figure 2. A k-derivation for k = 3, with the numbers {1,2,3} being
represented as colors {red, blue, yellow}. The red boxes indicate
colors as used by the profiles and recoloring, and the circles indicate
vertices of the underlying graph.

Figure 3. Composition of derivations.

• G, the underlying graph of σ , is a k-colored graph;
• λ : V (G) → 2[k] is a function that assigns to each vertex u
its profile λ(u) ⊆ [k]; and
• ϕ : [k]→ [k] is a function called the recoloring.

Intuitively, if we treat a k-derivation σ = (G,λ,ϕ) as a subword
of instructions in a linear clique decomposition, then G is the sub-
graph induced by vertices introduced by these instructions and
ϕ is the composition of all recolorings applied. The profile λ has
the following meaning: supposing there were some instructions
preceding the k-derivation in question, it assigns each vertex u of
G a subset λ(u) of colors such that among vertices introduced by
these preceding instructions, u is adjacent exactly to vertices with
colors from λ(u). See Figure 2 for an example.

By the definable cliquewidth of a k-derivation we mean the de-
finable cliquewidth of its underlying graph, with the colors ignored.
For a k-derivation σ = (G,λ,ϕ) and c = (i,X) ∈ [k]×2[k], the set of
all vertices with color i and profileX is called the c-cell, and denoted
by σ [c]. For brevity, we denote Ck = [k] × 2[k] and interpret it as
the index set of cells in k-derivations. By abuse of notation, we use
the term cell also for the elements of Ck .

We now describe the semigroup structure of k-derivations. We
define the composition σ1 · σ2 of two k-derivations σ1 = (G1,λ1,ϕ1)
and σ2 = (G2,λ2,ϕ2) as follows; see Figure 3 for an illustration. The
underlying graph of the composition is constructed by taking the
disjoint union of ϕ2 (G1) andG2, where ϕ2 (G1) denotesG1 with the
color of each vertex substituted with its image under ϕ2, and adding
an edge between a vertex u ∈ G1 and a vertexv ∈ G2 whenever the
color of u inG1 belongs to the profile λ2 (v). The profile of a vertex
u in the composition is equal to λ1 (u) if u originates from G1, and
to ϕ−11 (λ2 (u)) if u originates from G2. Finally, the recoloring in the
composition is the composition of recolorings, that is, ϕ2 ◦ ϕ1. It is
straightforward to see that composition is associative, and hence it
turns the set of k-derivations into a semigroup.

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk

Define an atomic k-derivation to be one where the underlying
graph has at most one vertex. The number of different atomic k-
derivations is finite and bounded only in terms of k , because the
only freedom is the choice of the color and the profile of the unique
vertex (if there is one), as well as the recoloring. Define Sk to be
the subsemigroup of the semigroup of all k-derivations which is
generated by the atomic k-derivations. By definition, Sk is finitely
generated. The following claim is a straightforward reformulation
of the definition of linear cliquewidth.

Lemma 4.2 (⋆). If a graph has linear cliquewidth at most k , then it
is the underlying graph of some k-derivation σ ∈ Sk .

Abstractions. Our goal is to apply the Simon Lemma to the finitely
generated semigroup Sk , with µ being the definable cliquewidth of
the underlying graph. To apply the Simon Lemma, we also need a
homomorphism from Sk to some finite semigroup. This homomor-
phism is going to be abstraction, and we define it below.

To define the abstraction, we need one more auxiliary concept,
namely the flipping operation on a graph. For a graphG and vertex
subsets X ,Y ⊆ V (G), the flip between X and Y is defined to be the
following operation modifying G: for each x ∈ X , y ∈ Y , x , y, if
there is an edge xy then remove it, and otherwise add it. In other
words, flipping between X and Y means reversing the adjacency
relation in all pairs of different elements from X × Y . Note that in
the flip operation, the sets X and Y need not be disjoint. Suppose
that σ is a k-derivation. Recall that Ck represents the names of
cells, i.e. each element of Ck is a pair (vertex color, profile). For a
subset Z ⊆

(
Ck
1,2
)
define the Z -flip of σ to be the graph obtained

from the underlying graph of G by performing the flip between
σ [c] and σ [d] for each {c,d } ∈ Z . Note Z can contain singletons,
i.e. we might have c = d .

Definition 4.3. For a k-derivation σ , its abstraction, denoted JσK,
is the triple (L,ρ,ϕ) consisting of the following:
• L ⊆ Ck is the set of cells that are nonempty in σ , called
essential;
• ρ ⊆ 2(

Ck
1,2) × Ck × Ck × 2Ck is the connectivity registry,

which contains all tuples (Z ,c,d,W) such that the Z -flip of
σ satisfies: there exits a path that starts in some vertex of
σ [c], ends in some vertex of σ [d], and whose all internal
vertices belong to⋃b ∈W σ [b];
• ϕ is the recoloring function of σ .

We explain the idea behind the connectivity registry. In general,
we would like to remember which pairs of cells can be connected
by a path in the underlying graph of the derivation. However, in
the proof we will sometimes work not with a k-derivation, but with
some Z -flip of it. Therefore, we want the abstraction to store the
connectivity information after every possible flip. For technical
reasons, we also remember the subset of cells traversed by the path.

Denote byTk the set of all possible abstractions of k-derivations;
note that Tk is a finite set whose size depends only on k , albeit it
is doubly exponential in k . We leave it to the reader to prove that
“having the same abstraction” is a congruence in the semigroup Sk ,
that is, an equivalence relation ∼ on Sk such that s ∼ s ′ and t ∼ t ′

imply st ∼ s ′t ′ for all s,s ′,t ,t ′ ∈ Sk . It follows that we may endow
Tk with a unique binary composition operation which makes it into
a semigroup, andwhichmakes the abstraction function a semigroup
homomorphism from Sk to Tk .

Applying the Simon Lemma. We will apply the Simon Lemma
for S = Sk , T = Tk , h being the abstraction, and µ being the defin-
able cliquewidth of the underlying graph of a k-derivation (after
forgetting the coloring). The conclusion of the Simon Lemma will
say that µ has bounded range, i.e. there is a finite bound on the
definable cliquewidth of the underlying graphs of derivations from
Sk . Since these underlying graphs are the same as graphs of linear
cliquewidth at most k by Lemma 4.2, this will mean that bounded
linear cliquewidth implies bounded definable cliquewidth, thus
proving Theorem 3.3.

To apply the Simon Lemma, we need to verify that assumption (1)
is satisfied for some function f : N → N. The treatment of cases
when n = 2, and when all derivations have a common idempotent
abstraction, is different, as expressed in the following two lemmas.

Lemma4.4 (Binary Lemma). There is a function f : N→ N such that

dcw(σ · τ) ⩽ f (max(dcw(σ),dcw(τ)))

for every σ ,τ ∈ Sk .

Lemma 4.5 (Idempotent Lemma). There is a function f : N→ N
such that

dcw(σ1 · · ·σn) ⩽ f (max
i ∈[n]

dcw(σi))

for every σ1, . . . ,σn which have the same abstraction, and this ab-
straction is idempotent.

Condition (1) of Simon Lemma then follows by taking f to be the
maximum of the functions given by Binary and Idempotent Lemma.
Thus, we are left with proving these two results. The proof of Binary
Lemma is actually quite easy, while the proof of Idempotent Lemma
is the main difficulty and we sketch it in the next two sections.

5 Proof of Binary Lemma

Given a clique decomposition of a graph, say of width k , and a
partition (V1, . . . ,Vp) of the vertex set into p subsets, which may be
non-related to the decomposition, one can adjust the decomposition
at the cost of using k · p colors instead of k so that the final color
partition of the decompositionmatches (V1, . . . ,Vp). Informally, this
can be done by just enriching each original label with information to
which subset of (V1, . . . ,Vp) a vertex belongs. The following general-
usage lemma formalizes this, and shows that the transformation
may be performed by means of an mso transduction.

Lemma 5.1 (Color Enforcement Lemma). For all k,p ∈ N there
exists a deterministic mso transduction Ek,p with the following prop-
erties. The input vocabulary is the vocabulary of clique decompositions
of width k with leaves colored using p unary predicates. The output
vocabulary is the vocabulary of clique decomposition of width k · p.
Finally, on an input clique decomposition t with leaves partitioned
into (V1, . . . ,Vp) using unary predicates, the output of Ek,p is a clique
decomposition t ′ of the same graph, where in the result of t ′ the color
of each vertex from Vi is equal to i , for all i ∈ [p].

Proof. The decomposition t is first adjusted to a decomposition t ′′

of width k · p with the following property: in the result of t ′′, the
final color of every vertex is a pair consisting of its color in the result
of t and the index i such that the leaf corresponding to the vertex
belongs toVi . This adjustment can be made by preserving the shape
of t intact, and performing a straightforward modification to the
labels of nodes. For instance, for a Join node, whenever the original
label in t requested adding edges between colors c and d , the new

6

Definable decompositions for graphs of bounded linear cliquewidth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

label in t ′′ requests adding edges between colors (c,i) and (d, j) for
all i, j ∈ [p]. Finally, we obtain t ′ by adding a recoloring step on top
of t ′′ that removes the first coordinate of every color. □

Using Color Enforcement Lemma we can prove Binary Lemma.

Proof of Binary Lemma. Letm = max(dcw(σ),dcw(τ)), and letDσ
and Dτ be decomposers of size at mostm such that Dσ produces
at least one output on the underlying graph of σ , and similarly for
Dτ . Using coloring, we first guess the partition of the vertex set
into vertices that belong to the underlying graphs of σ and τ . Next,
we guess the color partition of the underlying graph of σ . Finally,
for the underlying graph of τ , we guess the partition of its vertices
according to profiles in τ . Note that the validity of this guess, or
more precisely the fact that the adjacency between the σ -part and
the τ -part depends only on the (color,profile) pair of respective
vertices, can be checked using a filtering step.

We now apply Dσ to the σ -part of the graph, yielding a clique
decomposition tσ of the underlying graph of σ of width at mostm.
Using the origin-preserving property of decomposers (property (b)
of Definition 3.1), we may assume that the color partition of σ is
present on the leaves of tσ . By applying the transduction Em,k
given by the Color Enforcement Lemma to tσ , we may further
assume that the result of the obtained decomposition tσ has the
color partition equal to the color partition of σ . Similarly, by ap-
plying Dτ followed by Em,2k for the profile partition, we turn the
τ -part of the graph into its clique decomposition tτ whose result
has the color partition equal to the profile partition in τ . Since the
adjacency between the σ -part and the τ -part depends only on the
(color,profile) pair of respective vertices, it now suffices to add one
binary Join node, with the roots of tσ and tτ as children, where we
request adding edges between appropriate pairs of vertices, selected
by color on the σ -side and profile on the τ -side. □

6 Idempotent Lemma: sketch

In this section we sketch how to prove the Idempotent Lemma
assuming a technical result called the Definable Order Lemma,
which we will explain in a moment. Consider a sequence σ1, . . . ,σn
of k-derivations such that for some abstraction e that is idempotent
in Tk , we have e = Jσ1K = . . . = JσnK. Let σ = σ1 · · ·σn , and let
G be the underlying graph of σ . Moreover, for i ∈ [n] by Gi we
denote the underlying graph of σi , and we call it also the i-th block.

Let ⪯ be the linear quasi-order (i.e. a total, transitive and reflexive
relation) defined on the vertex set ofG as follows:u ⪯ v holds if and
only ifu belongs to the i-th block andv belongs to the j-th block for
some i ⩽ j . Similarly, let ≡ be the equivalence relation on the vertex
set ofG defined as belonging to the same block: u ≡ v iff u ⪯ v and
v ⪯ u. The relations ⪯ and ≡ will be called the block order and the
block equivalence, respectively. Rough idea is to show that the block
order, hence also the block equivalence, can be interpreted using a
bounded size (nondeterministic) mso formula, i.e. it has bounded
(in terms of k) interpretation complexity as defined below.

Definition 6.1 (Interpretation complexity). Suppose that A is a
relational structure, and let R be a relation on its universe, say of
arity n. Define the interpretation complexity of R inside A to be the
smallestm such that there exist subsets X1, . . . ,Xm of the universe
in A and an mso formula φ (x1, . . . ,xn ,X1, . . . ,Xm) of quantifier

rank at mostm over the vocabulary of A such that
(x1, . . . ,xn) ∈ R iff φ (x1, . . . ,xn ,X1, . . . ,Xm)

for all x1, . . . ,xn in A.
If the interpretation complexity of the block order in G was

bounded by a function of k , then we would construct a clique
decomposition ofG as follows: first construct clique decompositions
of all blocks, and then combine them sequentially along the block
order. Unfortunately, in general we cannot hope for such a bound.
To see this, consider the example where G consists of, say, two
disjoint paths of length n each. In this example, each σi introduces
the i-th vertex of each of the two paths. It is not difficult to see that in
this example the interpretation complexity of the block order grows
with the number of blocks. However, we can define the block order
on each connected component (i.e. each of the two paths) separately,
and a clique decomposition of the whole graph can be obtained
by putting a Join over decompositions of components. Thus, the
obtained decomposition has a different shape than the input linear
decomposition corresponding to the product σ1 · · ·σn . The next
statement, which is our main technical result toward the proof of
Idempotent Lemma, explains how this plan can be implemented.
Lemma6.2 (Definable Order Lemma). Letσ1, . . . ,σn bek-derivations
as in the assumption of the Idempotent Lemma. There exists a set
Z ⊆

(
Ck
1,2
)
such that if ∼ is the relation of being in the same connected

component in the Z -flip of σ1 · · ·σn , then the relation ∼ ∩ ⪯ has
interpretation complexity over G bounded by a function of k .

The proof of the Definable Order Lemma spans most of the
full version of the paper and is the technical cornerstone of our
approach. In the next section we provide a short sketch of this proof,
while a complete argument can be found in the full version. For
the remainder of this section we sketch how Idempotent Lemma
follows from Definable Order Lemma.

As argued, the idea is to interpret the block order using Definable
Order Lemma, apply assumed bounded-size transductions to each
block separately, thus obtaining clique decompositions of blocks,
and finally to combine the obtained clique decompositions along
the block order. The combination step is given by the following
Combiner Lemma, whose proof follows by a careful composition
of all the given pieces.

Define an order-using decomposer to be an mso transduction
which inputs a graph G together with a linear quasi-order on its
vertices and which outputs clique decompositions of the input
graph. On a given input, an order-using decomposer might produce
several outputs, possibly zero.
Lemma 6.3 (Combiner Lemma, ⋆). For every m ∈ N there is an
order-using decomposerD with the following property. Let τ1, . . . ,τn
be k-derivations whose underlying graphs have definable cliquewidth
at mostm. Let G be the underlying graph of τ1 · · · τn and ⪯ be the
block order arising from product τ1 · · · τn . Then D produces at least
one output on (G,⪯).

With the Combiner Lemma in place, we sketch the proof of the
Idempotent Lemma.

Sketch of the proof of Idempotent Lemma. Letσ1, . . . ,σn be the given
k-derivations as in the Idempotent Lemma, i.e., with the same idem-
potent abstraction e . Let

K = max
i ∈[n]

dcw(σi).

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk

Denote σ = σ1 · · ·σn . Let G be the underlying graph of σ , let Gi
be the underlying graph of σi for each i ∈ [n], and let ⪯ be the
block order in G compliant with the product σ1 · · ·σn . It suffices
to describe a decomposer of size bounded in terms of k and K that
constructs a clique decomposition of G.

First, using coloring we enrich the structure with unary predi-
cates that encode the partition of the vertex set ofG into cells σ [c],
for c ∈ Ck . Then apply the Definable Order Lemma to σ1, . . . ,σn ,
yielding Z and ∼. Note that Z is chosen among 2 |(

Ck
1,2) | options,

so we can nondeterministically guess Z using, say, some coloring.
Having Z fixed, the equivalence relation ∼ (being in the same con-
nected component of the Z -flip of σ) can be added to the structure
using interpretation. By the Definable Order Lemma, we can add
also the relation ⪯ ∩ ∼ to the structure, as this increases the size of
the transduction only by a function of k and K . Note here that the
subsets X1, . . . ,Xm in the definition of interpretation complexity
of ⪯ ∩ ∼ can be guessed using coloring.

The next claim says that restricting blocks to equivalence classes
of ∼ yields graphs of bounded definable cliquewidth.
Claim 2 (⋆). There is m ∈ N depending only k and K such that
for every equivalence class F of ∼ and every i ∈ [n], the subgraph
induced in Gi by vertices contained in F has definable cliquewidth
at mostm.

Claim 2 seems simple: since the definable cliquewidth of the
ith block is bounded by K , the subgraph induced by F within this
block should also have bounded cliquewidth. However, the proof
is actually far less obvious than it seems, as the decomposer for
the induced subgraph needs to work on this subgraph only, so we
cannot just apply the decomposer for the whole block and restrict
the outcome to the vertices of F . The proof can be found in the
full version and the main idea is as follows. The part of the block
outside of F can be replaced by a bounded-size equivalent graph
with the same mso type (of high enough rank) so that the assumed
decomposer also decomposes the modified block after the replace-
ment. Then the decomposer for the induced subgraph may guess
this bounded-size equivalent graph, run the assumed decomposer
for the block, and finally remove all the guessed vertices.

Now apply Combiner Lemma to the parameterm given byClaim 2,
yielding an order-using decomposer D satisfying:
Claim 3. For each equivalence class F of ∼, the order-using decom-
poser D produces at least one output on (G,⪯) restricted to the ver-
tices of F .

We now sketch the remainder of the proof, which is conceptually
simple, but a formal reasoning requires attention to details. The
idea is to apply decomposer D to each equivalence class of ∼ in
parallel. For this, we formulate an auxiliary result called Parallel
Application Lemmawhich says that this is possible using a transduc-
tion D⋆ whose size is bounded in terms of the size of D (notably,
Parallel Application Lemma is also used in the proof of Combiner
Lemma to apply decomposers to blocks in parallel). At this point,
the structure contains, for each equivalence class F of ∼, a clique
decomposition of the subgraph induced by F in G. Moreover, by
the origin-preserving property of decomposers (property (b) of
Definition 3.1), the leaves of these decompositions still hold infor-
mation on cells from {σ [c] : c ∈ Ck } to which the corresponding
vertices belong. It remains to adjust the decompositions so that this
information can be read from the color of each vertex in the result

of the corresponding decomposition (for this one may use Color
Enforcement Lemma), and combine all these decomposition by at-
taching them below a new root Join node, where we request adding
edges between cells of {σ [c] : c ∈ Ck } as prescribed by Z . □

7 Definable Order Lemma: sketch

In this section we give a sketch of the proof of the Definable Order
Lemma; the full argument can be found in the full version. Adopting
the notation from the statement, let e = (L,ρ,ϕ) be the common
idempotent abstraction; recall that e = JσK = Jσ1K = . . . = JσnK.
Recall also that the underlying graphs of σ1, . . . ,σn are called blocks.

Enriching the structure. The first step is to enrich the graph G
with unary predicates to facilitate defining the block order; recall
that a bounded number of such nondeterministically guessed pred-
icates can be used by the formula φ defining the block order. First,
for every cell c ∈ Ck define Uc =

⋃
i ∈[n] σi [c]. Note that Uc is not

necessarily equal to the σ [c], because the colors and profiles of
vertices in σ and respective σi may differ. For each c ∈ Ck , we have
a unary predicate that selects the vertices ofUc in G.

Second, we will often end up in a situation where we know
that some vertices u,v belong to blocks that are near each other,
say the indices of their blocks differ by at most 3, but defining
the precise block order between them is problematic. For this, we
introducemoduli: we partition the graph into 7 partsW0, . . . ,W6 so
that vertices of the i-th block belong to the partWi mod 7. Observe
that knowing that the block indices of u and v differ by at most 3,
the relation between their blocks can be inferred from comparing
their moduli.

Define structure Ĝ to beG enriched with unary predicates select-
ingUc , for all c ∈ Ck , andWr , for all r ∈ {0,1, . . . ,6}. The formula
φ in the definition of interpretation complexity can have a bounded
number of nondeterministically guessed unary predicates, so from
now on we may work over Ĝ.

Classifying cells. Let us take a closer look on the common idempo-
tent abstraction e . Since e = (L,ρ,ϕ) is idempotent in the semigroup
of abstractions, it follows that ϕ is idempotent in the semigroup of
functions from [k] to [k]. This means that each color in the image
of ϕ is a fixed-point of ϕ. In terms of recolorings in the sequence
σ1 · · ·σn , this implies the following: if a vertex u ∈ Gs is colored
with color i in σs , then the recoloring in σs+1 recolors it to ϕ (i),
and its color stays equal to ϕ (i) when composing with all further
derivations σt for t > s + 1.

Take any pair of cells c,d ∈ Ck , not necessarily different, say c =
(i,X) and d = (j,Y). Classify the type of the pair (c,d) as follows:
• (c,d) is negative if ϕ (j) < X and ϕ (i) < Y ;
• (c,d) is positive if ϕ (j) ∈ X and ϕ (i) ∈ Y ; and
• (c,d) is mixed if ϕ (j) ∈ X and ϕ (i) < Y ,
or ϕ (j) < X and ϕ (i) ∈ Y .

It can be easily inferred from the idempotence of recolorings that if
u ∈ Uc and v ∈ Ud , and u,v belong to blocks that are neither same
nor next to each other, then
• u and v are non-adjacent if (c,d) is negative,
• u and v are adjacent if (c,d) is positive, and
• if (c,d) is mixed, then u and v are adjacent if and only if the
block of u is before the block of v .

Therefore, within negative and positive pairs of cells the (co-)adjacency
is only local—between neighboring blocks—while for mixed pairs,

8

Definable decompositions for graphs of bounded linear cliquewidth LICS ’18, July 9–12, 2018, Oxford, United Kingdom

the adjacency roughly defines the block order.With the help of mod-
uli we can now prove the following lemma. Here, a cell c is essential
if c ∈ L, that is, it is essential in the abstraction e . Equivalently,
σi [c] is non-empty for every i ∈ [n].

Lemma 7.1. If (c,d) is a mixed pair of essential cells, then the inter-
pretation complexity of the block order restricted toUc ∪Ud over Ĝ is
at most 2.

Social graph. Lemma 7.1 in particular shows that whenever an
essential cell c is in a mixed relation with some other essential
cell, then the block order within Uc already has interpretation
complexity 2. Unfortunately, there may be still essential cells that
are not in a mixed relation with any other cell, and hence we cannot
interpret the block order for them using Lemma 7.1. We call such
cells solitary, while all the essential cells to which Lemma 7.1 can
be applied are social. Define the social graph as the graph on the
social cells where two cells are considered adjacent if they form a
mixed pair. Vertices belonging toUc for c being solitary/social are
respectively called solitary/social.

Using Lemma 7.1, it is straightforward to extend the interpreta-
tion of the block order to any connected component of the social
graph, as described next.

Lemma 7.2. SupposeC is a connected component of the social graph.
Then the interpretation complexity of the block order restricted to⋃
c ∈C Uc over Ĝ is O (|Ck |).

However, we still need to relate the components of the social
graph to each other, if possible, and to link solitary vertices to them.

Flipping. To have a better grasp of the solitary vertices, we now
perform the flip operation. Precisely, let Z be the set of all subsets
{c,d } ⊆ Ck (possibly c = d) such that (c,d) is positive. Consider
now performing Z -flip in σ . Note that a priori this may not be the
same as applying a flip between Uc and Ud for each {c,d } ∈ Z ,
as a vertex can belong to a different cell in σ and in respective
σi . However, our choice of Z actually implies that both these flip
variants—between cells of σ and between sets Uc—lead to exactly
the same graph; call it H . Intuitively, by flipping we obtain that H
has only negative and mixed pairs of cells. In particular, if u and v
respectively belong toUc andUd , where (c,d) is not a mixed pair,
then u and v can be adjacent in H only if they belong to the same
or to neighboring blocks. Note that this always happens if either u
or v is solitary.

Solitary paths. This suggests the following definition of a solitary
path: a path P in H is solitary if every its internal vertex is solitary
and the cells c,d such that the endpoints of P belong to Uc ,Ud do
not form a mixed pair. Intuitively, solitary paths realize connections
between the connected components of the social graph, as well as
between those components and solitary vertices. By the observation
of the previous paragraph, solitary paths are local: every pair of
consecutive vertices on a solitary path belongs to neighboring
blocks. This gives a good combinatorial grasp on them.

More precisely, using the idempotence of the abstraction e , in
particular the fact that the connectivity registries in the abstractions
of derivations σ ,σ1, . . . ,σn are equal, we can prove the following
assertions about locality of solitary paths:
(1) If two verticesu andv from the same block can be connected by

a solitary path, then they can be connected by a solitary path
that visits only this block and the two neighboring blocks.

(2) If a solitary vertex u can be connected to a component D of
the social graph using a solitary path, then it can be connected
by a solitary path that visits only the block of u and the two
neighboring blocks.

(3) If two componentsD,D ′ of the social graph can be connected by
a solitary path, then for each block there is a solitary path that
realizes this connection and is entirely contained in this block.

These three properties together give us a way to extend the inter-
pretation of the block order to the connected components of H .
Observe that if two vertices can be connected by a path in H , then
this path can be decomposed into parts that stay within compo-
nents of the social graph, and solitary paths between them. The
block order within the components of the social graph is already
interpreted. On the other hand, properties (1)–(3) imply that the
solitary paths between the social parts can be assumed to be en-
tirely contained in three consecutive blocks. This allows existential
guessing of these paths so that we maintain a good control over
the change of block indices between the endpoints. More precisely,
by requiring that the vertices of a guessed solitary path uses only
three consecutive moduli, we require that the path in fact uses
only three consecutive blocks; this follows from the property that
solitary paths may jump only between neighboring blocks.

8 Conclusions

We proved that for every k there is an mso-transduction that de-
fines for a given graph of linear cliquewidth k a width-f (k) clique
decomposition of this graph. A consequence of this result is that
recognizability equals cmso1-definability on graphs of bounded
linear cliquewidth.

The main open question is whether our result can be generalized
from linear clique decompositions to general clique decompositions.
The approach used in [3] for lifting the pathwidth case to the
treewidth case heavily relies on combinatorial techniques specific
to tree decompositions, and hence it seems hard to translate the
ideas to the setting of clique decompositions.

References

[1] I. Adler and M.M. Kanté. 2015. Linear rank-width and linear clique-width of
trees. Theor. Comput. Sci. 589 (2015), 87–98.

[2] Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk. 2018. Definable de-
compositions for graphs of bounded linear cliquewidth. CoRR abs/1803.05937
(2018).

[3] Mikołaj Bojańczyk andMichał Pilipczuk. 2016. Definability equals recognizability
for graphs of bounded treewidth. In LICS 2016. ACM, 407–416.

[4] Mikołaj Bojańczyk and Michał Pilipczuk. 2017. Optimizing Tree Decompositions
in MSO. In STACS 2017 (LIPIcs), Vol. 66. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik, 15:1–15:13.

[5] Bruno Courcelle. 1990. The Monadic Second-Order Logic of Graphs. I. Recogniz-
able Sets of Finite Graphs. Inf. Comput. 85, 1 (1990), 12–75.

[6] Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-
Order Logic — A Language-Theoretic Approach. Encyclopedia of mathematics and
its applications, Vol. 138. Cambridge University Press. I–XIV, 1–728 pages.

[7] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear Time
Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory
Comput. Syst. 33, 2 (2000), 125–150.

[8] Bruno Courcelle and Stephan Olariu. 2000. Upper bounds to the clique width of
graphs. Discrete Applied Mathematics 101, 1-3 (2000), 77–114.

[9] Frank Gurski and Egon Wanke. 2005. On the relationship between NLC-width
and linear NLC-width. Theor. Comput. Sci. 347, 1-2 (2005), 76–89.

[10] P. Heggernes, D. Meister, and C. Papadopoulos. 2011. Graphs of linear clique-
width at most 3. Theor. Comput. Sci. 412, 39 (2011), 5466–5486.

[11] P. Heggernes, D. Meister, and C. Papadopoulos. 2012. Characterising the linear
clique-width of a class of graphs by forbidden induced subgraphs. Discrete Applied
Mathematics 160, 6 (2012), 888–901.

[12] Sang-il Oum. 2005. Rank-width and vertex-minors. J. Comb. Theory, Ser. B 95, 1
(2005), 79–100.

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk

[13] Sang-il Oum and Paul D. Seymour. 2006. Approximating clique-width and branch-
width. J. Comb. Theory, Ser. B 96, 4 (2006), 514–528.

[14] Imre Simon. 1990. Factorization Forests of Finite Height. Theor. Comput. Sci. 72,
1 (1990), 65–94.

10

	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	4 The proof strategy
	5 Proof of Binary Lemma
	6 Idempotent Lemma: sketch
	7 Definable Order Lemma: sketch
	8 Conclusions
	References

