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Abstract
The ellipsoid method is an algorithm that solves the (weak) feasi-
bility and linear optimization problems for convex sets by making
oracle calls to their (weak) separation problem. We observe that
the previously known method for showing that this reduction can
be done in fixed-point logic with counting (FPC) for linear and
semidefinite programs applies to any family of explicitly bounded
convex sets. We use this observation to show that the exact feasibil-
ity problem for semidefinite programs is expressible in the infinitary
version of FPC. As a corollary we get that, for the graph isomor-
phism problem, the Lasserre/Sums-of-Squares semidefinite pro-
gramming hierarchy of relaxations collapses to the Sherali-Adams
linear programming hierarchy, up to a small loss in the degree.

CCS Concepts • Theory of computation→ Complexity the-
ory and logic; Convex optimization; Semidefinite program-
ming; Proof complexity; Finite Model Theory;
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1 Introduction
Besides the well-known fact of being the first algorithm to be dis-
covered that could solve linear programs (LPs) in polynomial time,
the ellipsoid method has at least two other aspects that make it
an important tool for the computer science theoretician. The first
is that the algorithm is able to handle not only high-dimensional
explicit LPs, but even certain implicitly given LPs that are described
by exponentially many, or even infinitely many, linear inequalities.
These include some of the most celebrated groundwork pieces of
combinatorial optimization, such as the weighted matching prob-
lem on general graphs, and the submodular function minimization
problem, among others. The second important feature of the ellip-
soid method is that its polynomial running time in the bit-model of
computation, taking into account potential issues of numeric insta-
bility, is since a long time ago well understood and developed [9].
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There is a third emerging and to some extent surprising feature of
the ellipsoidmethod that is of particular significance for the logician
and the descriptive complexity theorist. The starting point is the
important breakthrough result of Anderson, Dawar and Holm [2]
who developed a method called folding for dealing with symmetries
in an LP. They used this method for showing that, for the special
case of LPs, the ellipsoid method can be implemented in fixed-
point logic with counting (FPC), and hence in polynomial time, but
choicelessly, i.e., in a way that the symmetries from the input are
respected all along the computation, as well as in the output. As the
main application of their result, they proved that the class of graphs
that have a perfect matching could be defined in FPC, thus solving
one of the well-known open problems raised by Blass, Gurevich
and Shelah in their work on Choiceless Polynomial Time [6]. The
method of folding was extended further by Dawar and Wang for
dealing with explicitly bounded and full-dimensional semidefinite
programs (SDPs) [7].

The first contribution of our work is the observation that the
abovementioned method of folding from [2] is general enough to
capture the power of the ellipsoid method in its full strength. We
observe that the general polynomial-time reduction that solves the
weak feasibility problem given a weak separation oracle for an
explicitly bounded convex set can be implemented, choicelessly, in
FPC. As in the earlier works that employed the folding method, our
implementation uses the reduction algorithm as described in [9]
as a black-box. The black-box is made into a choiceless procedure
through a sequence of runs of the algorithm along a refining se-
quence of suitable quotients of the given convex set. It should be
pointed out that while all the main ideas for doing this were al-
ready implicit in the earlier works [2, 7], working out the details
requires a certain degree of care. For one thing, when we started
this work it was not clear whether the earlier methods would be
able to deal with separation oracles for families of convex sets that
are not closed under the folding-quotient operations. We observe
that such closure conditions, which happen to hold for LPs and
SDPs, are indeed not required.

With this observation in hand, we develop three applications.
Our first application concerns the semidefinite programming

exact feasibility problem. A semidefinite set, also known as a spec-
trahedron, is a subset of Euclidean space that is defined as the
intersection of the cone of positive semidefinite matrices with an
affine subspace. Thus, semidefinite sets are the feasible regions
of SDPs, and the SDP exact feasibility problem asks, for an SDP
given as input, whether its feasible region is non-empty. While the
approximate and explicitly bounded version of this problem is solv-
able in polynomial-time by the ellipsoid method, the computational
complexity of exact feasibility is a well-known open problem in
mathematical programming; it is decidable in polynomial space,
but its precise position in the complexity hierarchy is unknown.
It has been shown that the problem is at least as hard as PosSLP,
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the positivity problem for integers represented as arithmetic cir-
cuits [16], and hence at least as hard as the famous square-root sum
problem, but the exact complexity of these two problems is also
largely unknown (see [1]). Our result on the SDP exact feasibility
problem is that, when its input is represented suitably as a finite
structure, it is definable in the logic Cω

∞ω , i.e. bounded-variable
infinitary logic with counting. In more recent terminology, we say
that the SDP exact feasibility problem has bounded counting width:
there is a fixed bound k so that the set of YES (and NO) instances
of the problem is closed under indistinguishability by formulas of
k-variable counting logic. This is perhaps an unexpected property
for the SDP exact feasibility problem to have.

Although this definability result does not seem to have any direct
algorithmic consequences for the SDP exact feasibility problem
itself, we are able to use the gained knowledge to produce new
results on the strength of isomorphism relaxations.

A variety of mathematical programming relaxations of the graph
isomorphism problem have been proposed in the literature: from
the fractional isomorphism relaxation of Tinhofer [17], through its
strengthening via the Sherali-Adams hierarchy of LP relaxations
[3, 12], to its further strengthening via the Lasserre hierarchy of
SDP relaxations [13], its relaxation via Groebner basis computa-
tions [5], and a few others. While all these hierarchies of LP, SDP
or Groebner-based relaxations are now known to stay proper relax-
ations of isomorphism, their relative strength, besides the obvious
relationships, was not fully understood. Since SDP is a proper gen-
eralization of LP, one may be tempted to guess that the Lasserre
SDP hierarchy could perhaps distinguish more graphs than its LP
sibling. Interestingly, we prove this not to be the case: for the iso-
morphism problem, the strength of the Lasserre hierarchy collapses
to that of the Sherali-Adams hierarchy, up to a small loss in the
level of the hierarchy.

Concretely, we show that there exists a constant c ≥ 1 such that if
two given graphs are distinguishable in thek-th level of the Lasserre
hierarchy, then they must also be distinguishable in the ck-th level
of the Sherali-Adams hierarchy. The constant c loss comes from
the number of variables for expressing the SDP exact feasibility
problem in bounded-variable counting logic. It should be noted
that our proof is indirect as it relies on the characterization of the
indistinguishability in k-variable counting logic via the k-th level
Sherali-Adams relaxation of graph isomorphism [3]. The question
whether the collapse can be shown to hold by directly lifting LP-
feasible solutions into SDP-feasible ones remains an interesting one.

By moving to the duals of the Lasserre and the Sherali-Adams
hierarchies our results can be interpreted in terms of Sums-of-
Squares proofs (SOS) and Sherali-Adams proofs (SA) and, as a side
bonus, they can be used to derive consequences for Polynomial
Calculus proofs (PC). In terms of proofs, we show that if there is a
degree-k SOS proof that two graphs are not isomorphic, then there
is also a degree-ck SA proof. In turn, it was already known from
before, by combining the results in [3] and [5], that if there is a
degree-ck SA proof then there is also a degree-ck (monomial) PC
proof (over the reals), which is known to imply that there is a degree-
2ck SOS proof by the recent result in [4]. Thus, our result completes
a full cycle of implications to show that, for the graph isomorphism
problem, SA, monomial PC, PC, and SOS are equally powerful,
up to a factor loss of 2c in the degree. It also confirms the belief
expressed in [5] that the gap between PC and monomial PC is not
large (a result obtained independently in [8]). It is remarkable that

we proved these statements purely about the relative strength of
proof systems through an excursion into the descriptive complexity
of the ellipsoid method, the SDP exact feasibility problem, and
bounded-variable infinitary logics.

2 Preliminaries
Vectors and matrices.We use [n] to denote the set {1, . . . ,n}. If I
is a non-empty index set, then an I -vector is an element of RI . The
components of u ∈ RI are writen u(i) or ui , for i ∈ I . We identify
Rn with R[n]. For I -vectors u and v , the inner product of u and v is
⟨u,v⟩ =

∑
i ∈I uivi . We write ∥u∥2 =

√
⟨u,u⟩ for the L2-norm, and

∥u∥∞ = max{|ui | : i ∈ I } for the L∞-norm. For K ⊆ RI and δ > 0,
we define the δ -ball around K by S(K ,δ ) := {x ∈ RI : ∥x − y∥2 ≤

δ for some y ∈ K}. For K = {x}, we set S(x ,δ ) := S({x},δ ). We
define also S(K ,−δ ) := {x ∈ RI : S(x ,δ ) ⊆ K}.

If I and J are two non-empty index sets, then an I × J -matrix is
simply an I × J -vector; i.e., an element of RI×J . The L2- and L∞-
norms of a matrix X ∈ RI×J are defined as the respective norms
of X seen as an I × J -vector, and the inner product of the matri-
ces X ,Y ∈ RI×J is ⟨X ,Y ⟩ =

∑
i ∈I

∑
j ∈J Xi jYi j . Matrix product is

written by concatenation. A square matrix X ∈ RI×I is positive
definite, denoted X ≻ 0, if it is symmetric and satisfies zTXz > 0,
for every non-zero z ∈ RI . If it is symmetric but satisfies the weaker
condition that zTXz ≥ 0, for every z ∈ RI , then it is positive semi-
definite, which we denote by X ⪰ 0. Equivalently, X is positive
semidefinite if and only if X = YTY for some matrix Y ∈ RJ×I if
and only if all its eigenvalues are non-negative. By I we denote the
square identity matrix of appropriate dimensions.

Let I and J be two non-empty index sets and let σ : I → J be
a function. If v is a J -vector, then we write [v]−σ for the I -vector
defined by [v]−σ (i) = v(σ (i)) for every i ∈ I . The notation extends
to sets S of J -vectors in the natural way: [S]−σ = {[v]−σ : v ∈ S}.
If P is a set of I -vectors andQ is a set of J -vectors, then we say that
P and Q are isomorphic, denoted P � Q , if there exists a bijection
σ : I → J such that P = [Q]−σ .
Vocabularies, structures and logics. A many-sorted (relational)
vocabulary L is a set of sort symbols D1, . . . ,Ds together with a
set of relation symbols R1, . . . ,Rm . Each relation symbol R in the
list has an associated type of the form Di1 × · · · × Dir , where r ≥ 0
is the arity of the symbol, and i1, . . . , ir ∈ [s] are not necessarily
distinct. A structureA of vocabulary L, or an L-structure, is given by
s disjoint sets D1, . . . ,Ds called domains, one for each sort symbol
Di ∈ L, and one relation R ⊆ Di1 × · · · × Dir for each relation
symbol R ∈ L of type Di1 × · · · × Dir . We use D(A) or D to denote
the domain associated to the sort symbolD, and R(A) or R to denote
the relation associated to the relation symbol R. In practice, the
overloading of the notation should never be an issue. The domain
of a sort symbol is also called a sort.

A logic for a many-sorted vocabulary L has an underlying set of
individual variables for each different sort in L. When interpreted on
an L-structure, the variables are supposed to range over the domain
of its sort; i.e., the variables are typed. Besides the equalities x = y
between variables of the same type, the atomic L-formulas are the
formulas of the form R(x1, . . . ,xr ), where R is a relation symbol of
arity r and x1, . . . ,xr are variables of types that match the type of R.
The formulas of first-order logic over L are built from the atomic
formulas by negations, disjunctions, conjunctions, and existential
and universal quantification of individual variables.
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The syntax of Infinitary Logic with Counting C∞ω extends the
syntax of first-order logic by all quantifiers of the form ∃≥ix(φ),
where i is a natural number, and formulas of the form

∨
i ∈I ϕi and∧

i ∈I ϕi where I is a possibly infinite index set, and {ϕi : i ∈ I } is an
indexed set of formulas. The meaning of ∃≥ix(φ) is that there exist
at least i many witnesses a for the variable x within its sort such
that assignment x 7→ a satisfies the formula φ. The fragment Ck

∞ω
of C∞ω is the set of formulas that use at mostk variables of any type.
We write Cω

∞ω for the union of the Ck
∞ω over all natural numbers k .

For the definition of Fixed-Point Logic with Counting FPC see [14].
It is known that for every natural number k , every many-sorted
vocabulary L, and every L-formula φ of FPC that uses k variables,
there exists an L-formula ψ of Ck

∞ω such that φ and ψ define the
same relations over all finite L-structures (see, e.g. [14]).
Interpretations and reductions. Let L andK be twomany-sorted
vocabularies, and let Θ be a class of K-formulas. A Θ-interpretation
of L in K is given by: two Θ-formulas δD (x) and ϵD (x ,y) for each
sort symbol D of L, and one Θ-formula ψR (x1, . . . ,xr ) for each
relation symbol R ∈ L of arity r . In all these formulas, the displayed
x ’s and y’s are tuples of distinct variables of the same length m,
called the arity of the interpretation. We say that the interpretation
takes a K-structure A as input and produces an L-structure B as
output if for each sort symbol D in L there exists a surjective partial
map fD : Am → D(B), where A is the domain of A, such that
f −1
D (D(B)) = {a ∈ Am : A |= δD (a)}, f −1

D ({(b,b) : b ∈ D(B)}) =

{(a,b) ∈ (Am )2 : A |= ϵD (a,b)}, and f −1
R (R(B)) = {(a1, . . . ,ar ) ∈

(Am )r : A |= ψR (a1, . . . ,ar )} where fR = fD1 × . . . × fDr and
D1×· · ·×Dr is the type ofR. The composition of two interpretations,
one of L in K , and another one of K in J , is an interpretation of L
in J defined in the obvious way. Similarly, the composition of an
interpretation of L inK with an L-formula is aK-formula defined in
the obvious way. In all these compositions, the number of variables
in the resulting formulas multiply. For example, the composition
of a Ck

∞ω -interpretation with a Cℓ
∞ω -formula is a Ckℓ

∞ω -formula. A
reduction from a problem to another is an interpretation that takes
(a representation of) an input x for the first problem and produces (a
representation of) an input y for the second problem, in such a way
that (a representation of) a solution for y is also (a representation
of) a solution for x . The reduction is called a Θ-reduction if it can
be produced by a Θ-interpretation.
Numbers, vectors and matrices as structures. We represent
natural numbers, integers and rational numbers as finite relational
structures in the following way. A natural number n ∈ N is rep-
resented by a finite structure, with a domain {0, . . . ,N − 1} of bit
positions where N ≥ ⌊log2(n + 1)⌋, of a vocabulary LN that con-
tains a binary relation symbol ≤ for the natural linear order on the
bit positions, and a unary relation symbol P for the actual bits, i.e.,
the bit positions i that carry a 1-bit in the unique binary represen-
tation of n of length N . Single bits b ∈ {0, 1} are represented as
natural numbers with at least one bit position. Thus LB is really the
same as LN, but we still give it a separate name. Rationals q ∈ Q are
represented by structures of the vocabulary LQ = LB Û∪ LN Û∪ LN,
with a domain {0, . . . ,N − 1} that is large enough to encode both
the numerator and the denominator of q in binary. If q = (−1)bn/d ,
where b ∈ {0, 1} and n,d ∈ N, then the P-relation from LB is
used to encode the sign b in the least significant bit-position, the
P-relation from the first copy of LN is used to encode the bits of
the numerator n, and the P-relation from the second copy of LN is

used to encode the bits of the denominator d . Each ≤ is the natural
linear order on the bit positions. Zero denominator means ±∞.

If I1, . . . , Id denote index sets that are not necessarily pairwise
distinct, then the tensors u ∈ QI1×···×Id are represented by many-
sorted structures, with one sort Ī for each index set I for as many
different index sets as there are in the list I1, . . . , Id , plus one sort B̄
for the bit positions. The vocabulary Lvec,d of these structures
has one unary relation symbol I for each index sort Ī , one binary
relation symbol ≤ for the natural linear order on the bit positions B̄,
and three d + 1-ary relation symbols Ps , Pn and Pd , each of type
Ī1×· · ·× Īd ×B̄, for encoding the signs and the bits of the numerators
and the denominators of the entries of the tensor. Vectors u ∈ QI ,
matrices A ∈ QI×J and square matrices A ∈ QI×I are special cases
of these, and so are indexed sets of vectors {ui : i ∈ K} ⊆ QI and
index sets of matrices {Ai : i ∈ K} ⊆ QI×J . We let Lvec := Lvec,1.

3 Definable Ellipsoid Method
In this section we show that the ellipsoid method can be imple-
mented in FPC for any family of explicitly bounded convex sets.
We begin by defining the problems involved.
Geometric problems and the ellipsoid method. Let C be a
class of convex sets, each of the form K ⊆ RI for some non-empty
index set I . The class C comes with an associated encoding scheme.
We assume that the encoding of a set K ⊆ RI carries within it
enough information to determine the set I . If the encoding also
carries information about a rational R satisfying K ⊆ S(0I ,R), then
we say that K is circumscribed, and we write (K ; I ,R) to refer to it.
We write (K ;n,R) whenever I = [n].

The exact feasibility problem for C takes as input the encoding
of a set K ⊆ RI in C and asks for a bit b ∈ {0, 1} that is 1 if K is
non-empty, and 0 if K is empty. The weak feasibility problem for
C takes as input the encoding of a set K ⊆ RI in C and a rational
ϵ > 0 and asks for a bit b ∈ {0, 1} and a vector x ∈ QI such that:

1. b = 1 and x ∈ S(K , ϵ), or
2. b = 0 and vol(K) ≤ ϵ .

The reason why the exact feasibility problem is formulated as a
decision problem and does not ask for a feasible point is that K
could well be a single point with non-rational components. In the
weak feasibility problem this is not an issue because if K is non-
empty, then the ball S(K , ϵ) surely contains a rational point. The
not-so-weak separation problem for C takes as input the encoding
of a set K ⊆ RI in C , a vector y ∈ QI , and a rational δ > 0 and
asks as output for a bit b ∈ {0, 1} and a vector s ∈ QI such that
| |s | |∞ = 1 and:

1. b = 1 and y ∈ S(K ,δ ), or
2. b = 0 and ⟨s,y⟩ + δ ≥ sup{⟨s,x⟩ : x ∈ K}.

The qualification not-so-weak serves the purpose of distinguishing
the problem from the weak(er) version in which condition 2. is
replaced by the looser requirement that ⟨s,y⟩ + δ ≥ sup{⟨s,x⟩ :
x ∈ S(K ,−δ )}. It turns out that the main procedure of the ellipsoid
method, as stated in the monograph [9] and in Theorem 1 below,
requires the not-so-weak version. Recall that an ellipsoid in RI is
a set of form E(A,a) = {x ∈ RI : (x − a)TA(x − a) ≤ 1}, where
a ∈ RI is the center, and A is an I × I positive definite matrix.

Theorem 1 (Theorem 3.2.1 in [9]). There is an oracle polynomial-
time algorithm, the central-cut ellipsoid method (CC), that solves the
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following problem: Given a rational number ϵ > 0 and a circum-
scribed closed convex set (K ;n,R) given by an oracle that solves the
not-so-weak separation problem for K , outputs one of the following:
either a vector x ∈ S(K , ϵ), or a positive definite matrix A ∈ Qn×n

and a vector a ∈ Qn such that K ⊆ E(A,a) and vol(E(A,a)) ≤ ϵ .

We plan to use algorithm CC from Theorem 1 almost as a black-
box, except for its three aspects stated below. Although they are
not stated in Theorem 3.2.1 in [9], inspection of the proof shows
that they hold: (1) the input to the algorithm is the triple given by ϵ ,
n and R; (2) the rationals ϵ and R are represented in binary, the
natural n is represented in unary; (3) the algorithm makes at least
one oracle query, and the output is determined by the answer to the
last oracle call in the following way: if this last call was (y,δ ) and
the answer was the pair (b, s), then δ ≤ ϵ and the output vector x
of CC is y itself whenever b = 1, and there exists a positive definite
matrix A and a vector a so that K ⊆ E(A,a) and vol(E(A,a)) ≤ ϵ
whenever b = 0. The last point implies, in particular, that CC solves
the weak feasibility problem for the given K . Note also that CC
solves the feasibility problem for K by making oracle calls to the
separation problem for the same K .
Definability of ellipsoid. In our case, since we want to refer to
definability in a logic, the encoding scheme for C will encode each
set K through a finite relational structure, and we will require
it to be invariant under isomorphisms. Such encodings we call
representations. Formally, a representation of C is a surjective partial
map r from the class of all finite L-structures onto C , where L is a
finite vocabulary that contains at least one unary relation symbol I ,
that satisfies the following conditions:

1. if A,B ∈ Dom(r ) and A � B, then r (A) � r (B),
2. if A ∈ Dom(r ), then r (A) ⊆ RI where I = I (A).

A circumscribed representation of C is a surjective partial map r
from the class of all finite L-structures onto C , where L is a finite
vocabulary containing at least one unary relation symbol I as well
as a copy of the vocabulary LQ, that satisfies 1. and 2. above, and:

3. if A ∈ Dom(r ), then r (A) ⊆ S(0I ,R) where R = LQ(A).
A circumscribed representation of C exists only if every K in C is
bounded. For a representation r of C , any of the existing preimages
A ∈ r−1(K) of a set K ∈ C is called a representation of K . If C has a
representation in some vocabulary L, we say that C is a represented
class of sets, and if it has a circumscribed representation, we say
that it is a represented class of circumscribed sets.

If C is a represented class of convex sets and Φ is a class of
formulas, we say that the weak feasibility for C is Φ-definable if
there exists a Φ-interpretation that, given an input represented as a
structure over the vocabulary of the input, produces a valid output
represented also as a structure over the vocabulary of the output.

The following is the main result of this section.

Theorem 2. LetC be a represented class of circumscribed closed con-
vex sets. If the not-so-weak separation problem for C is FPC-definable,
then the weak feasibility problem for C is also FPC-definable.

Although all the main ideas of the proof that we are going to
present were already present in the works [2] and [7], we present
a detailed proof for completeness.

At an intuitive level, the main difficulty for simulating the ellip-
soid method within a logic is that one needs to make sure that the
execution of the algorithm stays canonical; i.e., invariant under the

isomorphisms of the input structure. The principal device to achieve
this is the following clever idea from [2]: instead of running the el-
lipsoid method directly over the given set K ⊆ RI , the algorithm is
run over certain folded versions [K]σ ⊆ Rσ (I ) ofK , where σ (I ) is an
ordered subset of I . If the execution of the ellipsoid does not detect
the difference between K and [K]σ , then an appropriately defined
unfolding of the solution for [K]σ will give the right solution for K .
If, on the contrary, the ellipsoid detects the difference in the form of
a vector u ∈ QI whose folding [u]σ does not unfold appropriately,
then the knowledge of u is exploited in order to refine the current
folding into a strictly larger ordered σ ′(I ) ⊆ I , and the execution
is restarted with the new [K]σ

′

⊆ Rσ
′(I ). After no more than |I |

many refinements the folding will be indistinguishable from K , and
the execution will be correct.

The crux of the argument that makes the procedure definable
in FPC is that the ellipsoid algorithm is always operating over an
ordered set σ (I ). In particular, the algorithm stays canonical, and the
polynomially many steps of its execution are expressible in fixed-
point logic FP by the Immerman-Vardi Theorem. The counting of
FPC is required only for the folding/unfolding/refining steps.

Before we move to the actual proof, we discuss the required
material for the method of foldings.
Folding operations. Let I and J be non-empty index sets. Let
σ : I → J be an onto map. The folding [u]σ of an I -vector u
and the unfolding [v]−σ of a J -vector v are defined by [u]σ (j) :=∑
i ∈σ −1(j) u(i)/|σ

−1(j)| and [v]−σ (i) := v(σ (i)) for every j ∈ J and
every i ∈ I , respectively. For sets K ⊆ RI and L ⊆ RJ , define
[K]σ := {[u]σ : u ∈ K} and [L]−σ := {[v]−σ : v ∈ L}. The map σ
is said to respect a vector u ∈ RI if ui = ui′ whenever σ (i) = σ (i ′).
The following lemma collects a few important properties of foldings.
See Propositions 17 and 18 in [7] in which properties (4) and (5)
from the lemma are also proved for all sets but stated only for
convex sets.

Lemma 3. Let σ : I → J be an onto map, let u and v be I -vectors,
and letK be a set of I -vectors. Then the following hold: (1) [au+bv]σ =
a[u]σ +b[v]σ for everya,b ∈ R, (2) ∥[u]σ ∥2 ≤ ∥u∥2, (3)K ⊆ S(0I ,R)
implies [K]σ ⊆ S(0J ,R), (4) u ∈ S(K ,δ ) implies [u]σ ∈ S([K]σ ,δ ),
(5) if σ respects u, then ⟨u,v⟩ + δ ≥ sup{⟨u,x⟩ : x ∈ K} implies
⟨[u]σ , [v]σ ⟩ +δ ≥ sup{⟨[u]σ ,x⟩ : x ∈ [K]σ }, and (6) if K is convex,
then [K]σ is convex.

There is one further important property of foldings that we
will need. We extend the definition of the set E(A,a) to arbitrary
positive semidefinite matrices A. It should be noted that if A is
positive semidefinite but not positive definite, then at least one of
the semi-axes of E(A,a) is infinite and hence the set is unbounded.
In this case we call E(A,a) an unbounded ellipsoid.

Lemma 4. LetK ⊆ RI be a set, let σ : I → J be an onto map, and let
R ∈ RJ×I and L ∈ RI×J be the matrices that define the linear maps
u 7→ [u]σ and v 7→ [v]−σ , respectively. If there is a positive definite
matrix A ∈ RJ×J and a vector a ∈ RJ such that [K]σ ⊆ E(A,a),
then K ⊆ E(RTAR,La). Moreover, for every ϵ > 0 and r > 0, if
vol(E(A,a)) ≤ ϵ , then vol(E(RTAR,La) ∩ S(0I , r )) ≤ 2nrn−1nkϵ1/k ,
where n = |I | and k = |J | ≥ 1.

From now on, all maps σ : I → J will be onto and have J = [k]
for some positive integer k . Such maps define a preorder ≤σ on I
with exactly k equivalence classes, defined by i ≤σ i ′ if and only
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if σ (i) ≤ σ (i ′). A second map σ ′ : I → [k ′] is a refinement of
σ if σ ′(i) ≤ σ ′(i ′) implies σ (i) ≤ σ (i ′). The refinement is proper
if there exist i, i ′ ∈ I such that σ ′(i) < σ ′(i ′) and σ (i) = σ (i ′).
Recall that σ : I → [k] respects a vector v ∈ RI if v(i) = v(i ′)
whenever σ (i) = σ (i ′). Since any bijective map respects any vector,
observe that if σ does not respect v , then there exists a least one
proper refinement of σ that does respect v . Moreover, a coarsest
proper refinement that respects v is FPC-definable by counting
the number of distinct coordinates in each equivalence class, and
splitting accordingly. We write σv for this FPC-definable proper
refinement of σ . The next lemma collects a few computation tasks
about foldings.

Lemma 5. The following have FPC-interpretations: given I , an onto
σ : I → [k], u ∈ QI and v ∈ Qk , output [u]σ , [v]−σ , σu : I → [k ′],
and b = 1 if σ respects u, and b = 0 otherwise.

Proof of Theorem 2. Let Ψ be an FPC-interpretation that wit-
nesses that the not-so-weak separation problem for C is FPC-
definable. We start by showing that there is an FPC-interpretation
Ψ′ that takes as input a representation of a set K ⊆ RI in C , an
onto mapping σ : I → [k] where k is an integer that satisfies
1 ≤ k ≤ |I |, a vector y ∈ Qk , and a rational δ > 0 and outputs an
integer b ∈ {−1, 0, 1} and a vector s ∈ QI such that ∥s∥∞ = 1 and
one of these holds:

1. b = 1, σ respects s , [y]−σ ∈ S(K ,δ ) and y ∈ S([K]σ ,δ ),
2. b = 0, σ respects s , ⟨[s]σ ,y⟩+δ ≥ sup{⟨[s]σ ,x⟩ : x ∈ [K]σ },
3. b = −1, σ does not respect s .

Concretely, let Ψ′ be the interpretation that, given a representation
of K ⊆ RI in C , an onto σ : I → [k], a y ∈ Qk and a rational δ > 0,
does the following:
01. given K , σ , y and δ as specified,
02. compute y− := [y]−σ and (b, s) := Ψ(K ;y−,δ ),
03. if σ respects s , output the same (b, s),
04. if σ does not respect s , output (−1, s).

The claim that Ψ′ is FPC-definable follows from Lemma 5. The
claim that Ψ′ satisfies the required conditions follows from the
correctness of Ψ, together with the fact that [[y]−σ ]σ = y, and
properties (4) and (5) in Lemma 3. For later use, let us note that if
the given σ : I → [k] is a bijection, then the third type of output
b = −1 cannot occur.

Next we show how to use Ψ′ in order to implement, in FPC, the
algorithm CC from Theorem 1. Consider the following variant CC’
of CC:
01. given a rational ϵ > 0 and a representation of K ⊆ RI ,
02. compute R with K ⊆ S(0,R) from the representation of K ,
03. n := |I |, k := 1, and σ := 1I : I → [1] (the constant 1 map),
04. start CC on (γ ,k,R) with γ := min{(ϵ/(2nRn−1nk))k , ϵ},
05. given a query (y,δ ), replace it by (b, s) := Ψ′(K ;σ ,y,δ ),
06. if σ respects s , then
07. compute [s]σ , take (b, [s]σ ) as valid answer to (y,δ ),
08. if the run of CC makes a new query (y,δ ), goto 05,
09. if the run of CC makes no more queries, goto 13,
10. else
11. compute the canonical refinement σ s : I → [k ′],
12. abort this run and goto 04 with σ := σ s and k := k ′,
13. let (b, s) be the output of Ψ′ for the last oracle call (y,δ ),
14. output (b, [y]−σ ).

A key aspect of CC that makes this algorithm well-defined is that,
for steps 04, 05, 08 and 09, the only knowledge that the algorithm
needs about the targeted set [K]σ are its dimension k , its bound-
ing radius R, and correct answers to earlier queries (see point 1.
immediately following the statement of Theorem 1). In particular,
the algorithm will be well-defined even if the class C is not closed
under foldings, as long as the gathered knowledge about the alleged
[K]σ remains consistent with the assumption that the convex set
given by the oracle is [K]σ . Note that properties (2), (4), and (5) in
Lemma 3 guarantee so, as long as all s-vectors are respected by σ .
As soon as this is detected to not be the case, σ is refined, and the
run of CC is restarted with the new k for the new σ .

After no more than |I | many refinements of σ , the simulation of
the run of CC will be executed until the end. Indeed, this happens
at latest once σ becomes the totally refined map because at that
point σ is a bijection that surely respects every s . Whenever the
run is executed until the end, the algorithm reaches step 13 with
a pair (b, s) and a σ that respects s . We use this to show that CC’
solves the weak feasibility problem for C .

The claim that CC’ solves the weak feasibility problem for C is
proved as follows. Let (b, s) be the output ofΨ′ for the last oracle call
(y,δ ) of the execution of CC. As noted above, σ : I → [k] respects s
and hence b ∈ {0, 1} by Property 3 in the description of Ψ′. If b = 1,
then [y]−σ ∈ S(K ,δ ) by Property 1 in the description of Ψ′, and
S(K ,δ ) ⊆ S(K , ϵ) because δ ≤ γ ≤ ϵ . This shows that (b, [y]−σ ) is a
correct output for the weak feasibility problem for ϵ and K in case
b = 1. In case b = 0 we have [K]σ ⊆ E(A,a) for a positive definite
matrix A and a vector a, with vol(E(A,a)) ≤ γ ≤ (ϵ/(2nRn−1nk))k ,
by point 3. immediately following the statement of Theorem 1.
Since K ⊆ S(0,R), by Lemma 4 this means that the volume of K is
at most ϵ and the answer b = 0 is a correct output.

For the implementation in FPC, we note that CC’ is a relational
WHILE algorithm that halts after at most |I | iterations all whose
steps can be computed through FPC-interpretations without quo-
tients. Step 01 is the description of the input. Step 02 follows from
the fact that K has a circumsbribed representation: just take the
LQ-reduct of the representation ofK , where LQ is the copy of the vo-
cabulary that is used for representing the rational radius R. Step 03
follows from Lemma 5. Step 04 follows from the Immerman-Vardi
Theorem on the fact that the representation of [k] is an ordered
structure and the computation of CC in between oracle calls runs in
polynomial time. Step 05 is just a control statement. Step 06 follows
from Lemma 5. Step 07 follows from Lemma 5 and the fact that σ re-
spects s . Step 08 follows, again, from the Immerman-Vardi Theorem
on the fact that the representation of [k] is an ordered structure and
the computation of CC in between oracle calls runs in polynomial
time. Step 09 follows from the same reason as Step 08. Step 10 is a
control statement. Step 11 follows from Lemma 5. Step 12 and 13
are just control statements. Step 14 follows from Lemma 5.

4 Feasibility of SDPs
In this section we use Theorem 2 to show that the exact feasibility
of semidefinite programs is definable in Cω

∞ω .

Semidefinite sets. A semidefinite set KA,b ⊆ RI is the set of ma-
trices X ∈ RJ×J that satisfy

⟨Ai ,X ⟩ ≤ bi for i ∈ M and X ⪰ 0, (1)
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where A ∈ RM×(J×J ) is an indexed set of J × J matrices, b ∈ RM

is an indexed set of reals, X is a J × J symmetric matrix of formal
variables xi j = x ji = x {i, j } for i, j ∈ J , and I = {{i, j} : i, j ∈ J }
is the set of variable indices. A circumscribed semidefinite set is
a pair (KA,b ⊆ RI ,R), where KA,b ⊆ RI is a semidefinite set as
defined above and R is a rational satisfying KA,b ⊆ S(0I ,R). By
CSDP and CC

SDP we denote the class of semidefinite sets and the
class of circumscribed semidefinite sets, respectively.

When A and b have rational coefficients, the semidefinite set
KA,b ⊆ RI is represented by a four-sorted structure, with one
sort Ī for the set I of indices of variables, two sorts J̄ and M̄ for
the index sets J andM , and one sort B̄ for a domain {0, . . . ,N − 1}
of bit positions that is large enough to encode all the numbers
in binary. The vocabulary LSDP includes the following relation
symbols: three unary symbols I , J andM , for Ī , J̄ and M̄ , respectively,
one ternary symbol P of type Ī × J̄ × J̄ that indicates the two indices
of each variable, one binary symbol ≤ for the natural linear order
on B̄, three 4-ary symbols PA,s , PA,n , PA,d for the set of matrices
{Ai : i ∈ M}, three binary symbols Pb,s , Pb,n , Pb,d for the set of
rationals {bi : i ∈ M}. The representation of the circumscribed
semidefinite set (KA,b ∈ RI ,R) is a structure over the vocabulary
LSDP Û∪ LQ whose LSDP-reduct is the representation of KA,b ∈ RI ,
and whose LQ-reduct is the representation of R.

In [7] Dawar and Wang show the following:

Theorem 6 ([7]). The weak feasibility problem for circumscribed
semidefinite sets is FPC-definable.

In order to do so they prove Theorem 2 for the special case of
semidefinite sets and propose an FPC-interpretation for the not-so-
weak separation oracle. For completeness, in the full version we
work out the details of a variant of their construction, indicating
the precise place where our procedures differ, and why.
Exact feasibility.We use Theorem 6 to prove the main result of
this section:

Theorem 7. The exact feasibility problem for semidefinite sets is
Cω
∞ω -definable.

We begin by relating the exact feasibility to the weak feasibility
problem for circumscribed semidefinite sets. For any R > 0, the
R-restriction of a semidefinite set KA,b is the set of all those points
in KA,b whose L∞-norm is bounded by R, i.e:

⟨Ai ,X ⟩ ≤ bi for i ∈ M |X {i, j } | ≤ R for i, j ∈ J and X ⪰ 0.

For any ϵ > 0, the ϵ-relaxation of a semidefinite set KA,b is the
semidefinite set given by:

⟨Ai ,X ⟩ ≤ bi + ϵ for i ∈ M and X ⪰ 0,

The question of emptiness for ϵ-relaxations of R-restrictions
of semidefinite sets is linked to the problem under consideration.
Recall the Cantor Intersection Theorem: If K1 ⊇ K2 ⊇ · · · is a de-
creasing nested sequence of non-empty compact subsets ofRn , then
the intersection

⋂
i≥1 Ki is non-empty. We use it for the following

lemma.

Lemma 8. A semidefinite set KA,b is non-empty if and only if there
exists a positive rational R such that for every positive rational ϵ it
holds that the ϵ-relaxation of the R-restriction of KA,b is non-empty.

It follows from Theorem 6 that the emptiness problem for ϵ-
relaxations of R-restrictions of semidefinite sets is definable in FPC
in the following sense.

Proposition 1. There exists a formulaψ of FPC such that if A is a
structure representing a semidefinite set KA,b ⊆ RI and two positive
rational numbers R and ϵ , then: if A |= ψ , the ϵ-relaxation of the
R-restriction of KA,b is non-empty, and if A ̸ |= ψ , the R-restriction of
KA,b is empty.

Proof. Let Φ be an FPC-interpretation that witnesses that the weak
feasibility problem for the class of circumscribed semidefinite sets
is FPC-definable. The formulaψ takes as input the representation
of a semidefinite set KA,b ⊆ RI , a rational ϵ > 0 and a rational
R > 0, and does the following:

01. given KA,b ⊆ RI , ϵ and R as specified,
02. compute k := |I |,
03. compute R′ := ⌈

√
k(R + ϵ)2⌉,

04. compute K , the ϵ-relaxation of the R-restriction of KA,b ,
05. computem := max {∥Ai ∥2 : i ∈ M} ∪ {1},
06. compute δ = ϵk/(k!(2km)k ),
07. compute (b,x) := Φ((K ,R′),δ ),
08. if b = 1 output ⊤,
09. if b = 0 output ⊥.

This procedure is clearly FPC-definable. In order to prove correct-
ness we will need the following lemma.

Lemma 9. Let A ∈ RM×(J×J ), b ∈ RM , I = {{i, j} : i, j ∈ J }, k =
|I |, and m = max {∥Ai ∥2 : i ∈ M} ∪ {1}. For any ϵ > 0, if the
semidefinite set KA,b ∈ RI is non-empty, then its ϵ-relaxation has
volume greater than δ = ϵk/(k!(2km)k ).

Proof. Take ϵ1 = ϵ/2km and let Y ∈ KA,b . We show that S(Y +
ϵ1I, ϵ1) is included in the ϵ-relaxation of KA,b . It follows that the
volume of the ϵ-relaxation of KA,b is at least ϵk1Vk , whereVk is the
volume of a 1-ball in the k-dimensional real vector space. Since
Vk > 1/k! this finishes the proof. □

We are ready to conclude the proof. Observe that the L∞-norm
of any point that belongs to the ϵ-relaxation of the R-restriction
of a semidefinite set is bounded by R + ϵ , therefore the pair (K ,R′)

computed in Steps 03 and 04 is a representation of a circumscribed
semidefinite set. Let (b,x) be the pair computed in Step 07.

If b = 1 then there exists a point in S(K ,δ ), which in particular
means that K is non-empty, so the output in Step 08 is correct.
If b = 0, then we know that the volume of K is at most δ . The
inequalities that define K have the form ⟨Ai ,X ⟩ ≤ bi + ϵ for i ∈ M ,
and X {i, j } ≤ R + ϵ or −X {i, j } ≤ R + ϵ for i, j ∈ J . The maximum 2-
norm of the normals of these inequalities and 1 ism = max {∥Ai ∥2 :
i ∈ M} ∪ {1}, so Lemma 9 applies. This means that K is empty, and
the output in Step 09 is correct. □

To finish the proof of Theorem 7 we show a technical lemma that
may sound a bit surprising at first: it sounds as if it was stating that
Ck
∞ω -definability is closed under second-order quantification over

unbounded domains, which cannot be true. However, on closer
look, the lemma states this only if the vocabularies of the quantified
and the body parts of the formula are totally disjoint. In particular,
this means that the domains of the sorts in the quantified and body
parts of the formula stay unrelated except through the counting
mechanism of Ck

∞ω .
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IfA is a class of L∪K-structures andB is a class ofK-structures,
we use the notation ∃B · A to denote the class of all finite L-
structures A for which there exists a structure B ∈ B such that
A Û∪ B ∈ A . Similarly, we use ∀B · A to denote the class of all
finite L-structures A such that for all structures B ∈ B we have
that A Û∪ B ∈ A .

Lemma 10. Let L and K be many-sorted vocabularies with disjoint
sorts, let A be a class of finite L ∪ K-structures, and let B be a
class of finite K-structures. If A is Ck

∞ω -definable, then the classes of
L-structures ∃B · A and ∀B · A are also Ck

∞ω -definable.

Proof. The proof is a simple Booleanization trick to replace the finite
quantifiers ∃≥i over the sorts in K by finite propositional formulas,
followed by replacing ∃B and ∀B by infinite disjunctions and
conjunctions, respectively, indexed by the structures in B. □

Proof of Theorem 7. Let ψ be the LSDP Û∪ LQ Û∪ LQ-formula of FPC
defined in Proposition 1. Let l be the number of variables inψ . By
the translation from l-variable FPC to Cl

∞ω (see Section 2), there
exists an LSDP Û∪ LQ Û∪ LQ-formula τ of Cl

∞ω defining the same
class A of finite structures. The vocabulary of A has disjoint
sorts. Let BR and Bϵ be classes of finite structures which are
representations of positive rational numbers over the first and
second copy of LQ, respectively. By Lemma 10 the class ∀Bϵ · A ,
and hence ∃BR · ∀Bϵ · A , is also Cl

∞ω -definable. Let ϕ be the
LSDP-formula of Cl

∞ω defining this last class. Lemma 8 implies that
ϕ defines the exact feasibility problem for semidefinite sets. □

5 SOS Proofs and Lasserre Hierarchy
In this section we develop the descriptive complexity of the problem
of deciding the existence of Sums-of-Squares proofs. Along the way
we discuss the relationship between the Lasserre hierarchy of SDP
relaxations and SOS, and how 0/1-valued variables ensure strong
duality. We use the strong duality to argue the equivalence between
the existence of SOS refutations and the existence of a notion of
SOS approximate refutations that we introduce.
Descriptive Complexity of SOS Proofs. Let x1, . . . ,xn be a set
of variables. In the following when we talk about polynomials
or monomials we mean polynomials and monomials over the set
of variables x1, . . . ,xn and real or rational coefficients. For a set
Q = {q1, . . . ,qk } of polynomials and a polynomial q, a Sums-of-
Squares proof of q ≥ 0 from Q is an identity:∑

j ∈[m] pjsj = q, (2)

where, for every j ∈ [m], the polynomial sj is a sum of squares of
polynomials, and the polynomial pj is either in Q or in the set Bn
defined as follows:

1, xi , 1 − xi , x2
i − xi , xi − x2

i , for every i ∈ [n]. (3)

We refer to the inequalities p ≥ 0 for p ∈ Bn as Boolean axioms. The
degree of the proof is defined as max{deg(pjsj ) : j ∈ [m]}, where,
for a polynomial p, the notation deg(p) denotes the degree of p.

One should think about the set of polynomials Q as represent-
ing a system of polynomial inequalities {qi ≥ 0 : i ∈ [k]}. The
identity (2) implies that any 0/1-solution to this system satisfies
also the inequality q ≥ 0. Therefore, if q = −1, a proof certifies that
the system {qi ≥ 0 : i ∈ [k]} has no 0/1-solutions. This is why we
call it a refutation of Q . Sometimes we allow the system to include

equations qi = 0, which we think of as the set of two inequalities
qi ≥ 0 and −qi ≥ 0, i.e., {qi ,−qi } ⊆ Q .

We consider the problem of deciding the existence of SOS proofs
and refutations of a fixed degree 2d for a set of polynomials given as
input. The first easy observation is that the proof-existence problem
can be reduced to the exact feasibility problem for semidefinite sets,
and the reduction can be done in FPC. Then we ask whether the
exactness condition in the feasibility problem for semidefinite sets
can be relaxed, and we achieve this for refutations. In other words:

1. Proof-existence reduces in FPC to exact SDP feasibility.
2. Refutation-existence reduces in FPC to weak SDP feasibility.

We note that, in both cases, the semidefinite sets in the outcome of
this reduction are not circumbscribed. As stated, point 1. above is
almost a reformulation of the problem. In order to prove point 2.
we develop a notion of approximate refutation, and combine it with
a strong duality theorem that characterizes the existence of SOS
refutations in terms of so-called pseudoexpectations. We note that
the strong duality theorem that we need relies on the assumption
that the Boolean axioms are allowed for free in the definition of
SOS. Finally, we combine these FPC reductions with the results of
the previous section in order to get the following:

Corollary 1. For every fixed positive integer d , the problems of de-
ciding the existence of SOS proofs of degree 2d , and SOS refutations
of degree 2d , are Cω

∞ω -definable. Moreover, there exists a constant c ,
independent of d , such that the defining formulas are in Ccd

∞ω .

As usual with descriptive complexity results like these, we need
to fix an encoding of the input as finite relational structures. In this
case the inputs are indexed sets of polynomials. The exact choice
of encoding is not essential, but we propose one for concreteness.

Let I be an index set and let {xi : i ∈ I } be a set of formal vari-
ables. Amonomial is a product of variables. We use the notation xα ,
where α ∈ NI , to denote the monomial that has degree αi on vari-
able xi . We write |α | for the degree

∑
i ∈I αi of the monomial xα . A

polynomial
∑
α cαx

α is a finite linear combination of monomials,
i.e. all but finitely many of the coefficients cα are zero. A polyno-
mial p with rational coefficients is represented by a three-sorted
structure, with a sort Ī for the index set I , a second sort M̄ for the
finite set of monomials that have non-zero coefficient in p, and a
third sort B̄ for a domain {0, . . . ,N − 1} of bit positions, where N is
large enough to encode all the coefficients of p and all the degrees
of its monomials in binary. The vocabulary Lpol of this structure
has one unary relation symbol I for Ī , one binary relation symbol ≤
for the natural linear order on B̄, three binary relations symbols Ps ,
Pn , and Pd of type M̄ × B̄ that encode, for each monomial, the sign,
the bits of the numerator, and the bits of the denominator of its
coefficient, respectively, and a ternary relation symbol D of type
M̄ × Ī × B̄ that encodes, for each monomial and each variable, the
bits of the degree of this variable in the monomial.
Lasserre hierarchy. For a set of polynomials {q0,q1, . . . ,qk }, by
POP(q0; {q1, . . . ,qk })we denote the polynomial optimisation prob-
lem :

(POP) : inf x q0 s.t. qi ≥ 0 for i ∈ [k], (4)
Take d > 0. By Md we denote the matrix indexed by mono-

mials of degree at most d over the variables x1, . . . ,xn where
(Md )α,β = xα+β . For every monomial xα , we introduce a vari-
able yα and byMd (y) we denote the corresponding matrix of vari-
ables, i.e., (Md (y))α,β = yα+β . More generally, for any polynomial
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q =
∑
γ cγ x

γ , the matrix Mq,d , indexed by monomials of degree
at most d , is defined by Mq,d = qMd , i.e., (Mq,d )α,β = qxα+β .
The corresponding matrix Mq,d (y) is defined by (Mq,d (y))α,β =∑
γ cγyα+β+γ . Observe that the entries of the matrix Mq,d are

polynomials of degree at most 2d + degq, while the entries of the
matrixMq,d (y) are the corresponding linear combinations of vari-
ables. Note also that M1,d = Md and M1,d (y) = Md (y). For every
variable yα , consider the coefficients of yα in the matrixMq,d (y).
Those coefficients form a matrix which we denote by Aq,d,α . For-
mally, for |α | ≤ 2d + degq, the matrices Aq,d,α are defined as the
real matrices satisfying Mq,d (y) =

∑
α yαAq,d,α or equivalently

Mq,d =
∑
α xαAq,d,α . Finally, for any polynomial q, by dq we

denote the biggest integer satisfying 2dq + degq ≤ 2d .
Let Q be a set of polynomials. For any positive integer d , the

Lasserre SDP relaxation of the polynomial optimisation problem
POP(

∑
α aαx

α ;Q) of order d is the pair of semidefinite programs
(Pd ,Dd ), where Pd is the primal semidefinite program:

inf y
∑
α aαyα

y∅ = 1
Mq,dq (y) ⪰ 0, for every q ∈ Q

(5)

and Dd is the dual semidefinite program:

sup z,Z z∑
q∈Q ⟨Aq,dq, ∅,Zq⟩ = a∅ − z∑
q∈Q ⟨Aq,dq,α ,Zq⟩ = aα , for 1 ≤ |α | ≤ 2d

Zq ⪰ 0, for every q ∈ Q

(6)

Weak SDP duality implies that the optimal value of Pd is always
greater or equal to the optimal value of Dd . In [10] the authors
establish a condition which guarantees strong duality for primal
and dual SDP problems in the Lasserre hierarchy.

Theorem 11 ([10]). If POP(q0;Q) is a polynomial optimisation
problem where one of the inequalities describing the feasibility region
is R2 −

∑
i ∈[n] x

2
i ≥ 0, then for every positive integer d , the optimal

values of Pd and Dd are equal.

The polynomial optimisation problem POP(q0;Q) is called en-
circled if a polynomial R2 −

∑
i ∈[n] x

2
i can be obtained as a positive

linear combination of polynomials from Q of degree at most 2.
The following lemma implies strong duality for primal and dual
SDP problems in the Lasserre hierarchy for encircled polynomial
optimisation problems.

Lemma 12. Let Q be a set of polynomials and let p =
∑
q∈Q cqq

be a positive linear combination of polynomials from Q , such that
degp = max{degq : cq > 0}. For some polynomial q0, let (Pd ,Dd )

and (P ′d ,D
′
d ) be the order d Lasserre SDP relaxations of POP(q0;Q)

and POP(q0;Q ∪ {p}), respectively. The optimal values of Pd and P ′d ,
as well as the optimal values of Dd and D ′

d are equal.

SOS proofs as semidefinite sets. Fix a set of polynomialsQ and a
further polynomial p =

∑
α aαx

α . Let Q̄ = Q ∪ Bn . A polynomial s
of degree at most 2t is a sum of squares if and only if there exists a
positive semidefinite matrix Z indexed by monomials of degree at
most t such that s = ⟨Mt ,Z ⟩. Therefore, there exists a degree-2d
SOS proof of the polynomial inequality p ≥ 0 from Q if and only
if, for every q ∈ Q̄ , there exists a positive semidefinite matrix Zq

indexed by monomials of degree at most dq such that∑
q∈Q̄ q⟨Mdq ,Zq⟩ =

∑
q∈Q̄ ⟨Mq,dq ,Zq⟩ =

=
∑
q∈Q̄ ⟨

∑
α xαAq,dq,α ,Zq⟩ =

=
∑
α xα

∑
q∈Q̄ ⟨Aq,dq,α ,Zq⟩ =

∑
α aαx

α .

(7)

Observe that the existence of a set of positive semidefinite ma-
trices {Zq : q ∈ Q̄} satisfying the identity (7) is exactly the same as
non-emptiness of the semidefinite set Kd (Q,p) ⊆ RId given by:∑

q∈Q̄ ⟨Aq,dq,α ,Zq⟩ = aα for |α | ≤ 2d and X ⪰ 0, (8)

where Jd = {(q,xα ) : q ∈ Q̄, |α | ≤ dq } is a set of indices,X is a Jd ×
Jd symmetric matrix of formal variables, Id = {{(q,xα ), (q′,xα

′

)} :
(q,xα ), (q′,xα

′

) ∈ Jd } is a set of variable indices, and for every
q ∈ Q̄ , the matrix Zq is the principal submatrix of X corresponding
to the rows and columns indexed by {(q,xα ) : |α | ≤ dq }.

Indeed, from every feasible point X ∈ Kd (Q,p) we get a set of
positive semidefinite matrices {Zq : q ∈ Q̄} satisfying the iden-
tity (7) by setting Zq be the principal submatrix ofX corresponding
to the rows and columns indexed by {(q,xα ) : |α | ≤ dq }. On the
other hand, any set of positive semidefinite matrices {Zq : q ∈ Q̄}

satisfying the identity (7) can be extended to a point in Kd (Q,p) by
setting all remaining variables to 0.

The representation of the semidefinite set Kd (Q,p) can be easily
obtained from the representation of the set of polynomials Q and
the polynomial p by means of FPC-interpretations:

Fact 1. For every positive integer d , there is an FPC-interpretation
that takes a set of polynomials Q and a polynomial p as input and
outputs a representation of the semidefinite set Kd (Q,p). Moreover,
there exists a constant c , independent of d , such that the formulas in
the FPC interpretation have at most cd variables.

Therefore, as a consequence of Theorem 7 we obtain Corollary 1.

Proof of Corollary 1. Let us fix a positive integer d and let Φ be
the FPC-interpretation from Fact 1. We compose Φ with the Cω

∞ω -
sentence from Theorem 7 that decides the exact feasibility of semi-
definite sets. The resulting sentenceψ decides the existence of an
SOS proof of degree 2d . It is a sentence of Ck

∞ω , where k = cd , for
an integer c that is independent of d . A Cω

∞ω -sentence deciding the
existence of an SOS refutation of degree 2d is obtained analogously
by starting with an FPC-interpretation which takes as input a set
of polynomials Q and outputs the semidefinite set Kd (Q,−1). □

Approximate SOS refutations. For any ϵ > 0, an ϵ-approximate
degree-2d SOS refutation of a set of polynomials Q is an identity:∑

q∈Q̄ qsq =
∑
α aαx

α , (9)

where for every q ∈ Q̄ , the polynomial sq is a sum of squares, for
each α of degree at least 1, we have |aα | ≤ ϵ , and |1 + a∅ | ≤ ϵ .
The same way as the degree-2d SOS refutations correspond to the
points in Kd (Q,−1), the ϵ-approximate degree-2d SOS refutations
correspond to the points in the ϵ-relaxation of Kd (Q,−1).

We relate the existence of SOS refutations to primal and dual
problems in the Lasserre hierarchy for the problem POP(0; Q̄). The
goal is to use strong duality for showing that, for small enough ϵ de-
pending on the degree and the number of variables, the existence of
SOS refutations is equivalent to the existence of ϵ-approximate ones.
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It follows that the problem of deciding the existence of SOS refuta-
tions of a fixed degree reduces, by means of FPC-interpretations,
to the weak feasibility problem for semidefinite sets.

For any set of polynomials Q , the polynomial optimisation prob-
lem POP(0; Q̄) will be denoted by SOL(Q):

(SOL(Q)) : inf x 0 s.t. q ≥ 0 for q ∈ Q̄ . (10)

Clearly, the problem SOL(Q) is feasible if and only if the system of
polynomial inequalities {q ≥ 0 : q ∈ Q} has a 0/1-solution.

For a positive integer d , by (Pd (Q),Dd (Q)) we denote Lasserre
SDP relaxation of the polynomial optimisation problem SOL(Q) of
order d . Observe that degree-2d SOS refutations of Q correspond
precisely to the feasible solutions to Dd (Q) with value 1 (see iden-
tity (7)). The following lemma summarizes the relationship between
degree-2d SOS refutations ofQ and solutions to the programDd (Q).
The second equivalence follows from the fact that by multiplying
a solution to Dd (Q) with value v by any p ≥ 0 we obtain another
solution with value pv .

Lemma 13. There exists an SOS refutation of Q of degree 2d if and
only if Dd (Q) has a solution with value 1 if and only if the optimal
value of Dd (Q) is +∞.

For a system of polynomials Q , a pseudoexpectation for Q of
degree 2d is a linear mapping F from the set of polynomials of
degree at most 2d over the set of variables x1, . . . ,xn to the reals
such that F (1) = 1, and for every q ∈ Q̄ and every sum of squares
polynomial s of degree at most 2dq , we have F (qs) ≥ 0.

A linear mapping from the set of polynomials of degree at
most 2d to the reals is uniquely defined by its restriction to mono-
mials. Therefore, there is a natural one-to-one correspondence
between linear functions from the set of polynomials of degree
at most 2d to the reals and assignments to the set of variables
{yα : |α | ≤ 2d} of the program Pd (Q), given by G(yα ) = F (xα ). It
is easy to see that an assignment G to the variables of Pd (Q) is a
feasible solution if and only if F is a pseudoexpectation of degree 2d .

Lemma 14. There exists a degree-2d pseudoexpectation for Q if and
only if the program Pd (Q) is feasible.

By summing the inequalities 1−x1 ≥ 0, . . . , 1−xn ≥ 0, together
with x1 − x2

1 ≥ 0, . . . ,xn − x2
n ≥ 0 one obtains n −

∑
i ∈[n] x

2 ≥ 0,
which witnesses the fact that the problem SOL(Q) is encircled.
Hence, by Lemma 12 for the problem SOL(Q) there is no duality
gap between primal and dual SDP problems in the Lasserre hierar-
chy and the optimal value of Dd (Q) is +∞ if and only if Pd (Q) is
infeasible. As a consequence of Lemmas 13 and 14 we get:

Corollary 2. There exists an SOS refutation ofQ of degree 2d if and
only if there is no pseudoexpectation for Q of degree 2d .

Suppose that Q has no degree-2d SOS refutation. By strong du-
ality this implies the existence of a degree-2d pseudoexpectation.
This in turn, as we will show now, precludes even the existence
of ϵ-approximate refutations, for small enough ϵ . The key is the
following lemma.

Lemma 15. If F is a degree-2d pseudoexpectation for Q , then 0 ≤

F (m) ≤ 1 for every monomial m of degree at most d , and −1 ≤

F (m) ≤ 1 for every monomialm of degree at most 2d .

Proof. First we show that ifm is a monomial of degree at most 2d
and m̄ denotes its multilinearization, then F (m̄) = F (m). We do

this by showing that F (x2m) = F (xm) for every variable x and
every monomialm of degree at most 2d − 2. Fix such a monomialm
and let r and s be monomials of degree at most d − 1 such that
m = rs . Note that m = p2 − q2 where p = (r + s)/2 and q =
(r −s)/2, and both p2 and q2 have degree at most 2d−2. It holds that
F ((x2−x)m) = F ((x2−x)p2)+F ((x−x2)q2) ≥ 0 and F ((x2−x)m) =

−F ((x2 − x)q2) − F ((x − x2)p2) ≤ 0. This shows F ((x2 − x)m) = 0
and hence F (x2m) = F (xm).

We show that 0 ≤ F (m) ≤ 1 for everym of degree at most d .
By the previous paragraph we have F (m) = F (m2), and F (m2) ≥ 0,
sincem2 is a square of degree at most 2d . The other inequality is
shown by induction on the degree. For the empty monomial 1 we
have F (1) = 1. Now letm be a monomial of degree at mostd−1 such
that F (m) ≤ 1 and let x be a variable. It holds that F (m) − F (xm) =

F ((1 − x)m) = F ((1 − x)m2) ≥ 0, so F (xm) ≤ F (m) ≤ 1.
Finally, let m be a monomial of degree at most 2d and let r

and s be monomials of degree at most d such that m = rs . We
have F (r2) + 2F (rs) + F (s2) = F ((r + s)2) ≥ 0. Therefore, 2F (rs) ≥
−F (r2)−F (s2) ≥ −2, so F (m) ≥ −1. Similarly F (r2)−2F (rs)+F (s2) =
F ((r −s)2) ≥ 0. Hence, 2F (rs) ≤ F (r2)+F (s2) ≤ 2, so F (m) ≤ 1. □

The number of monomials of degree at most 2d over the set of
n variables is

(n+2d
2d

)
. Let ϵn,d = 1/(3

(n+2d
2d

)
). We are now ready to

show that the existence of a degree-2d SOS refutation of a system
of polynomial inequalities with n variables is equivalent to the
existence of an ϵn,d -approximate such refutation.

Proposition 2. Let Q be a set of polynomials with at most n vari-
ables. The set Q has an SOS refutation of degree 2d if and only if it
has an ϵn,d -approximate SOS refutation of degree 2d .

Proof. The left-to-right implication is clear. Now assume that Q
has no SOS refutation of degree 2d . Therefore, by Corollary 2 there
exists a pseudoexpectation of degree 2d . Let us denote it by F . Sup-
pose that Q has an ϵn,d -approximate SOS refutation of degree 2d ,
i.e., there exists a set of sum of squares polynomials {sq : q ∈ Q̄}

such that
∑
q∈Q̄ qsq =

∑
α aαx

α , where for each α of degree at
least 1, we have |aα | ≤ ϵn,d , and |1 + a∅ | ≤ ϵn,d .

Now, observe that F
(∑

q∈Q̄ qsq
)
=

∑
q∈Q̄ F (qsq ) ≥ 0, while

F (
∑
α aαx

α ) = a∅ +
∑
α,∅ aα F (x

α ) ≤ −1 + ϵn,d +
(n+2d

2d
)
ϵn,d ,

which is at most − 1
3 . Obtained contradiction finishes the proof. □

An ϵ-relaxation of a convex set K is either empty, which implies
the emptiness of the set K itself, or it has volume greater than δ ,
where δ can be easily computed by means of FPC-interpretations
from the representation of K and ϵ (see Lemma 9). Therefore:

Corollary 3. For every positive integer d , there is an FPC-definable
reduction from the problem of deciding the existence of SOS refutations
of degree 2d , to the weak feasibility problem for semidefinite sets.

Proof. The FPC-interpretation takes a set of polynomials Q with n
variables as input and outputs the ϵn,d -relaxation of Kd (Q,−1) and
a rational δ > 0, such that either the ϵn,d -relaxation of Kd (Q,−1)
is empty, or it has volume greater than δ . □

6 Isomorphism
We formulate the isomorphism problem for two graphs G and H
as a system ISO(G,H ) of quadratic polynomial equations over R,
with 0/1-valued variables. LetU and V denote the sets of vertices
of G and H . For u1,u2 ∈ U , we write tpG (u1,u2) for the atomic
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type of (u1,u2) in G . Similarly, for v1,v2 ∈ V , we write tpH (v1,v2)
for the atomic type of (v1,v2) in H . The system of equations has
one variable xuv for each pair of vertices u ∈ U , v ∈ V ; the in-
tended meaning of xuv is that vertexu is mapped tov by an alleged
isomorphism. The set of equations of ISO(G,H ) is the following:∑

v ∈V xuv − 1 = 0 for each u ∈ U ,∑
u ∈U xuv − 1 = 0 for each v ∈ V ,

xu1v1xu2v2 = 0 for each u1,u2 ∈ U , v1,v2 ∈ V
with tpG (u1,u2) , tpH (v1,v2).

It is straightfoward to check that the set of equations ISO(G,H ) can
be produced from G and H by an FPC-interpretation:

Fact 2. There is an FPC-interpretation that takes two graphsG andH
as input and outputs the set of equations ISO(G,H ).

If graphsG andH are isomorphic, we writeG � H . An SOS proof
of G � H is an SOS refutation of ISO(G,H ). A Sherali-Adams (SA)
proof of G � H is an SA proof of −1 ≥ 0 from ISO(G,H ), where an
SA proof is an identity of the type (2) in which the polynomials sj
are not sums-of-squares but extended monomials, i.e., polynomials
of the form c ·

∏
j ∈J x j

∏
k ∈K (1 − xk ) where c is positive real. A

(monomial) Polynomial Calculus (PC) proof of G � H is a (mono-
mial) PC proof of −1 = 0 from the system of polynomial equations
ISO(G,H ); for definitions see [5].

We rely on the following facts from [3] and [5]:

Theorem 16. Let G and H be graphs and let k be a positive integer.
The following are equivalent:

1. G ≡k H , i.e., G and H satisfy the same Ck
∞ω -sentences,

2. there is no degree-k SA proof of G � H ,
3. there is no degree-k monomial PC proof of G � H .

Indeed, [3] uses a slightly different encoding of the isomorphism
problem as a system of polynomial equations, but using methods
from [3] and [5] Theorem 16 follows for the encoding we use here.
For the collapse result we are about to prove, we use 2 implies 1
and Corollary 1.

Theorem 17. There exist an integer constant c such that, for all pairs
of graphs G and H and all positive integers d , if there is a degree-2d
SOS proof of G � H , then there is a degree-cd SA proof of G � H .

Proof. Fix a positive integer d . Let Φ be the FPC-interpretation from
Fact 2 and compose it with the Cω

∞ω -sentence from Corollary 1 that
decides the existence of an SOS proof of degree 2d . The resulting
sentence ϕ is a sentence of Ck

∞ω , where k = cd for an integer c that
is independent ofd . The sentenceϕ was designed in such a way that
for every pair of graphsG andH it holds that (G,H ) |= ϕ if and only
if there is a degree-2d SOS proof ofG � H . In particular, since there
certainly is no degree-2d SOS proof that G is not isomorphic to
itself, we have (G,G) |= ¬ϕ. Now assume that there is no degree-k
SA proof of G � H . We get G ≡k H by Theorem 16, from which
it follows that (G,H ) ≡k (G,G). Since ϕ is a Ck

∞ω -sentence and
(G,G) |= ¬ϕ we get (G,H ) |= ¬ϕ. Therefore, by design of ϕ, there
is no degree-2d SOS proof of G � H . □

Next we use the following recent result of Berkholz [4] unex-
pectedly showing that SOS simulates PC; we remark that this result
holds only for systems of equations with 0/1-values.

Theorem 18 ([4]). Let Q be a system of polynomial equations over
R with 0/1-valued variables. If Q has a PC refutation of degree d ,
then Q has an SOS refutation of degree 2d .

For two non-isomorphic graphsG and H , let sos(G,H ), sa(G,H ),
monpc(G,H ) and pc(G,H ) denote the smallest degrees for which
SOS, SA, monomial PC and PC can prove that G and H are not
isomorphic, respectively. For isomorphic graphs let us take all three
quantities to be ∞. Combining Theorems 18, 16, 17, we get the
following full cycle of implications:
1
2 ·sos(G,H ) ≤ pc(G,H ) ≤ monpc(G,H ) ≤ sa(G,H ) ≤ c

2 ·sos(G,H ).

where c is the constant in Theorem 17. By returning to the primals,
the same results can be stated in terms of the number of levels
that are required for the Lasserre [11] and the Sherali-Adams [15]
hierarchies to become infeasible. The result says that, for any pair
of graphs G and H , the first levels at which the relaxations for
ISO(G,H ) become infeasible are separated by no more than a con-
stant c/2-factor.
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