
Regular and First-Order List Functions
Mikołaj Bojańczyk

MIMUW
University of Warsaw

Poland
bojan@mimuw.edu.pl

Laure Daviaud
DIMAP, Department of Computer Science

University of Warwick
UK

l.daviaud@warwick.ac.uk

Shankara Narayanan Krishna
Department of Computer Science

IIT Bombay
India

krishnas@cse.iitb.ac.in

Abstract
We define two classes of functions, called regular (respectively, first-
order) list functions, which manipulate objects such as lists, lists
of lists, pairs of lists, lists of pairs of lists, etc. The definition is in
the style of regular expressions: the functions are constructed by
starting with some basic functions (e.g. projections from pairs, or
head and tail operations on lists) and putting them together using
four combinators (most importantly, composition of functions).
Our main results are that first-order list functions are exactly the
same as first-order transductions, under a suitable encoding of
the inputs; and the regular list functions are exactly the same as
mso-transductions.

ACM Reference Format:
Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. 2018.
Regular and First-Order List Functions. In LICS ’18: 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, July 9–12, 2018, Oxford, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3209108.3209163

1 Introduction
Transducers, i.e. automata which produce output, are as old as
automata themselves, appearing already in Shannon’s paper[22,
Section 8]. This paper is mainly about string-to-string transducers.
Historically, the most studied classes of string-to-string functions
were the sequential and rational functions, see e.g. [16, Section
4] or [21]. Recently, much attention has been devoted to a third,
larger, class of string-to-string functions that we call “regular” fol-
lowing [14] and [5]. The regular string-to-string functions are those
recognised by two-way automata [1], equivalently by mso trans-
ductions [14], equivalently by streaming string transducers [5].

In [4], Alur et al. give yet another characterisation of the regular
string-to-string functions, in the spirit of regular expressions. They
identify several basic string-to-string functions, and several ways of
combining existing functions to create new ones, in such a way that
exactly the regular functions are generated. The goal of this paper
is to do the same, but with a different choice of basic functions and
combinators. Below we describe some of the differences between
our approach and that of [4].

The first distinguishing feature of our approach is that, instead of
considering only functions from strings to strings, we allow a richer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209163

type system, where functions can manipulate objects such as pairs,
lists of pairs, pairs of lists etc. (Importantly, the nesting of types is
bounded, which means that the objects can be viewed as unranked
sibling ordered trees of bounded depth.) This richer type system is
a form of syntactic sugar, because the new types can be encoded
using strings over a finite alphabet, e.g. [(a, [b]), (b, [a,a]), (a, [])],
and the devices we study are powerful enough to operate on such
encodings. Nevertheless, we believe that the richer type system
allows us to identify a natural and canonical base of functions,
with benign functions such as projection Σ × Γ → Σ, or append
Σ × Σ∗ → Σ∗. Another advantage of the type system is its tight
connection with programming, and in particular with functional
programming languages (see [6] for example): sincewe use standard
types and functions on them, our entire set of basic functions and
combinators can be implemented in one screenful of Haskell code,
consisting mainly of giving new names to existing operations.

A second distinguishing property of our approach is its emphasis
on composition of functions. Regular string-to-string functions are
closed under composition, and therefore it is natural to add compo-
sition of functions as a combinator. However, the system of Alur et
al. is designed so that composition is allowed but not needed to get
the completeness result [4, Theorem 15]. In contrast, composition
is absolutely essential to our system. We believe that having the
ability to simply compose functions – which is both intuitive and
powerful – is one of the central appeals of transducers, in contrast
to other fields of formal language theory where more convoluted
forms of composition are needed, such as wreath products of semi-
groups or nesting of languages. With composition, we can leverage
deep decomposition results from the algebraic literature (e.g. the
Krohn-Rhodes Theorem or Simon’s Factorisation Forest Theorem),
and obtain a basis with very simple atomic operations.

Apart from being easily programmable and relying on composi-
tion, our system has two other design goals. The first goal is that
we want it to be easily extensible; we discuss this goal in the con-
clusions. The second goal is that we want to identify the iteration
mechanisms needed for regular string-to-string functions. In partic-
ular, our main goal is to limit iteration. One of the corollaries of our
design is that all of our functions are clearly seen to be computable
in linear time, and - for the first-order fragment - then a little more
effort shows that the functions can be computed by AC0 circuits.
We believe that such results are harder to see in the case of [4],
because of the star-like constructions used there.

To better understand the role of iteration, the technical focus of
the paper is on the first-order fragment of regular string-to-string
functions [16, Section 4.3] (see [9, 12, 15] for characterisations of this
fragment). Our main technical result, Theorem 4.3, shows a family
of atomic functions and combinators that describes exactly the first-
order fragment. We believe that the first-order fragment is arguably
as important as the bigger set of regular functions. Because of the
first-order restriction, some well known sources of iteration, such

https://doi.org/10.1145/3209108.3209163
https://doi.org/10.1145/3209108.3209163
https://doi.org/10.1145/3209108.3209163

LICS ’18, July 9–12, 2018, Oxford, United Kingdom M.Bojańczyk, L.Daviaud, and Krishna S.

as modulo counting, are not needed for the first-order fragment. In
fact, one could say that the functions from Theorem 4.3 have no
iteration at all (of course, this can be debated). Nevertheless, despite
this lack of iteration, the first-order fragment seems to contain
the essence of regular string-to-string functions. In particular, our
second main result, which characterises all regular string-to-string
functions in terms of combinators, is obtained by adding product
operations for finite groups to the basic functions and then simply
applying Theorem 4.3 and existing decomposition results from
language theory.

Organisation of the paper. In Section 2, we define the class of
first-order list functions and give some examples of such functions.
One of our main results is that the class of first-order list functions
is exactly the class of first-order transductions. To prove this, we
first show in Section 3 that first-order list functions contain all the
aperiodic rational functions. Then, in Sections 4 and 5, we state the
result and complete its proof. In Section 6, we generalise our result
to deal with mso-transductions, and we conclude the paper with
future works in Section 7.

2 Definitions and Examples
We use types that are built starting from finite sets (or even one
element sets) and using disjoint unions (co-products), products and
lists. More precisely, the set of types we consider is given by the
following grammar:

T := every one-element set|T +T |T ×T |T ∗

For example, starting from elements a of type Σ ∈ T and b of type
Γ ∈ T , one can construct the co-product {a,b} of type Σ + Γ, the
product (a,b) of type Σ × Γ, and the following lists [a,a,a] of type
Σ∗ and [a,a,b,b,a,a,b] of type (Σ + Γ)∗.

For Σ in T , we define Σ+ to be Σ × Σ∗.

2.1 First-order list functions
The class of functions studied in this paper, which we call first-
order list functions are functions on the objects defined by the above
grammar. It is meant to be large enough to contain natural functions
such as projections or head and tail of a list, and yet small enough
to have good computational properties (very efficient evaluation,
decidable equivalence, etc.). The class is defined by choosing some
basic list functions and then applying some combinators.
Definition 2.1 (First-order list functions). Define the first-order
list functions to be the smallest class of functions having as do-
main and co-domain any Σ from T , which contains all the constant
functions, the functions from Figure 1 (projection, co − projection
and distribute), the functions from Figure 2 (reverse, flat, append,
co − append and block) and which is closed under applying the dis-
joint union, composition, map and pairing combinators defined in
Figure 3.

To avoid clutter, in Figure 1, we write only one of the two pro-
jection functions but we allow to use both. The types Σ, Γ,∆ are
from T .

2.2 Examples
Natural functions such as identity, functions on finite sets, concate-
nation of lists, extracting the first element (head), the last element
and the tail of a list,... are first order list functions, as well as the
three examples below.

projection1 coprojection distribute

Σ × Γ −→ Σ Σ −→ Σ + Γ (Σ + Γ) × ∆ −→ (Σ × ∆) + (Γ × ∆)

(x, y) 7−→ x x 7−→ x (x, y) 7−→ (x, y)

Figure 1. Basic functions for product and co-product.

• Reverse.
reverse : Σ∗ −→ Σ∗

[w1, . . . , wn] 7−→ [wn, . . . , w1]

• Flat.
flat : Σ∗∗ −→ Σ∗

[w1, . . . , wn] 7−→

{
[] if n = 0
w1 · flat([w2, . . . , wn]) otherwise

where · denotes concatenation on lists of the same
type. For example, for a, b, c, d, e of the same type,
[[a, b], [c]] · [[d], [e]]=[[a, b], [c], [d], [e]] and:

flat([[a, b], [c]])=[a, b] · flat([[c]])=[a, b] · [c] · []=[a, b, c]

• Append.
append : Σ × Σ∗ −→ Σ∗

(x0, [x1, . . . , xn]) 7−→ [x0, x1, . . . , xn]

• Co-append.
co − append : Σ∗ −→ (Σ × Σ∗) + ⊥

[x0, . . . , xn] 7−→

{
(x0, [x1, . . . , xn]) if n ≥ 1
⊥ otherwise

where ⊥ is a new element (also a special type).
• Block.
block : (Σ + Γ)∗ −→ (Σ∗ + Γ∗)∗

x 7−→ the unique list w such that flat(w) = x

and which alternates between Σ+ and Γ+

For a, b of type Σ and c , d of type Γ,

block([a, b, c, d, a, a, b, c, d])=[[a, b], [c, d], [a, a, b], [c, d]]

Figure 2. Basic functions for lists.

• Disjoint union.

f : Σ −→ ∆ д : Γ −→ ∆

f + д : Σ + Γ −→ ∆
x 7→

{
f (x) if x ∈ Σ
д(x) if x ∈ Γ

• Composition.
f : Σ −→ Γ д : Γ −→ ∆

д ◦ f : Σ −→ ∆
x 7→ д(f (x))

• Map.

f : Σ −→ Γ

f ∗ : Σ∗ −→ Γ∗
[x1, . . . , xn] 7→

{
[f (x1), . . . , f (xn)] if n > 0
[] if n = 0

• Pairing.
f : Σ −→ Γ д : Σ −→ ∆

(f , д) : Σ −→ Γ × ∆
x 7→ (f (x), д(x))

Figure 3. Combinators of functions.

Regular and First-Order List Functions LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Example 1. [Filter] For Σ, Γ∈T , the function f :(Σ+Γ)∗→Σ∗ which
removes the Γ elements from the input list is a first order list func-
tion.

Consider the function from Σ + Γ to Σ∗:

a 7→

{
[a] if a ∈ Σ
[] otherwise

(1)

which is the disjoint union of the function a 7→ [a] from Σ (which
can be shown to be a first-order list function) and of the constant
function which maps every element of Γ to the empty list [] of
type Σ∗. Using map, we apply this function to all the elements of
the input list, and then by applying the flat function, we obtain
the desired result. For example, if Σ = {a,b, c} and Γ = {d, e},
consider the list [a, c,d, e,b, e,d,a] in (Σ + Γ)∗. Using map of the
above function to this list gives [[a], [c], [], [], [b], [], [], [a]], which
after using the function flat, gives [a, c,b,a]. Note that for the types
to match, it is important to that the empty list in (1) is of type Σ∗.
�

Example 2. [If then else] Suppose that f : Σ→ {0, 1} and д0,д1 :
Σ → Γ are first-order list functions. Then x 7→ дf (x)(x) is also a
first-order list function. �

Example 3. [Windows of size 2] For every Σ in T , the following
is a first-order list function:

[x1, . . . ,xn] ∈ Σ
∗ 7→ [(x1,x2), (x2,x3), . . . , (xn−1,xn)]∈(Σ × Σ)

∗

(When the input has length at most 1, then the output is empty.)
This example can be extended to produce windows of size 3,4, etc.
�

A complete and detailed argument that those functions are first-
order list functions can be found in the full version of the paper [8].

3 Aperiodic rational functions
The main result of this section is that the class of first-order list
functions contains all aperiodic rational functions, see [20, Section
IV.1] or Definition 3.5 below. An important part of the proof is
that first-order list functions can compute factorisations as in the
Factorisation Forest Theorem of Imre Simon [7, 23]. In Section 3.1,
we state that the Factorisation Forest Theorem can be made effec-
tive using first-order list functions, and in Section 3.2, we define
aperiodic rational functions and prove that they are first-order list
functions.

3.1 Computing factorisations
In this section we state the Factorisation Forest Theorem and show
how it can be made effective using first-order list functions. We
begin by defining monoids and semigroups. For our application, it
will be convenient to use a definition where the product operation
is not binary, but has unlimited arity. (This is the view of monoids
and semigroups as Eilenberg-Moore algebras over monads Σ∗ and
Σ+, respectively).

Definition 3.1. A monoid consists of a setM and a product opera-
tion π : M∗ → M which is associative, i.e. for all elementsm1, . . .mk
ofM , π (m1, . . . ,mk) is equal to

π (π (m1, . . . ,mℓ1),π (mℓ1+1, . . . ,mℓ2), . . . ,π (mℓj+1, . . . ,mk))

for all 1 ≤ ℓ1 < ℓ2 < · · · < ℓj < k .

Remark that by definition the empty list ofM∗ is sent by π to a
neutral element inM . A semigroup is defined the same way, except
that nonempty listsM+ are used instead of possibly empty ones.

Definition 3.2. A monoid (or semigroup) is called aperiodic if there
exists some positive integer n such that

mn =mn+1 for every elementm ∈ M

wheremn denotes the n-fold product ofm with itself.

A semigroup homomorphism is a function between two semi-
groups which is compatible with the semigroup product operation.

Factorisations. Let h : Σ+ → S be a semigroup homomorphism
(equivalently, h can be given as a function Σ → S and extended
uniquely into a homomorphism). An h-factorisation is defined to
be a sibling-ordered tree which satisfies the following constraints
(depicted in the following picture): leaves are labelled by elements of
Σ and have no siblings. All the other nodes are labelled by elements
from S . The parent of a leaf labelled by a is labelled by h(a). The
other nodes have at least two children and are labelled by the
product of the child labels. If a node has at least three children then
those children have all the same label.

a b a c a a b c c a

s t s u s

s s

s

s t u u s

s

u

t

if a node has 2 children,
then its label is the product
of the child labels, in the semigroup

if a node has ≥3 children, then
(a) its label is the product
 of the child labels, in the semigroup
(b) all children have the same label

non-leaves have labels in S

if a node x has 1 child, then:
(a) the child is a leaf
(b) the label of x is h applied
to the label of its child

if a node is a leaf, then it has a label in Σ and no siblings

Computing factorisations using first-order list functions. As
described above, an h-factorisation is a special case of a tree where
leaves have labels in Σ and non-leaves have labels in S . Objects of
this type, assuming that there is some bound k on the depth, can
be represented using our type system:

trees0(Σ, S) = Σ

treesk+1(Σ, S) = treesk (Σ, S) + S × (treesk (Σ, S))
+

Using the above representation, it is meaningful to talk about a first-
order list function computing an h-factorisation of depth bounded
by some constant k . This is the representation used in the following
theorem. The theorem is essentially the same as the Factorisation
Forest Theorem (in the aperiodic case), except that it additionally
says that the factorisations can be produced using first-order list
functions.

Theorem 3.3. Let Σ ∈ T be a (not necessarily finite) type and let
h : Σ → S be a function into the universe of some finite aperiodic
semigroup S . If h is a first-order list function then there are some
k ∈ N and a first-order list function:

f : Σ+ → treesk (Σ, S)

such that for every w ∈ Σ+, f (w) is an h-factorisation whose yield
(i.e. the sequence of leaves read from left to right) isw . Moreover, given
Σ, h and S , one can compute such a k .

LICS ’18, July 9–12, 2018, Oxford, United Kingdom M.Bojańczyk, L.Daviaud, and Krishna S.

One can derive the following corollary.

Corollary 3.4. Let Σ ∈ T be finite. Then the following functions
are first-order list functions:

1. every semigroup homomorphism h : Σ+ → S where S is finite
aperiodic;

2. every aperiodic regular language over Σ, viewed as a function
Σ∗ → {0, 1}.

3.2 Rational functions
For the purposes of this paper, it will be convenient to consider an
algebraic representation for rational functions, namely in terms of
bimachines [19]. In this section, we will only be interested in the
case of aperiodic functions; however we explain in section 6 that
our results can be generalised to arbitrary rational functions.

Definition 3.5 (Rational function). The syntax of a rational func-
tion is given by:
• input and output alphabets Σ, Γ, which are both finite;
• a monoid homomorphism h : Σ∗ → M withM a finite monoid;
• an output function out : M × Σ ×M → Γ∗.

If the monoidM is aperiodic, then the rational function is also called
aperiodic. The semantics is the function:

a1 · · ·an ∈ Σ
∗ 7→ w1 · · ·wn ∈ Γ

∗

wherewi is defined to be the value of the output function on the triple:
1. value under h of the prefix a1 · · ·ai−1
2. letter ai
3. value under h of the suffix ai+1 · · ·an .

Note that in particular, the empty input word is mapped to an
empty output.

Theorem 3.6. Every aperiodic rational function is a first-order list
function.

The rest of Section 3.2 is devoted to showing the above theo-
rem. The general idea is to use factorisations as in Theorem 3.3 to
compute the rational function.

Sibling profiles. Let h : Σ∗ → M be a homomorphism into some
finite aperiodic monoidM . Consider an h-factorisation, as defined
in Section 3.1. For a non-leaf node x in the h-factorisation, define
its sibling profile (see Figure 4) to be the pair (s, t) where s is the
product in the monoid of the labels in the left siblings of x , and t
is the product in the monoid of the labels in the right siblings. If x
has no left siblings, then s = 1, if x has no right siblings then t = 1
(where 1 denotes the neutral element of the monoidM).

Lemma 3.7. Let k ∈ N. Then there is a first-order list function
treesk (M, Σ) → treesk (M ×M, Σ) which inputs a tree, and replaces
the label of each non-leaf node with its sibling profile.

Lemma 3.8. Let k ∈ N and let ∆ be a finite set. Then there is a
first-order list function: treesk (∆, Σ) → (∆∗ × Σ)∗ which inputs a
tree and outputs the following list: for each leaf (in left-to-right order)
output the label of the leaf plus the sequence of labels in its ancestors
listed in increasing order of depth.

Proof (of Theorem 3.6)
Let r : Σ∗ → Γ∗ be a rational function, whose syntax is given by
h : Σ∗ → M and out : M×Σ×M → Γ∗. Our goal is to show that
r is a first-order list function. We will only show how to compute

(s, s2)

(1, u2)

(1, u)

(1, s)

(s2, s)
(1, 1)

a b a c a a b c c a

s t u s

s s

s

s t u u s

s

s

u

t

a nodesiblings siblings

its sibling pro�le

Figure 4. Sibling profiles.

r on non-empty inputs. To extend it to the empty input we can
use an if-then-else construction as in Example 2. We will define r
as a composition of five functions, described below. To illustrate
these steps, we will show after each step the intermediate output,
assuming that the input is a word from Σ+ that looks like this:

a b a c a a b c c a

1. Apply Theorem 3.3 to h, yielding some k and a function
from Σ+ to treesk (M, Σ) which maps each input to an h-
factorisation. After applying this function to our input, the
result is an h-factorisation which looks like:

a b a c a a b c c a

s t s u s

s s

s

s t u u s

s

u

t

2. To the h-factorisation produced in the previous step, apply
the function from Lemma 3.7, which replaces the label of
each non-leaf node with its sibling profile. After this step,
the output looks like this:

(1, u)

a b a c a a b c c a

(1, 1)

(1, s)

(1, u2)

(1, s3)

(1, t) (1, t)(s, 1) (t, 1)(s, 1)(s, 1)

(s, s2)

(s2, s)

(s3, 1)

(u, u) (u2, 1)

3. To the output from the previous step, we can now apply the
function from Lemma 3.8, pushing all the information to the
leaves, so that the output is a list that looks like this:

Regular and First-Order List Functions LICS ’18, July 9–12, 2018, Oxford, United Kingdom

a b a c a a b c c a

(1, 1)
(1, s)

(1, u2)
(1, s3)
(1, t)

(1, 1)
(1, s)

(1, u2)
(1, s3)
(s, 1)

(1, 1)
(1, s)

(1, u2)
(s, s2)
(1, u)

(1, 1)
(1, s)

(1, u2)
(s3, 1)
(1, t)

(1, 1)
(1, s)

(u, u)

(1, 1)
(1, s)

(u2, 1)

(1, 1)
(t, 1)

(1, 1)
(1, s)

(1, u2)
(s3, 1)
(s, 1)

(1, 1)
(1, s)

(1, u2)
(s2, s)

(1, 1)
(1, s)

(1, u2)
(s, s2)
(s, 1)

4. For k as in the first step, consider the function
д : (M ×M)∗ × Σ→ M × Σ ×M + ⊥ defined by

([(s1, t1), . . . , (sn , tn)],a)

7→

{
(s1 · · · sn ,a, tn · · · t1) if n ≤ k

⊥ otherwise

The function д is a first-order list function, because it returns
⊥ on all but finitely many arguments. Apply д to all the
elements of the list produced in the previous step (using
map), yielding a list from (M ×Σ×M)∗ which looks like this:

 (1, a, ts3u2s), (t, b, 1s3u2s), (s, a, us2u2s), (ss, c, u2u2s) (u2, c, s), , ... ,[

5. In the list produced in the previous step, the i-th position
stores the i-th triple as in the definition of rational functions
(Definition 3.5). Therefore, in order to get the output of our
original rational function r , it suffices to apply out (because
of finiteness, out is a first-order list function) to all the ele-
ments of the list obtained in the previous step (with map),
and then use flat on the result obtained.

�

4 First-order transductions
This section states the main result of this paper: the first-order
list functions are exactly those that can be defined using first-
order transductions (fo-transductions). We begin by describing
fo-transductions in Section 4.1, and then in Section 4.2, we show
how they can be applied to types from T by using an encoding of
lists, pairs, etc. as logical structures; this allows us to state our main
result, Theorem 4.3, namely that fo-transductions are the same as
first-order list functions (Section 4.3). The proof of the main result
is given in Sections 4.3, 4.5 and 5.

4.1 fo-transductions: definition
A vocabulary is a set (in our application, finite) of relation names,
each one with an associated arity (a natural number). We do not
use functions. IfV is a vocabulary, then a logical structure overV
consists of a universe (a set of elements), together with an interpre-
tation of each relation name inV as a relation on the universe of
corresponding arity.

An fo-transduction [11] is a method of transforming one logical
structure into another which is described in terms of first-order
formulas. More precisely, an fo-transduction consists of two con-
secutive operations: first, one copies the input structure a fixed
number of times, and next, one defines the output structure using a
first-order interpretation (we use here what is sometimes known as
a one dimensional interpretation, i.e. we cannot use pairs or triples
of input elements to encode output elments). The formal definitions
are given below.

One dimensional fo-interpretation. The syntax of a one dimen-
sional fo-interpretation (see also [18, Section 5.4]) consists of:

1. Two vocabularies, called the input and output vocabularies.

2. A formula of first-order logic with one free variable over the
input vocabulary, called the universe formula.

3. For each relation name R in the output vocabulary, a formula
φR of first-order logic over the input vocabulary, whose
number of free variables is equal to the arity of R.

The semantics is a function from logical structures over the input
vocabulary to logical structures over the output vocabulary given
as follows. The universe of the output structure consists of those
elements in the universe of the input structure which make the
universe formula true. A predicate R in the output structure is
interpreted as those tuples which are in the universe of the output
structure and make the formula φR true.

Copying. For a positive integer k and a vocabularyV , we define
k-copying (overV) to be the function which inputs a logical struc-
ture overV , and outputs k disjoint copies of it, extended with an
additional k-ary predicate that selects a tuple (a1, . . . ,ak) if and
only if there is some a in the input structure such that a1, . . . ,ak
are the respective copies of a. (The additional predicate is sensitive
to the ordering of arguments, because we distinguish between the
first copy, the second copy, etc.)
Definition 4.1 (fo-transduction). An fo-transduction is defined to
be an operation on relational structures which is the composition of
k-copying for some k , and of a one dimensional fo-interpretation.

fo-transductions are a robust class of functions. In particular,
they are closed under composition. Perhaps even better known are
the more general mso-transductions, we will discuss these at the
end of the paper.

4.2 Nested lists as logical structures
Our goal is to use fo-transductions to define functions of the form
f : Σ → Γ, for types Σ, Γ ∈ T . To do this, we need to represent
elements of Σ and Γ as logical structures. We use a natural encoding,
which is essentially the same one as is used in the automata and
logic literature, see e.g. [25, Section 2.1].

Consider a type Σ ∈ T . We represent an element x ∈ Σ as a
relational structure, denoted by x , as follows:

1. The universe U is the nodes in the parse tree of x (see
Figure 5).

2. There is a binary relation Par(x ,y) for the parent-child rela-
tion which says that x is the parent of y.

3. There is a binary relation Sib(x ,y) for the transitive clo-
sure of the “next sibling” relation. The next sibling relation
NextSib(x ,y) is true if y is the next sibling of x : that is, there
is a node z which is the parent of x and y, and there are
no children of z between x and y (in that order). Sib(x ,y)
evaluates to true if x ,y are siblings, and y after x .

4. For every node τ in the parse tree of the type Σ (see Figure 6),
there is a unary predicate type(τ), which selects the elements
from the universe of x , (equivalently the subterms of x)
that have the type τ . For example, for τ = B∗, type(τ)([b])
evaluates to true if b ∈ B.

We write Σ for the relational vocabulary used in the structure
x . This vocabulary has two binary relations, as described in items
2 and 3, as well as one unary relation for every node in the parse
tree of the type Σ.
Definition 4.2. Let Σ, Γ ∈ T . We say that a function f : Σ→ Γ is
definable by an fo-transduction if it is an fo-transduction under the

LICS ’18, July 9–12, 2018, Oxford, United Kingdom M.Bojańczyk, L.Daviaud, and Krishna S.

([[a,b], [a,a,b], [], c], [(a, [b])])

[[a,b], [a,a,b], [], c]

[a,b]

a b

[a,a,b]

a a b

[] c

[(a, [b])]

(a, [b])

a [b]

b

next
sibling
relation

parent
relation

predicate
∈ B∗

Figure 5. The parse tree of a nested list.

×

∗

+

∗

+

A B

C

∗

×

A ∗

B

Figure 6. The parse tree of a type in T .

encoding x 7→ x ; more formally, if there is some fo-transduction φ
which makes the following diagram commutes:

Σ

f
��

x 7→x // structures over Σ

φ

��
Γ

x 7→x // structures over Γ

It is important that the encoding x 7→ x gives the transitive
closure of the next sibling relation. For example when the type Σ
is {a,b}∗, our representation allows a first-order transduction to
access the order < on positions, and not just the successor relation.
For first-order logic (unlike for mso) there is a significant difference
between having access to order vs successor on list positions.

4.3 Main result
Below is the main contribution of this paper.

Theorem 4.3. Let Γ, Σ ∈ T . A function f : Σ→ Γ is a first-order
list function if and only if it is definable by an fo-transduction.

Before proving Theorem 4.3, let us note the following corollary:
the equivalence of first-order list functions (i.e. do they give the
same output for every input) is decidable. Indeed, we will see below
that any first-order list function can be encoded into a string-to-
string first-order list function. Using this encoding and Theorem 4.3,
the equivalence problem of first-order list functions boils down to
deciding equivalence of string-to-string fo-transductions; which is
decidable [17].

The proof of the left-to-right implication of Theorem 4.3 is a
straightforward induction. The more challenging right-to-left im-
plication is described in the rest of this section. First, by using an
encoding of nested lists of bounded depth via strings, e.g. xml en-
coding (both the encoding and decoding are easily seen to be both
first-order list functions and definable by fo-transductions), we
obtain the following lemma:

Lemma 4.4. To prove the right-to-left implication of Theorem 4.3,
it suffices to show it for string-to-string functions, i.e. those of type
Σ∗ → Γ∗ for some finite sets Σ, Γ.

Without loss of generality, we can thus only consider the case
when both the input and output are strings over a finite alphabet.
This way one can use standard results on string-to-string transduc-
tions (doing away with the need to reprove the mild generalisations
to nested lists of bounded depth).

Every string-to-string fo-transduction can be decomposed as
a two step process: (a) apply an aperiodic rational transduction
to transform the input word into a sequence of operations which
manipulate a fixed number of registers that store words; and then (b)
execute the sequence of operations produced in the previous step,
yielding an output word. Therefore, to prove Theorem 4.3, it suffices
to show that (a) and (b) can be done by first-order list functions.
Step (a) is Theorem 3.6. Step (b) is described in Section 4.5. Before
tackling the proofs, we need to generalise slightly the definition of
first-order list functions.

4.4 Generalised first-order list functions
In some constructions below, it will be convenient to work with a
less strict type discipline, which allows types such as “lists of length
at least three” or

{[x1, . . . ,xn] ∈ {a,b}
∗ : every two consecutive elements differ}

Definition 4.5 (First-order definable set). Let Σ ∈ T . A subset
P ⊆ Σ is called first-order definable if its characteristic function
Σ → {0, 1} is a first-order list function. Let TFO denote first-order
definable subsets of types in T .

The generalised first-order list functions are defined to be first-
order list functions as defined previously where the domains and
co-domains are in TFO.

Definition 4.6 (Generalised first-order list functions). A function
f : Σ→ Γ with Σ, Γ ∈ TFO is said to be a generalised first-order
list function if it is obtained by taking some first-order list function
(definition 2.1) and restricting its domain and co-domain to first-order
definable subsets so that it remains a total function.

4.5 Registers
To complete the proof of Theorem 4.3, it will be convenient to use
a characterisation of fo-transductions which uses registers, in the
spirit of streaming string transducers [2]. We use here a similar
notion as the substitution transition monoid introduced in [12].

Registers and their updates. LetM be a monoid, not necessarily
finite, and let k ∈ {1, 2, . . .}. We define a k-register valuation to be
a tuple inMk , which we interpret as a valuation of registers called
{1, . . . ,k} by elements ofM . Define a k-register update overM to
be a parallel substitution, which transforms one k-valuation into
another using concatenation, as in the following picture.

Regular and First-Order List Functions LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Formally, a k-register update is a k-tuple of words over the alphabet
M ∪ {1, . . . ,k}. In particular, if M is in TFO then also the set of k-
register updates is in TFO, and therefore it is meaningful to talk
about (generalised) first-order list functions that input and output
k-register valuations. If η is a k-register update, we use the name
i-th right hand side for the i-th coordinate of the k-tuple η.

There is a natural right action of register updates on register
valuations: if v ∈ Mk is a k-register valuation, and η is a k-register
update, then we define vη ∈ Mk to be the k-register valuation
where register i stores the value in the monoid M obtained by
taking the i-th right hand side of η, substituting each register name
j with its value in v , and then taking the product in the monoid
M . This right action can be implemented by a generalised first-
order list function, as stated in the following lemma, which is easily
proved by inlining the definitions.

Lemma 4.7. Let k be a non-negative integer, letv ∈ Mk and assume
that M is a monoid whose universe is in TFO and whose product
operation is a generalised first-order list function. Then the function
which maps a k-register update η to the k-register valuationvη ∈ Mk

is a generalised first-order list function.

Non duplicating monotone updates. A k-register update is said
nonduplicating if each register appears at most once in the con-
catenation of all the right hand sides; and it is called monotone if
after concatenating the right hand sides (from 1 to k), the registers
appear in strictly increasing order (possibly with some registers
missing). WewriteM[k] for the set of nonduplicating andmonotone
k-register updates.

Lemma 4.8 says that every string-to-string fo-transduction can
be decomposed as follows: (a) apply an aperiodic rational transduc-
tion to compute a sequence of monotone nonduplicating register
updates; then (b) apply all those register updates to the empty reg-
ister valuation (which we denote by ε̄ assuming that the number
of registers k is implicit), and finally return the value of the first
register.

Lemma 4.8. Let Σ and Γ be finite alphabets. Every fo-transduction
f : Σ∗ → Γ∗ can be decomposed as:

Σ∗

д

��

f // Γ∗

∆∗
apply updates to ε̄

// (Γ∗)k

projection1

OO

for some positive integer k , where ∆ is a finite subset of (Γ∗)[k] (i.e. a
finite set of k-register updates that are monotone and nonduplicating),
д : Σ∗ → ∆∗ is an aperiodic rational function and projection1 is the
projection of a k-tuple of (Γ∗)k on its first component.

Thanks to Lemma 4.4 and the closure of first-order list function
under composition, it is now sufficient to prove that the bottom
three functions of Lemma 4.8 are first-order list functions, in order
to complete the proof of Theorem 4.3. This is the case of the function
projection1 by definition and of the aperiodic rational function д
by Theorem 3.6. We are thus left to prove the following lemma,
which is the subject of Section 5.

Lemma 4.9. Let Γ ∈ T , let k be a positive integer and let ∆ a
finite subset of (Γ∗)[k]. The function from ∆∗ to (Γ∗)k which maps a
list of nonduplicating monotone k-register updates to the valuation
obtained by applying these updates to the empty register valuation is
a first-order list function.

5 The register update monoid
The goal of this section is to prove Lemma 4.9. We will prove a
stronger result which also works for a monoid other than Γ∗, pro-
vided that its universe is a first-order definable set and its product
operation is a generalised first-order list function. This result is
obtained as a corollary of Theorem 5.1 below. In order to state
this theorem formally, we need to view the product operation:
(M[k])∗ → M[k] as a generalised first-order list function. The do-
main of the above operation is in TFO from Definition 4.5, since
being monotone and nonduplicating are first-order definable prop-
erties.

Theorem 5.1. Let M be a monoid whose universe is in TFO and
whose product operation is a generalised first-order list function. Then
the same is true forM[k], for every k ∈ {0, 1, . . .}.

Lemma 4.9 follows from the above theorem applied toM = Γ∗,
and from Lemma 4.7. Indeed, given Γ ∈ T , the universe of Γ∗[k]

is in TFO and its product operation is a generalised first-order list
function by Theorem 5.1. The function from Lemma 4.9 is then the
composition of the product operation in ∆∗ (which corresponds to
the product operation in Γ∗[k]), which transforms a list of updates
from ∆ into an update of Γ∗[k], and the evaluation of this update
on the empty register valuation. This last function is a generalised
first-order list function by Lemma 4.7 with v = ε̄ . Implicitly, we
use the fact that the right action is compatible with the monoid
structure ofM[k], i.e.

v(η1η2) = (vη1)η2 for v ∈ Mk and η1,η2 ∈ M[k].

Summing up, we have proved that the function of type ∆∗ → (Γ∗)k
discussed in Lemma 4.9 is a generalised first-order list function.
Since its domain and co-domain are in T , it is also a first-order list
function. This completes the proof of Lemma 4.9.

It remains to prove Theorem 5.1. We do this using factorisa-
tion forests, with our proof strategy encapsulated in the following
lemma, using the notion of homogeneous lists: a list [x1, . . . ,xn] is
said to be homogeneous under a function h if h(x1) = · · · = h(xn).

Lemma 5.2. Let M be a monoid whose universe is in TFO. The fol-
lowing conditions are sufficient for the product operation ofM[k] to
be a generalised first-order list function:

1. the binary product M ×M → M is a generalised first-order
list function; and

2. there is a monoid homomorphism h : M → T , with T a finite
aperiodic monoid, and a generalised first-order list function

LICS ’18, July 9–12, 2018, Oxford, United Kingdom M.Bojańczyk, L.Daviaud, and Krishna S.

M∗ → M that agrees with the product operation ofM on all
lists that are homogeneous under h.

In order to prove Theorem 5.1, it suffices to show that if a monoid
M satisfies the assumptions of Theorem 5.1, then the monoidM[k]
satisfies conditions 1 and 2 in Lemma 5.2. Let us fix for the rest
of this section a monoid M which satisfies the assumptions of
Theorem 5.1, i.e. its universe is in TFO and its product operation is
a generalised first-order list function. Condition 1 of Lemma 5.2 for
M[k] is easy, using the fact that the updates are non duplicating. We
focus on condition 2, i.e. showing that the product operation can be
computed by a generalised first-order list function, for lists which
are homogeneous under some homomorphism into a finite monoid.
For this, we need to find the homomorphism h. For a k-register
update η, define h(η), called its abstraction, to be the same as η,
except that all monoid elements are removed from the right hand
sides, as in the following picture:

Intuitively, the abstraction only says which registers are moved to
which ones, without saying what new monoid elements (in blue in
the picture) are created. Having the same abstraction is easily seen
to be a congruence onM[k], and therefore the set of abstractions,
call it Tk , is itself a finite monoid, and the abstraction function h is
a monoid homomorphism. We say that a list [x1, . . . ,xn] in M[k]

is τ -homogeneous for some τ in Tk if it is homogeneous under the
abstraction h and τ = h(x1) = · · · = h(xn). We claim that item 2 of
Lemma 5.2 is satisfied when using the abstraction homomorphism.
Lemma 5.3. Given a non-negative integer k and τ ∈ Tk , there is
a generalised first-order list function from (M[k])∗ to M[k] which
agrees with the product in the monoidM[k] for arguments which are
τ -homogenous.

Since there are finitely many abstractions, and a generalised
first-order list function can check if a list is τ -homogeneous, the
above lemma yields item 2 of Lemma 5.2 using a case disjunction
as described in Example 2. Therefore, proving the above lemma
finishes the proof of Theorem 5.1, and therefore also of Theorem 4.3.
The rest of the section is devoted to the proof of Lemma 5.3. In
Section 5.1, we prove the special case of Lemma 5.3 when k = 1,
and in Section 5.2, we deal with the general case (by reducing it to
the case k = 1).

5.1 Proof of Lemma 5.3: One register
Let us first prove the special case of Lemma 5.3 when k = 1. In this
case, there are two possible abstractions:

We only do the proof for the more interesting left case; fix τ to be the
left abstraction above. Here is a picture of a list [η1, . . . ,ηn] ∈ M[1]

which is τ -homogeneous:

Our goal is to compute the product of such a list, using a first-
order list function. For η ∈ M[1] define beforeη (respectively, afterη)
to be the list in M∗ of monoid elements that appear in η before
(respectively, after) register 1. Here is a picture

Using the block operation and flattening, we get:

Claim 5.4. Both before and after are generalised first-order list func-
tionsM[1] → M∗.

Let s, t ∈ M∗ be the respective flattenings of the lists

[beforeηn , . . . , beforeη1] and [afterη1, . . . , afterηn].

Note the reverse order in the first list. Here is a picture:

The function [η1, . . . ,ηn] 7→ (s, t) is a generalised first-order list
function, using Claim 5.4, reversing and flattening. The product
of the 1-register valuations [η1, . . . ,ηn] is the register valuation
where the (only) right hand side is the concatenation of s, [1], t .
Therefore, this product can be computed by a generalised first-
order list function.

This completes the proof of Lemma 5.3 in the case of k = 1, in
particular we now know that Theorem 5.1 is true for k = 1.

5.2 Proof of Lemma 5.3: More registers
We now prove the general case of Lemma 5.3. Let τ ∈ Tk be an
abstraction. We need to show that a generalised first-order list
function can compute the product operation ofM[k] for inputs that
are τ -homogeneous. Our strategy is to use homogenity to reduce to
the case of 1 register, which was considered in the previous section.
As a running example (for the proof in this section) we use the
following τ :

Regular and First-Order List Functions LICS ’18, July 9–12, 2018, Oxford, United Kingdom

1

2

3

4

1

2

3

4

DefineG to be a directed graph where the vertices are the registers
{1, . . . ,k} and which contains an edge i ← j if the abstraction τ
is such that τ (i) contains register j, i.e. the new value of register i
after the update uses register j . Here is a picture of the graphG for
our running example:

1

2

3

4

Every vertex in the graph has outdegree at most one (because
τ is nonduplicating) and the only types of cycles are self-loops
(because τ is monotone). Because registers that are in different
weakly connected components do not interact with each other
and then can be treated separately, without loss of generality we
can assume that G is weakly connected (i.e. it is connected after
forgetting the orientation of the edges).

Consider a τ -homogeneous list [η1, . . . ,ηn] of k-register updates.
Here is a picture for our running example:

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

A register i ∈ {1, . . . ,k} is called temporary if it does not have a
self-loop in the graph G. In our running example, the temporary
registers are 1,3 and 4. Because of monotonicity, if a register is
temporary, then all incoming edges are also from temporary ver-
tices. The key observation about temporary registers is that their
value depends only on the last k updates, as shown in the following
picture:

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Because the temporary registers depend only on the recent past,
the values of temporary registers can be computed using a gener-
alised first-order list function (as formalised in Claim 5.5 below). If

the graph G is connected, as supposed, then there is at most one
register that is not temporary. For this register, we use the results
on one register proved in the main part of the paper.

Claim 5.5. Assume that τ ∈ Tk is such that all the registers are
temporary. Consider the function:

(M[k])∗ ∩ τ -homogeneous
f // (M[k])∗

which maps an input [η1, . . . ,ηn] to the list [η′1, . . . ,η
′
n] where η

′
i is

equivalent to the product of the prefixη1 · · ·ηi . Then f is a generalised
first-order list function.

Proof
If all registers are temporary, then the product of a τ -homogeneous
list is the same as the product of its last k elements. Therefore, we
can prove the lemma using the window construction from Exam-
ple 3 and the binary product. �

6 Regular transductions
In Theorem 4.3, we have shown that fo-transductions are the same
as first-order list functions. In this section, we discuss the mso
version of the result.

An mso-transduction is defined similarly as an fo-transduction
(see Definition 4.1), except that the interpretations are allowed to
use the logic mso instead of only first-order logic. When restricted
to functions of the form Σ∗ → Γ∗ for finite alphabets Σ, Γ, these
are exactly the regular string-to-string functions discussed in the
introduction.

To capture mso-transductions, we extend the first-order list func-
tions with product operations for finite groups in the following
sense. LetG be a finite group. Define its prefix multiplication func-
tion to be

[д1, · · · ,дn] ∈ G
∗ 7→ [h1, . . . ,hn] ∈ G

∗

where hi is the product of the list [д1, . . . ,дi]. Define the regular list
functions to be defined the same way as the first-order list functions
(Definition 2.1), except that for every finite group G, we add its
prefix multiplication function to the base functions.

Admittedly the group product operation may not seem at first
glance an obvious programming construction (although it might
look better for solvable groups, like counting modulo 2). The main
point of our combinators is to have a language without any com-
binators that do iteration (like Kleene star, and variants of star
for transducers that are used in the work Alur et al.). In the first-
order case we managed to remove all iteration, and in the mso-case
we have identified the sole place where iteration is used, namely
groups.

Theorem 6.1. Given Σ, Γ ∈ T and a function f : Σ → Γ, the
following conditions are equivalent:

1. f is defined by an mso-transduction;
2. f is a regular list function.

Proof sketch. The bottom-up implication is straightforward, since
the group product operations are seen to be mso-transductions
(even sequential functions).

For the top-down implication, we use a number of existing results
to break up an mso-transduction into smaller pieces which turn
out to be regular list functions. By [10, Theorem 2] applied to
the special case of words (and not trees), every mso-transduction

LICS ’18, July 9–12, 2018, Oxford, United Kingdom M.Bojańczyk, L.Daviaud, and Krishna S.

can be decomposed as a composition of (a) a rational function;
followed by (b) an fo-transduction. Since fo-transductions are
contained in regular list functions by Theorem 3.6, and regular
list functions are closed under composition, it is enough to show
that every rational function is a regular list function. By Elgot and
Mezei [13], every rational function can be decomposed as: (a) a
sequential function [16, Section 2.1]; followed by (b) reverse; (c)
another sequential function; (d) reverse again. Since regular list
functions allow for reverse and composition, it remains to deal with
sequential functions. By the Krohn-Rhodes Theorem [24, Theorem
A.3.1], every sequential function is a composition of sequential
functions where the state transformation monoid of the underlying
automaton is either aperiodic (in which case we use Theorem 3.6)
or a group (in which case we use the prefix multiplication functions
for groups).

An alternative approach to proving the top-down implication
would be to revisit the proof of Theorem 4.3, with the only impor-
tant change being a group case needed when computing a factori-
sation forest for a semigroup that is not necessarily aperiodic. �

7 Conclusion and future work
The main contribution of the paper is to give a characterisation
of the regular string-to-string transducers (and their first-order
fragment) in terms of functions on lists, constructed from basic ones,
like reversing the order of the list, and closed under combinators
like composition.

One of the principal design goals of our formalism is to be eas-
ily extensible. We end the paper with some possibilities of such
extensions, which we leave for future work.

One idea is to add new basic types and functions. For example,
one could add an infinite atomic type, say the natural numbers
N, and some functions operating on it, say the function N × N→
{0, 1} testing for equality. Is there a logical characterisation for the
functions obtained this way?

mso-transductions and fo-transductions are linear in the sense
that the size of the output is linear in the size of the input; and
hence our basic functions need to be linear and the combinators
need to preserve linear functions. What if we add basic operations
that are non-linear, e.g.

(a, [b1, . . . ,bn]) 7→ [(a,b1), . . . , (a,bn)]

which is sometimes known as “strength”? A natural candidate
for a corresponding logic would use interpretations where output
positions are interpreted in pairs (or triples, etc.) of input positions.

Finally, our type system is based on lists, or strings. What about
other data types, such as trees, sets, unordered lists, or graphs? Trees
seem particularly tempting, being a fundamental data structurewith
a developed transducer theory, see e.g. [3]. Lists and the other data
types discussed above can be equipped with a monad structure,
which seems to play a role in our formalism. Is there anything
valuable that can be taken from this paper whichworks for aribtrary
monads?

Acknowledgements
This research has been supported by the European Research Coun-
cil (ERC) under the European Union Horizon 2020 research and
innovation programme (ERC consolidator grant LIPA, agreement

no. 683080) and the EPSRC grant EP/P020992/1 (Solving Parity
Games in Theory and Practice).

References
[1] Alfred V Aho and Jeffrey D Ullman. 1970. A Characterization of Two-Way

Deterministic Classes of Languages. J. Comput. Syst. Sci. 4, 6 (1970), 523–538.
[2] Rajeev Alur and Pavol Černý. 2011. Streaming transducers for algorithmic verifi-

cation of single-pass list-processing programs. In Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages -
POPL ’11. ACM Press, New York, New York, USA, 599. https://doi.org/10.1145/
1926385.1926454

[3] Rajeev Alur and Loris D’Antoni. 2017. Streaming Tree Transducers. J. ACM 64,
5 (2017), 1–55.

[4] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. 2014. Regular combina-
tors for string transformations. CSL-LICS (2014), 1–10.

[5] Alur, Rajeev and Cerný, Pavol. 2010. Expressiveness of streaming string trans-
ducers. FSTTCS (2010).

[6] Richard S. Bird. 1987. An Introduction to the Theory of Lists. In Logic of
Programming and Calculi of Discrete Design, M. Broy (Ed.). Springer-Verlag, 3–42.
NATO ASI Series F Volume 36. Also available as Technical Monograph PRG-56,
from the Programming Research Group, Oxford University.

[7] M. Bojańczyk. 2009. Factorization forests. Vol. 5583 LNCS. https://doi.org/10.
1007/978-3-642-02737-6_1

[8] Mikołaj Bojańczyk, Laure Daviaud, and Krishna Shankara Narayanan. 2018. Reg-
ular and First Order List Functions. CoRR abs/1803.06168 (2018). arXiv:1803.06168
http://arxiv.org/abs/1803.06168

[9] Olivier Carton and Luc Dartois. 2015. Aperiodic Two-way Transducers and
FO-Transductions. In 24th EACSL Annual Conference on Computer Science Logic,
CSL 2015, September 7-10, 2015, Berlin, Germany (LIPIcs), Stephan Kreutzer (Ed.),
Vol. 41. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 160–174. https:
//doi.org/10.4230/LIPIcs.CSL.2015.160

[10] Thomas Colcombet. 2007. A Combinatorial Theorem for Trees. In Automata,
Languages and Programming. Springer, Berlin, Heidelberg, Berlin, Heidelberg,
901–912.

[11] Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-
Order Logic - A Language-Theoretic Approach. Encyclopedia of mathematics and
its applications, Vol. 138. CUP. I–XIV, 1–728 pages.

[12] Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. 2016. Aperiodic String
Transducers. In Developments in Language Theory - 20th International Confer-
ence, DLT 2016, Montréal, Canada, July 25-28, 2016, Proceedings (Lecture Notes
in Computer Science), Srecko Brlek and Christophe Reutenauer (Eds.), Vol. 9840.
Springer, 125–137. https://doi.org/10.1007/978-3-662-53132-7_11

[13] C C Elgot and J E Mezei. 1965. On Relations Defined by Generalized Finite
Automata. IBM Journal of Research and Development 9, 1 (1965), 47–68.

[14] Joost Engelfriet and Hendrik Jan Hoogeboom. 2001. MSO definable string trans-
ductions and two-way finite-state transducers. ACM Transactions on Computa-
tional Logic 2, 2 (April 2001), 216–254.

[15] Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. 2014.
First-order Definable String Transformations. In 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India (LIPIcs), Venkatesh Raman and S. P. Suresh
(Eds.), Vol. 29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 147–159.
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.147

[16] Emmanuel Filiot and Pierre-Alain Reynier. 2016. Transducers, logic and algebra
for functions of finite words. SIGLOG News (2016).

[17] Eitan M. Gurari. 1982. The Equivalence Problem for Deterministic Two-Way
Sequential Transducers is Decidable. SIAM J. Comput. 11, 3 (1982), 448–452.
https://doi.org/10.1137/0211035 arXiv:https://doi.org/10.1137/0211035

[18] Wiflrid Hodges. 1993. Model Theory. Cambridge University Press. https://books.
google.pl/books?id=Rf6GWut4D30C

[19] John Rhodes and Pedro V. Silva. 2008. Turing machines and bimachines. Theor.
Comput. Sci. 400, 1-3 (2008), 182–224. https://doi.org/10.1016/j.tcs.2008.03.019

[20] Jacques Sakarovitch. 2009. Elements of Automata Theory. Cambridge Uni-
versity Press. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521844253

[21] Jacques Sakarovitch and Reuben Thomas. 2009. Elements of Automata Theory.
Cambridge University Press, Cambridge.

[22] Claude E Shannon. 1948. A mathematical theory of communication, Part I, Part
II. Bell Syst. Tech. J. 27 (1948), 623–656.

[23] Imre Simon. 1990. Factorization Forests of Finite Height. Theor. Comput. Sci. 72,
1 (1990), 65–94. https://doi.org/10.1016/0304-3975(90)90047-L

[24] Howard Straubing. 2012. Finite Automata, Formal Logic, and Circuit Complexity.
Springer Science & Business Media.

[25] Wolfgang Thomas. 1997. Languages, Automata, and Logic. In Handbook
of Formal Languages. 389–455. https://doi.org/10.1007/978-3-642-59126-6_7
arXiv:arXiv:1011.1669v3

https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1007/978-3-642-02737-6_1
https://doi.org/10.1007/978-3-642-02737-6_1
http://arxiv.org/abs/1803.06168
http://arxiv.org/abs/1803.06168
https://doi.org/10.4230/LIPIcs.CSL.2015.160
https://doi.org/10.4230/LIPIcs.CSL.2015.160
https://doi.org/10.1007/978-3-662-53132-7_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.147
https://doi.org/10.1137/0211035
http://arxiv.org/abs/https://doi.org/10.1137/0211035
https://books.google.pl/books?id=Rf6GWut4D30C
https://books.google.pl/books?id=Rf6GWut4D30C
https://doi.org/10.1016/j.tcs.2008.03.019
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
https://doi.org/10.1016/0304-3975(90)90047-L
https://doi.org/10.1007/978-3-642-59126-6_7
http://arxiv.org/abs/arXiv:1011.1669v3

	Abstract
	1 Introduction
	2 Definitions and Examples
	2.1 First-order list functions
	2.2 Examples

	3 Aperiodic rational functions
	3.1 Computing factorisations
	3.2 Rational functions

	4 First-order transductions
	4.1 fo-transductions: definition
	4.2 Nested lists as logical structures
	4.3 Main result
	4.4 Generalised first-order list functions
	4.5 Registers

	5 The register update monoid
	5.1 Proof of Lemma 5.3: One register
	5.2 Proof of Lemma 5.3: More registers

	6 Regular transductions
	7 Conclusion and future work
	References

