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Abstract
Complementation of Büchi automata is complex as Büchi automata
in general are nondeterministic. A worst-case state-space growth
of O((0.76n)n ) cannot be avoided. Experiments suggest that com-
plementation algorithms perform better on average when they
are structurally simple. We present a simple algorithm for comple-
menting Büchi automata, operating directly on subsets of states,
structured into state-set tuples (similar to slices), and producing
a deterministic automaton. Then a complementation procedure is
applied that resembles the straightforward complementation algo-
rithm for deterministic Büchi automata, the latter algorithm actually
being a special case of our construction. Finally, we prove our con-
struction to be optimal, i.e. having an upper bound in O((0.76n)n ),
and furthermore calculate the 0.76 factor in a novel exact way.
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1 Introduction
Checking ω-language containment is important in linear-time tem-
poral verification. Testing B ⊆ P is done algorithmically by testing
B ∩ P = ∅, where P is the complement of P . If P is regular, a Büchi-
automaton representing P can be constructed effectively. In the
worst case, the automaton for P can have O((0.76n)n ) many states
[10, 17], where n is the number of states of the automaton for P .

Complementation of Büchi automata is difficult because in gen-
eral, Büchi automata cannot be made deterministic. Complementa-
tion of a deterministic Büchi automatonA is, however, quite simple:
construct a copy ofA, remove all accepting states in the copy, make
the remaining states in the copy accepting, make all states in A
non-accepting, and finally allow nondeterministically moving from
A to corresponding states in its copy. So the complement automaton
to a deterministic Büchi automaton consists of two deterministic
automata (let’s call them an upper and a lower automaton) with
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transitions from upper to the lower automaton but not back. We
adapt this construction to nondeterministic automata by construct-
ing a deterministic version of a given automaton and a decorated
copy of the deterministic automaton that deals with acceptance.
The result is again an automaton consisting of two deterministic
automata that are then combined by allowing to move nondeter-
ministically from the upper to the lower one but not vice versa.

The run analysis that we developed independently leads to simi-
lar results as the analysis by Fogarty, Kupferman, Vardi, and Wilke
[3] who translate the slice-based approach in [5] to a rank-based
approach. Instead of unifiying interim constructions, we directly
construct a complement automaton using the sole analysis of the
runs of the original automaton, in a similar way deterministic Büchi
automata are complemented. Further comparison with existing
work can be found in Section 5. Furthermore, the “subset-tuple”
construction that we develop leads to similarly structured states
like the construction by Fisman and Lustig from nondeterministic
Büchi to deterministic parity automata [2].

In our construction, the key notion will be that of a greedy ac-
cepting run. In short, a greedy run is a run that always aims at
reaching an accepting state as quickly as possible. Our construction
will consider only greedy runs. By doing so, visits of sets of accept-
ing states in runs of the constructed automaton allow faithfully to
identify whether or not they can also occur in a (greedy) run of
the given automaton. We basically conduct a subset construction
to which we add sufficient structure to identify greedy runs: the
states are tuples of sets of states of the given automaton, and sets of
non-accepting states and sets of accepting states are never mixed
(to avoid losing too much information [15]). The complementation
procedure for deterministic Büchi automata [7] turns out to be a
special case of our construction.

2 Preliminaries
Let Σ be a finite set. Then Σ∗ is the set of all finite words and Σω is
the set of all infinite words (ω-words) over Σ. A (finitary) language
is a subset of Σ∗ and an ω-language is a subset of Σω . We use a
functional notation: for (ω-)word x , x(i) is the (i + 1)st symbol in x ,
and x(i, j) is the subword x(i)x(i + 1) · · · x(j − 1). |x | is the length
of x .

In fact, we will overload the “| · · · |” notation: if x is a set, then
|x | will be x ’s cardinality (number of elements), and if x is a tuple,
then |x | will be x ’s size (number of components of the tuple).

Büchi automaton A = (Q, Σ,δ ,qin , F ) consists of finite state set
Q , alphabet Σ, transition function δ : Q × Σ → 2Q , initial state
qin ∈ Q , and set F ⊆ Q of accepting states. δ is extended in the
usual way to finite words and state sets.

Let x ∈ Σω . A run r of A on x is an ω-word of states such that
r (0) = qin and r (i + 1) ∈ δ (r (i),x(i)), for all i ≥ 0. Runs on finite
words are defined similarly.
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Let ω(r ) be the set of all states that recur infinitely often in r .
Run r is accepting if and only if ω(r ) ∩ F , ∅. Automaton A Büchi-
accepts x if and only if there exists an accepting run of A on x
[1, 12]. The set of all ω-words accepted by A is the ω-language that
A accepts.

If, for allq ∈ Q and a ∈ Σ, δ (q,a) is at most a singleton set, thenA
is deterministic. Otherwise it is nondeterministic. For ω-languages,
the expressiveness of deterministic and nondeterministic automata
differ: There exist ω-languages that require that each automaton
Büchi-accepting them is nondeterministic [1, 12].

We call a (finite) run r on a finite word greedy if it always reaches
accepting states as quickly as possible. One way of defining greed-
iness is with the help of a function α : Q → {0, 1} that assigns
1 to accepting states and 0 to non-accepting ones, and extend it
to sequences of states by its stepwise application. For a run r , we
interpret α(r ) as binary numbers with the most significant bit to the
left. Run r on finite wordw is greedy if and only if there does not
exist a finite run r ′ onw with r ′(0) = r (0) and r ′(|r | −1) = r (|r | −1)
such that α(r ) < α(r ′) (“<” is the ordering relation on (binary)
numbers).

Infinite run r on ω-word x is greedy if and only if all of its finite
prefixes r (0,n + 1) are greedy on x(0,n).

For automaton A and ω-word x , we can show:1

Lemma 2.1. There exists an accepting run of A on x if and only if
there exists a greedy accepting run of A on x .

3 The Complementation Construction
We claim that our construction is simple. In upcoming subsections,
we give the formal definition of the complement automaton, which
may not look that simple at first glance. Therefore we would like
to give here the idea underlying our construction.

We nearly apply the standard subset construction to determinize
automata, we just add a little structure to the state sets: we partition
them into sets of states of the same level of greediness and sort the
partition accordingly. The greedier a run to a state, the more to
the right does it appear in our construction. Applying that reason-
ing leads to the construction in Section 3.1 (we call the resulting
automaton the upper automaton).

According to Lemma 2.1, if there is no greedy accepting run, there
is no accepting run on an ω-word. So the complement automaton
must accept all ω-words for which all greedy runs visit accepting
states only finitely often. The upper automaton is a deterministic
representation of all greedy runs. In Section 3.3, we therefore create
an annotated (colored) copy of the upper automaton (we call the
resulting automaton the lower automaton), in which the coloring
guarantees that only ω-words are accepted for which greedy runs
do not visit accepting states. We require the upper automaton to
jump nondeterministically (after at most finitely many visits of
accepting states in a greedy run) to the lower automaton (no visits
of accepting states in greedy runs — visits of accepting states must
be discontinued, i.e. they are in non-greedy runs). The resulting
automaton will accept all ω-words for which greedy runs of the
given automaton contain only finitely many accepting states, i.e. it
accepts exactly all ω-words not accepted by the given automaton.

1Even though we developed the concept of greediness independently, it turns out to
be similar to the lexicographical ordering introduced in [3]. The subsequent lemma is
then an adapted version of Lemma 6 in [3].

3.1 Determinizing the Automaton
Let A = (Q, Σ,δ ,qin , F ) be the Büchi automaton we want to com-
plement. We construct an interim deterministic Büchi-automaton
A′ = (Q ′, Σ,δ ′, ({qin }), ∅) from which we then derive the comple-
ment automaton. The state set of A′ contains non-empty disjoint
sets of A-states:2

Q ′ =

|Q |⋃
m=1

{
(S1, . . . , Sm ) ∈ (2Q \ {∅})m | (∀j , k : Sj ∩ Sk = ∅)

}
.

A′ does not contain accepting states. Now we define transition
function δ ′ : Q ′ × Σ → Q ′. Let p′ ∈ Q ′ and letm = |p′ |. Let p′(j)
be the jth component of p′ (p′(j) is a set of A-states). For a ∈ Σ, we
define the a-successor of the jth component of p′ to be:

σ (p′, j,a) = δ (p′(j),a) \
m⋃

k=j+1
δ (p′(k),a).

σ (p′, j,a) contains all A-states that are a-successors of A-states
in p′(j) and not already contained in σ (p′,k,a), for k > j . From this,
we get immediately that sets σ (p′, j,a) and σ (p′,k,a) are disjoint.

The definition of σ (p′, j,a) guarantees that if an A-state could
occur in multiple components of a tuple, we will keep it only in
the rightmost component. So even though δ (p′(j),a) may not be
empty, σ (p′, j,a) still can be. We partition each set σ (p′, j,a) into
non-accepting A-states and accepting A-states:

σn (p
′, j,a) = σ (p′, j,a) ∩ (Q \ F ),

σa (p
′, j,a) = σ (p′, j,a) ∩ F .

The resulting sets are still pairwise disjoint. We put σa (p′, j,a)
to the right of σn (p′, j,a) and remove all empty sets. We define the
transition function of A′:

δ ′(p′,a) = q′,

where q′ is obtained by removing all empty sets in(
σn (p

′, 1,a),σa (p′, 1,a), . . . ,σn (p′,m,a),σa (p′,m,a)
)

but otherwise keeping the order of the non-empty components.

Lemma 3.1. For all reachable states p′ ∈ Q ′ in A′ and all j,k with
1 ≤ j < k ≤ |p′ |, p′(j) and p′(k) are nonempty and disjoint.

3.2 An Example
We take the automaton A in Figure 1 as an example that Büchi-
accepts all ω-words over {a,b} that contain finitely many occur-
rences of symbol a, and construct A′ stepwise from it.

qin q1 q2

a, b

a, b

b

a

a, b

Figure 1. Büchi automaton A accepting {a,b}∗ · {b}ω .

The initial state of A′ is the 1-tuple containing A-state set {qin }
(see Figure 2). With respect to A’s transition relation, we get

σ (({qin }), 1,a) = δ ({qin },a) = {qin ,q1},

σ (({qin }), 1,b) = δ ({qin },b) = {qin ,q1}.

2By “A-states” we refer to the states of automaton A.



A Simple and Optimal Complementation Algorithm for Büchi Automata LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Because {qin ,q1} contains non-accepting A-state qin as well as
accepting A-state q1, {qin ,q1} is partitioned into two sets, and we
get ({qin }, {q1}) as the successor of ({qin }) when A′ reads a or b
(see Figure 2). In the next step, we calculate for symbol a:

σ (({qin }, {q1}), 2,a) = δ ({q1},a) = {q2}

and

σ (({qin }, {q1}), 1,a) = δ ({qin },a) \ δ ({q1},a)

= {qin ,q1} \ {q2} = {qin ,q1}.

As in the previous step, {qin ,q1} is partitioned into the two sets
{qin } and {q1}, and we get ({qin }, {q1}, {q2}) as the a-successor
of ({qin }, {q1}) (as can be seen in Figure 2). Similarly, for symbol
b, we calculate:

σ (({qin }, {q1}), 2,b) = δ ({q1},b) = {q1}

and

σ (({qin }, {q1}), 1,b) = δ ({qin },b) \ δ ({q1},b)

= {qin ,q1} \ {q1} = {qin }.

No sets need to be partitioned and we get ({qin }, {q1}) as the
b-successor of ({qin }, {q1}) (see again Figure 2). Now we calculate
for symbol a:

σ (({qin }, {q1}, {q2}), 3,a) = δ ({q2},a) = {q2},

σ (({qin }, {q1}, {q2}), 2,a) = δ ({q1},a) \ δ ({q2},a)

= {q2} \ {q2} = ∅,

and

σ (({qin }, {q1}, {q2}), 1,a)
= δ ({qin },a) \ (δ ({q1},a) ∪ δ ({q2},a))

= {qin ,q1} \ {q2} = {qin ,q1}.

As previously, {qin ,q1} is partitioned into the two sets {qin } and
{q1}, the empty set is removed, and we get that ({qin }, {q1}, {q2})
is an a-successor of itself. Similarly, for symbol b, we calculate

σ (({qin }, {q1}, {q2}), 3,b) = {q2},

σ (({qin }, {q1}, {q2}), 2,b) = {q1},

σ (({qin }, {q1}, {q2}), 1,b) = {qin }.

No sets need to be partitioned and ({qin }, {q1}, {q2}) is also a
b-successor of itself, completing the construction. The result of the
construction is given in Figure 2.

({qin }) ({qin }, {q1 }) ({qin }, {q1 }, {q2 })
a, b

b

a

a, b

Figure 2. Deterministic automaton A′ to A of Figure 1.

3.3 Additional Notation
As pointed out in the previous section, it is important to identify
for transitions in A′ which component in a successor state results
from which component in the predecessor state. In addition, it will
be important to identify which component will eventually have no
successor component any more (the component disappears, and
we will call eventually disappearing components discontinued).

Let a be a symbol in Σ. Let p′ and q′ be two A′-states such that
δ ′(p′,a) = q′. Let 1 ≤ j ≤ |p′ | and 1 ≤ k ≤ |q′ |.

If q′(k) ⊆ σ (p′, j,a), then we write:

p′(j)
a
7→ q′(k),

indicating that p′’s a-successor q′ contains component k because
p′ contains component j. We extend this definition to finite words
w = a0a1 . . . al ∈ Σ∗ in the usual way:

q′0(j0)
w
7→ q′l+1(jl+1)

if and only if there exist states q′1,q
′
2, . . . ,q

′
l and indices j1, j2, . . . , jl

such that for all i , 0 ≤ i ≤ l , we have q′i (ji )
ai
7→ q′i+1(ji+1).

If we take the example from Figure 2, we have, for instance,

({qin }, {q1}, {q2})(1)
a
7→ ({qin }, {q1}, {q2})(2),

because in the a-transition from state ({qin }, {q1}, {q2}) to itself,
the successor state ({qin }, {q1}, {q2}) contains component {q1} be-
cause {q1} ⊆ σ (({qin }, {q1}, {q2}), 1,a). If we change the symbol,
however, then:

({qin }, {q1}, {q2})(2)
b
7→ ({qin }, {q1}, {q2})(2),

because in the b-transition from state ({qin }, {q1}, {q2}) to itself,
the successor state ({qin }, {q1}, {q2}) contains component {q1}
because {q1} ⊆ σ (({qin }, {q1}, {q2}), 2,b).

For the remainder of this paper, we always assume that A′ is
complete. This can be achieved easily by making A complete before
constructing A′. It guarantees that for each ω-word x , a unique (A′ is
deterministic) run of A′ on x always exists.

Let x = x(0)x(1)x(2) . . . ∈ Σω . Let r ′ = r ′(0)r ′(1)r ′(2) . . . be the
run of A′ on x . Let i ≥ 0 and let 1 ≤ j ≤ |r ′(i)|. We write:

r ′(i)(j)⊥

to indicate that either r ′(i)(j) does not have an x(i)-successor (i.e.
there does not exist k such that r ′(i)(j)

x (i)
7→ r ′(i + 1)(k)), or for

each k such that r ′(i)(j)
x (i)
7→ r ′(i + 1)(k) we have r ′(i + 1)(k)⊥. The

notation r ′(i)(j)⊥ is used to indicate that in the run r ′ of A′ on
x , component j of state r ′(i) will disappear. Either it disappears
immediately (it does not have an x(i)-successor) or it disappears
eventually (all its x(i)-successors will disappear). We say that the
component is discontinued in A′’s run on x . Conversely, we write:

r ′(i)(j)⊤

if and only if r ′(i)(j)⊥ does not hold (we then say that r ′(i)(j) is
continued in A′’s run on x). In addition, we write r ′(i)(j)⊤F if and
only if r ′(i)(j)⊤ and r ′(i)(j) ⊆ F , and r ′(i)⊤F if and only if there
exists j such that r ′(i)(j)⊤F .

If r ′(i)(j)⊤, then r ′(i)(j) has an x(i)-successor r ′(i + 1)(k) such
that r ′(i+1)(k)⊤, because otherwise r ′(i)(j)⊥ would hold. Therefore,
and because of the pairwise disjointness of components inA′-states
(Lemma 3.1), the number of continued components cannot decrease
from one state to the next in A′’s run on x :

Lemma 3.2. If k is the number of components r ′(i)(j) of state r ′(i)
such that r ′(i)(j)⊤ and l is the number of components r ′(i + 1)(j) of
state r ′(i + 1) such that r ′(i + 1)(j)⊤, then k ≤ l .

As an example, let y = bababa . . .. The run r ′ of the automaton
in Figure 2 on ω-word y is

({qin })({qin }, {q1 })({qin }, {q1 }, {q2 })({qin }, {q1 }, {q2 }) . . .
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In this run, we label all components of A′-states with ⊤ or ⊥

accordingly, and get:
({qin }⊤)({qin }⊤, {q1 }⊤)({qin }⊤, {q1 }⊥, {q2 }⊤)({qin }⊤, {q1 }⊥, {q2 }⊤) . . .

The situation changes entirely, when we consider z = aabbbb . . .
(two symbols a followed exclusively by infinitely many symbols b).
Run r ′ of A′ on z is again:

({qin })({qin }, {q1 })({qin }, {q1 }, {q2 })({qin }, {q1 }, {q2 }) . . .

However, labeling all components of A′-states with ⊤ or ⊥ leads
now to:

({qin }⊤)({qin }⊤, {q1 }⊤)({qin }⊤, {q1 }⊤, {q2 }⊤)({qin }⊤, {q1 }⊤, {q2 }⊤) . . .

Because q1 is an accepting A-state, the run can even be labeled:
({qin }⊤)({qin }⊤, {q1 }⊤F )({qin }⊤, {q1 }⊤F , {q2 }⊤)({qin }⊤, {q1 }⊤F , {q2 }⊤) . . .

We discuss in the next section that run r ′ of A′ on ω-word x
contains infinitely many states with component labels ⊤F if and only
if automaton A Büchi-accepts x .

3.4 Some Properties of the Construction

Let q′ ∈ Q ′. We will write “
⋃
q′ ” to designate

|q′ |⋃
i=1

q′(i), i.e. the set

of all A-states that occur in components in q′. From the definition
of the transition function δ ′ we get immediately:

Lemma 3.3. δ (
⋃
q′,a) =

⋃
δ ′(q′,a).

For the remainder of this section, let a ∈ Σ, let w ∈ Σ∗, let
x ∈ Σω , and let r ′ be the run of A′ on x . It is not difficult to show:

Lemma 3.4. δ ({qin },w) =
⋃
δ ′(q′in ,w).

If we consider in detail what happens in our construction with
respect to successor components in A′-states, we can observe that
paths ofA-states through successor components represent precisely
greedy runs of A. Taking into account Lemma 2.1, we can prove:

Lemma 3.5. A accepts x if and only if r ′ contains infinitely many
A′-states that contain continued sets of accepting A-states (i.e. A′-
states of the type r ′(j)⊤F , for infinitely many different j).

In Section 4, we calculate the number of states in A′ to be at
most 2a(n) − 1, where n is the number of states in A and a(n) is the
nth ordered Bell number. An approximation gives us O((0.531n)n ).

3.5 Complementation
Please recall that A will accept an ω-word x if and only if the run
of A′ on x contains infinitely many states that contain continued
components that are sets of accepting A-states. So the complement
automatonAc that we are going to construct simply must accept all
ω-words x such that the run of A′ on x visits states with continued
accepting components only finitely often.

To achieve this, Ac will be composed of A′ and a copy Ǎ of A′

in which a coloring of state components will ensure that the visit
of a state with a continued accepting component will lead to non-
acceptance. By a nondeterministic jump from A′ that we call the
upper part ofAc to a corresponding state in Ǎ that we call the lower
part we achieve the following: an accepting run of Ac cannot stay
in A′ as A′ does not contain accepting states. So it will have to
jump eventually to states in Ǎ and there the appearance and only
the appearance of a continued accepting component in a state of
the run will prevent Ǎ from accepting. As long as the run of Ac is
in A′, states with continued accepting components may occur, but
only finitely often because of the necessary jump to Ǎ in which

states with continued accepting components are then prohibited.
So Ac will accept an ω-word x if and only if the run of A′ on x
would contain only finitely many states with continued accepting
components, or in other words: if and only if A does not accept x .

3.5.1 Upper (Non-accepting) Part
We will define a coloring of state components in the lower part to
introduce an acceptance condition in the complement automaton.
To have a consistent unified notation, we also color each component
of the states inA′with color−1, andwe call the resulting automaton
Â = (Q̂, Σ, δ̂ , q̂in , F̂ ).

3.5.2 Lower (Accepting) Part

The lower automaton Ǎ := (Q̌, Σ, δ̌ , q̌in , F̌ ) can be defined in a
similar fashion, but with values 0, 1, 2 for the coloring indices and
a non-empty accepting set F̌ , defined according to the coloring of
the components of the states.

In a nutshell, for an ω-word x ∈ Σω we want the run rc of Ac
on x to be accepting if and only if each greedy run r of the original
automaton A on x either:

• eventually stops visiting states of F , or
• is discontinued (i.e. is finite or becomes non-greedy).

We now give some insight into the meaning of the colors. Let
i ′ be the point where run rc jumps to the lower part, i.e. i ≥ i ′ ⇔
rc (i) ∈ Ǎ. The colors of the components of the states of Ǎ hold
some information on what happens in the greedy runs of A, “after”
i ′. For i ≥ i ′, we have:
color c = 0: If a tuple component (Sj , 0) is 0-colored in rc (i), then
for each state q in Sj , each greedy run r of A such that r (i) = q has
not yet visited an accepting A-state “since” i ′.
color c = 2: If a tuple component (Sj , 2) is 2-colored in rc (i), then
for each state q in Sj , the greedy run r of A such that r (i) = q has
visited an accepting A-state since i ′.
color c = 1: If a tuple component (Sj , 1) is 1-colored in rc (i), then
for each state q in Sj , the greedy run r of A such that r (i) = q has
visited an accepting A-state since i ′, but there also exist 2-colored
components that have not yet disappeared. We say that 1-colored
components are on hold, meaning that for the moment, we wait
until the 2-colored components disappear.

We define Ǎ formally.:

Q̌ :=
|Q |⋃
m=1

{(
(S1, c1), . . . , (Sm , cm )

)
∈ (2Q \ {∅} × [0, 2])m |

∀j , k, Sj ∩ Sk = ∅
}
.

The transition function δ̌ : Q̌ × Σ → Q̌ is defined by extending
the transition function δ ′ of Section 3.

We now define the colorings. Let p̌ :=
(
(S1, c1), . . . , (Sm , cm )

)
∈

Q̌ be a state of Ǎ and let p′ := (S1, . . . , Sm ) be the corresponding
state of A′ obtained by removing the colors c j . For a ∈ Σ, let
q′ = (S ′1, . . . , S

′
m′) be the unique state of A′ such that δ ′(p′,a) = q′.

We define δ̌ (p̌,a) := q̌, for q̌ :=
(
(S ′1, c

′
1) . . . , (S

′
m′ , c ′m′)

)
where for

each component (S, c) of p̌ and (S ′, c ′) of q̌ bound by the relation
(S, c)

a
7→ (S ′, c ′), the color transitions from c to c ′ are specified as

follows:
• 0 → 1 : if S ′ ⊆ F and p′ is not a breakpoint,
• 0 → 2 : if S ′ ⊆ F and p′ is a breakpoint,
• 1 → 2 : if p′ is a breakpoint,
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• c → c : otherwise,
where a “breakpoint” is a state of Q̌ that does not contain a 2-colored
component.

Even though it will not be used, we can define q̌in :=
(
({qin }, 0)

)
as the initial state. The set F̌ of accepting states holds all states that
do not contain a 2-colored component :

F̌ :=
⋃{(

S1, c1), . . . , (Sm , cm )
)
∈ Q̌ | ∀1 ≤ j ≤ m, c j < 2

}
.

3.5.3 The Complement Automaton
We can join Â and Ǎ to build the complement automaton Ac =
(Qc , Σ,δc ,qc , Fc ), Büchi-accepting the complement ω-language to
the ω-language of the original automaton A:

• Qc := Q̂ ∪ Q̌ , qc := q̂in , and Fc := F̌
• The transitions δc : Qc × Σ → 2Qc permit all transitions
within Â as well as all those within Ǎ, plus additional tran-
sitions from Â to Ǎ for all p =

(
(S1,−1), . . . , (Sm ,−1)

)
∈ Â

and a ∈ Σ:3

δ̌
( (
(S1, 0), . . . , (Sm , 0)

)
,a
)
∈ δc (p,a)

Ac accepts the complement of the ω-language accepted by A. It
is worth noting that Ac is deterministic in the limit: after exactly
one non-deterministic choice when jumping from the upper to the
lower part,Ac behaves deterministically (Â and Ǎ are deterministic).

Adding the coloring to A′ does not introduce more than a factor
of 3i , for each A′-state with i components. A closer analysis yields
O(1.279n)n as an upper bound of the construction (a precise cal-
culation of the upper bound for an improved construction can be
found in Section 4.2).

3.6 The Example
We resume our previous example and construct the complement of
the automaton of Figure 1.

To avoid cumbersome notation in the following example, a com-
ponent (Sj , c j ) will be denoted as:

Ŝj if c j = −1
Sj if c j = 0

Sj if c j = 1
Sj if c j = 2

The upper part Â of the complement automaton is just the au-
tomaton A′ where we append color −1 to all components.

The lower part Ǎ is constructed in a similar way, but with the
addition of colors 0, 1 and 2. Let’s first look at the a-successor in Ǎ

of (�{qin }). The two successor sets are {qin } and {q1}. By definition
of the transition function δ̌ , since {qin } ∩ F = ∅, the color (initially
0) remains 0. For the set {q1}, since {q1} ⊆ F , the new color is 2.
So the a-successor of (�{qin }) in Ǎ is ({qin }, {q1}). The same holds
for symbol b.

Let’s now look at the a-successor of this newly created state. The
a-successor of {q1} is {q2} and color 2 remains. The a-successors
of {qin } are {qin } (left successor) and {q1} (right successor). Since
{qin } ∩ F = ∅, the color of {qin } remains 0. The color of {q1}
is set to 1 because {q1} ⊆ F and color 2 already exists in the
predecessor state. So the a-successor of ({qin }, {q1}) is finally
({qin }, {q1}, {q2}).

3Transitions from the upper to the lower part are as if originating from entirely
0-colored states in the lower part.

By applying this simple method, we create all reachable Ac -
states and get the automaton of Figure 3, where the accepting states
are the states of the lower part which do not contain a 2-colored
component. Here it is only the case for state ({qin }, {q1}, {q2}).

(�{qin }) (�{qin }, �{q1 }) (�{qin }, �{q1 }, �{q2 })

({qin }, {q1 }) ({qin }, {q1 }, {q2 })

({qin }, {q1 }, {q2 }) ({qin }, {q1 }, {q2 })

a, b

a, b

b

a

b
a

a, b

a, b
b

a

b

a

a, b

a, b

Figure 3. Automaton Ac complement to A.

3.7 Possibilities for Optimization
Without further proof here, it is easy to see that there is some
room for optimization. For instance in the case where automaton
A is complete, we observe that Ac -states of which the rightmost
component has color 2 can be ignored, as well as all their successors.
This is because the completeness enforces that state components
can only disappear if at some point, the deletion process described
in section 3 removes them. Since the deletion process is done right-
to-left, this is only possible if there exists another component on
the right, which is not the case here. Therefore a rightmost branch
is persistent and if its color is 2, this color never disappears and
future states can never become accepting.

Taking our previous example, since A is complete, the optimiza-
tion directly leads to Figure 3 without states ({qin }, {q1}) and
({qin }, {q1}, {q2}) (applied at construction time and not as a re-
duction from Figure 3).

4 Optimality
A desirable property for a complementation algorithm is that of op-
timality, i.e. for the maximal state blow-up to be within O

(
(0.76n)n

)
.

We shall first mention that this 0.76 value is not exact and has been
estimated to be approximately 0.7645 using numerical analysis
tools (e.g. in [17]). The algorithm presented in Section 3 is not
optimal but we give here an alternative formulation that is. Most
remarkably, computing the worst-case growth — using a new kind
of expression we call the colored ordered Bell numbers — yields an
exact representation of the 0.7645 approximation:

1
ln(ϕ) · e ≈ 0.7645

where ϕ is the golden ratio and e is Euler’s number.

4.1 Alternate formulation
4.1.1 State merging
The reduction of the state space can be achieved by systematically
merging some tuple components together.
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We first observe that merging all neighboring 1-colored com-
ponents, as well as merging neighboring 2-colored components
does not alter the resulting language. More precisely, the following
replacements can be applied on states of Q̌ :

(. . . , (Sj , 1), (Sj+1, 1), . . .) → (. . . , (Sj ∪ Sj+1, 1), . . .)
(. . . , (Sj , 2), (Sj+1, 2), . . .) → (. . . , (Sj ∪ Sj+1, 2), . . .).

Let join : Qc → Qc be the function that operates that join-
ing. Extending that function to sets of states in the usual way (by
element-wise application), we define an updated transition function
δm : Qc × Σ → 2Qc by δm (q,a) := join(δc (q,a)).

Hence from automaton Ac := (Qc , Σ,δc ,qc , Fc ) constructed in
Section 3, we define automatonAm := (join(Qc ), Σ,δm ,qc , join(Fc ))
with a reduced state-space. Am still Büchi-accepts the complement
of the original automaton:

Lemma 4.1. Let rc be a run of Ac on an ω-word x . Let rm be a
sequence of states such that rm (i) = join(rc (i)), ∀i ≥ 0. Then rm is a
run of Am on x .

As rc (i) contains the same 1-colored and 2-colored components
as rm (i), and the fate of these components is bound by the fact that
they are neighboring, we get:

Lemma 4.2. Ac accepts rc if and only if Am accepts rm .

Building on this, another optimization is to merge any 1-colored
component with its preceding neighbor if the latter is a 2-colored
component, recursively applying the replacement:4

(. . . , (Sj , 2), (Sj+1, 1), . . .) → (. . . , (Sj ∪ Sj+1, 2), . . .)
We define another function join2 : Qc → Qc accordingly that,
extended to sets in the usual way, leads to a new transition function
δ2 : Qc × Σ → 2Qc defined by δ2(q,a) := join2(δm (q,a)).

The resulting automatonA2 := (join2(Qc ), Σ,δ2,qc , join2(Fc )) is
still a complement automaton:

Lemma 4.3. L(Ac ) = L(A2).

Proof. Let us consider two cases:
1. L(Ac ) does not accept the input word.
2. L(Ac ) accepts the input word,

Case 1. is easy, because if Ac does not accept a word x , then its run
rc on x must have a continued sequence of 2-colored components.
By construction the run r2 ofA2 on x also contains such a sequence
where the only difference is that its components might contain
more states than the corresponding components in the sequence in
rc because of the 1-colored components that have been added in.
Hence that sequence cannot disappear before the one in rc . So if rc
does not accept, then r2 cannot accept either.

For Case 2., we first observe that merging a 1-colored component
with a 2-colored component has the effect of pushing back the next
breakpoint, because instead of having to wait for the 2-colored
components to be discontinued, we also have to wait until the “up-
graded” 1-colored components disappear. In order to not delay the
next breakpoint indefinitely, we must ensure that such a merging
of a 1-colored component with a 2-colored component is only done
finitely many times. That is the case when the 1-colored compo-
nent is to the right of the 2-colored one, because that situation
only occurs when a 0-colored component has just disappeared, and
4The operation is applied recurrently as long as the tuple contains a 2-colored compo-
nent followed by a 1-colored component.

since no 0-colored components can appear other than from a pre-
existing 0-colored component, only a finite number of “2-1-merges”
can occur and the breakpoints are only finitely delayed. □

4.1.2 Optimal Version
The optimizations that result in automaton A2 don’t yet achieve
a state growth bounded by O

(
(0.76n)n

)
. To obtain such a result,

we must constrain the lower part to have at most one 2-colored
component at a time. All other components that would be 2-colored
will be 1-colored and be turned 2-colored one after the other in a
sort of round robin fashion.

To cater for this we introduce a new interim color 3 to mark the
next component that will become 2-colored (thus keeping track of
the round robin sequence).

We construct worst-case optimal automaton Ã := (Q̃, Σ, δ̃ ,qc , F̃ )
from A2. Ã’s states Q̃ are similar to those of A2, except that in the
lower part, states contain at most one component of a color different
from 0 and 1, but this other color can be 2 or 3. Ã’s accepting states
F̃ are the states of the lower part that do not contain a component
of color 2. The transitions δ̃ : Q̃ × Σ → 2Q̃ are similar to δ2 except
that the color transition rules from c to c ′ for components satisfying
(S, c)

a
7→ (S ′, c ′) (see Section 3.5.2) now follow:
• 0 → 1 : if S ′ ⊆ F
• 1 → 3 : if q′ is a breakpoint and if S ′ is the next 1-colored
component to the right of the 0-colored component that
follows the position where the disappeared 2-colored com-
ponent would have been. If the end of the tuple is reached,
continue the search from the leftmost component. If there
never was a 2-colored component, chose any 1-colored com-
ponent.

• 3 → 2 : (always)
• c → c : otherwise.

In other words, the colorings are as in δ2, with the difference
that some 1-colored components are delayed from being switched
to 2. To illustrate the round robin, consider the example below
(Figure 4) where the 2-colored is discontinued. Since the destination
is a breakpoint, we look for the next 0-colored component to the
right and then find the next 1-colored component and switch it to
color 3.

0 1 0 2 0 0 1 0

0 1 0 1 × 0 0 3 0

Figure 4. Color transitions of a state of Q̃ to a breakpoint (the
numbers depict the component colors).

The intuitive reason for choosing to step over 0-colored states
instead of just selecting the next 1-colored component is that it
ensures that we do not recurrently select a spawning 1-colored
component to be colored 3. Since the number of 0-colored compo-
nents cannot increase, that forces the round robin to make progress
over the tuple and ensures that we ultimately capture a continued
sequence of 1-colored components if there is one.

To demonstrate that language acceptance is not altered by these
changes, we only discuss the variations in colorings between L(A2)
and L(Ã), as the two constructions are otherwise structurally equiv-
alent and coincide on their upper parts.
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Lemma 4.4. L(A2) ⊆ L(Ã)

Proof. To show that Ã does not under-accept, we must show that
an infinite number of breakpoints in A2 implies an infinite number
of breakpoints in Ã. This is fairly straightforward as Ã “breaks”
more often than A2, because when A2 needs to “wait” for all its
2-colored components to disappear in order to reach a breakpoint, Ã
will reach a breakpoint whenever it’s unique 2-colored component
disappears. □

Lemma 4.5. L(A2) ⊇ L(Ã)

Proof. If A2 does not accept a given word, then it must have an
infinite sequence of 2-colored components. Such a sequence also
exists in Ã, but it might be partially or totally colored 1 instead of
2 (because in Ã, 2-colorings are “delayed”). If it is only partially
1-colored, it means that under the round robin it eventually reaches
color 3, and then immediately 2, and will go on to be an infinite suc-
cession of 2-colored components, avoiding any future breakpoint
and rendering the run non-accepting. If that sequence remains en-
tirely 1-colored, it means that the round robin never reached that
component and thus there must exist another infinite sequence
of 2-colored components preventing any further breakpoint from
happening. Thus only a finite number of breakpoints are possible
and L(Ã) does not accept. □

A2 and Ã are hence language equivalent and we finally get:

Corollary 4.6. L(A) = L(Ã) = L(A2) = L(Ac ).

4.2 Worst-case Analysis
Recall that the construction has an “upper” and a “lower” part. To
compute the maximum size of the automaton that can be produced,
we look at how many different states we can produce in the pro-
posed scheme. We can see that, for the matter of complexity, only
the lower part is significant as the number of states of the upper part
disappears in the overall measure of complexity. In Section 4.1.2,
the state description of the lower part has the following properties
(we consider n states in the automaton to complement):

• m states are chosen from the n
• thesem states are partitioned into k labeled sets5
• each set can be in one of 4 colors within {0, 1, 2, 3}
• at most one component has a color > 1, which we will call
the marked component.

To enumerate the possible combinations we start by assigning
the marked component, for which there are k positions to choose
from. Since that component can be 2- or 3-colored, there are 2k
possibilities. To take into account the possibility that the marked
component is not present, we simply assume that it can be assigned
to a component that is 1- or 2-colored6. Hence we consider that
there are 4k ways of assigning the marked component.

We then look at the remaining k − 1 components which follow
these two rules:

• a 0-colored component can be followed by a 0- or a 1-colored
component

• a 1-colored component can only be followed by a 0-colored
component.

5The labeling here expresses the order of the subsets.
6This yields an overestimation of the number of combinations which does not affect
the final complexity measure.

Let us define col(t) to be the number of possible colorings of a
t-tuple in this scheme, and col0(t), col1(t) to be the number of col-
orings of a t-tuple whose leftmost component is colored 0 or 1,
respectively. Then the following hold for k ≥ 1:

• col(k) = col0(k) + col1(k)
• col0(k + 1) = col0(k) + col1(k)
• col1(k + 1) = col0(k)

which allows us to give a recursive definition of col ∀k ≥ 1:

col(k + 2) = col(k + 1) + col(k).

Since col(1) = 2 (becausewe can color an unmarked 1-tuple in either
color 0 or 1), we have the following alignment on the Fibonacci
numbers ∀k ≥ 1: col(k) = Fib(k+2). It is well known that: Fib(k) ≤
ϕk where ϕ ≈ 1.618 is the golden ratio. Hence the number of
colorings of a k-tuple is bounded by 4kϕk+1.

In order to get a bound for the size of the lower part, we first
consider the upper part which is simpler to compute as it does
not involve colorings. The number of weak orderings on a set of j
elements (which enumerates the number of states of the upper part
that feature j preselected states) is expressed as the jth ordered Bell
number:

a(j) :=
j∑

k=0
k!
{
j

k

}
.

where
{ j
k
}
are the Stirling numbers of the second kind:{

j

k

}
=

1
k!

k∑
t=0

(−1)k−t
(
k

t

)
t j .

Using an asymptotic approximation of the Bell numbers [4] and
Stirling’s approximation of the factorial [11] we get the following:

a(j) ≈
1

2(ln 2)j+1 · j! ≈
√

2π j
2 ln 2 ·

(
j

ln 2 · e

) j
. (1)

Adding the possible ways of selecting these j states within the n
states of the original automaton, we get the total number of possible
states of the upper part:

#upper =
n∑
j=1

(
n

j

)
a(j).

Another property of the ordered Bell numbers by Gross [4]:

n−1∑
j=0

(
n

j

)
a(n − j) = 2a(n) − 1 (2)

gives us a simpler expression of the number of states of the upper
part, #upper (n) = 2a(n) − 1 ≈ 2a(n). Approximation (1) leads to:

#upper (n) ≈
√

2πn
ln 2 ·

( n

ln 2 · e

)n
.

Coming back to the state count for the lower part of the alternate
definition, the bound for the colorings of k-tuples yields:

#lower (n)<=
n∑
j=1

(
n

j

) j∑
k=0

k!
{
j

k

}
4kϕk+1<= 4nϕ

n∑
j=1

(
n

j

) j∑
k=0

k!
{
j

k

}
ϕk
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We introduce the expression appearing above as thenth λ-colored
ordered Bell number:

aλ(n) :=
n∑
j=1

(
n

j

) j∑
k=0

k!
{
j

k

}
λk .

Using techniques inspired by Gross in [4] (but without giving
the full proof here) we can show a result that generalizes (2):

n∑
j=1

(
n

j

)
aλ(j) =

λ + 1
λ

· aλ(n) − 1.

We can also derive a generalization of the asymptotic approxi-
mation:

aλ(n) ≈

√
2πn

(λ + 1) · ln
(
λ+1
λ

) ·
©«

1

ln
(
λ+1
λ

)
· e

· n
ª®®¬
n

leading to a complexity result for the lower part, and thus the
general state-growth for the alternate construction7:

#lower ∈ O
( ( 1

ln(ϕ) · e · n

)n )
= O

(
(0.7645 · n)n

)
.

This shows optimality of our construction by matching the lower
bound given in [17] for which we happen to give an exact expres-
sion.

5 Comparison to Other Constructions
In this section we go through all major types of complementation
constructions and discuss the structural differences with our ap-
proach. We then compare efficiency in terms of complement size on
random examples. For clarity we refer to the algorithm presented
in this paper as the “tuple construction”.

5.1 Types of Complementation Algorithms
Existing constructions can generally be divided into four main
categories:

• Ramsey-based
• determinization-based
• slice-based
• rank-based.

The obvious example of a Ramsey-based construction is Büchi’s
complementation method that was introduced in his seminal paper
[1]. It uses a Ramsey-type combinatorial argument about equiva-
lence classes of words. Although theoretically interesting, it is not
of practical interest as its worst-case growth is 2O(n2).

Determinization-based algorithms essentially operate in three
steps. First, the input automaton is converted to an automaton of
deterministic kind, such as a Muller or Rabin. The deterministic
automaton is complemented, which is usually a trivial operation,
and then converted back to Büchi. The best-known determinization
algorithm is the one by Safra [9] and has lead to one of the most
efficient complementation algorithms, known as Safra-Piterman.
Although this method involves an interim automaton that can be
very large, experiments show that this can lead to good results, as
testified by Tsai et al. in [13].

In slice-based algorithms the constructed state descriptions rep-
resent the set of all states that are visited in the input automaton.
7Here the non-exponential part disappears from the O notation. We also simplify
ln( ϕ+1

ϕ ) into ln(ϕ).

As such, these states represent slices of the run graph of the original
automaton. The most representative example of this kind is the
one described by Kähler and Wilke in [5]. In that sense, the con-
struction presented in this paper can also be seen as a slice-based
construction. Furthermore, the upper part is essentially identical
to the non-accepting part of Kähler and Wilke’s automaton as the
slices are constructed in the same way. The main difference be-
tween the two algorithms is that the tuple construction achieves
determinism-in-the-limit by enforcing that all branches containing
accepting states must eventually die. The slice-based construction
by Kähler and Wilke is rather based on guessing which branch will
eventually die, thus introducing non-determinism in the infinite
part of the constructed automaton.

Rank-based algorithms were devised by Kupferman and Vardi in
[6] and are based on the analysis of run graphs in which each node
(representing a state of the input automaton) is assigned an integer
value called a rank. Each run eventually stabilizes in a certain rank.
The acceptance condition is based on the parity of these ranks and
the following principles are applied:

• at each transition, guess a rank
• keep an obligation set (that holds the nodes that owe a visit
to an accepting state) to enforce the parity of the rank.

As we will see in Section 5.2.2, this approach is not very efficient,
but is interesting from a theoretical point of view as it was the first
construction to have been proven to be optimal.

Although ranks seem to have little to do with the construction
presented in this paper, in [3] Fogarty et al. present a way of see-
ing the weak-orderings of the slice-based construction as ranks
and from that idea propose a new slice-based construction that is
deterministic-in-the-limit and reaches optimality. They achieve this
by defining a labeling function λk : Si → {⊤,⊥} where Si is the set
of nodes on level i of the run graph and parameter k is the guessed
level after which all runs containing original accepting states must
terminate. The authors call this a retrospective labeling because once
the level k has been guessed, there are no further guesses made
about the future, hence the determinism-in-the-limit. The tuple con-
struction, albeit having been developed independently can also be
seen as following a retrospective principle, which would probably
be true of any construction that is deterministic-in-the-limit. Con-
cretely however, no real similarities exist between that algorithm
and the tuple construction, as the main outcome of Fogarty et al.’s
findings is to use the λk labeling to define a new ranking function,
allowing them to take advantage of known results (mainly regard-
ing complexity) of rank-based algorithms. Whether this approach
is competitive against our construction is subject of future research
and would require implementing the algorithm in an efficient way.

5.2 Performance
Regardless of optimality, a desirable property of a complementa-
tion algorithm is of course performance on practical cases, which
generally avoid the worst-case scenario. For that we use the same
benchmarking protocol as in [13], i.e. we compare the number of
states produced by our construction against the three major types
of complementation algorithms: Slice-based [5], Rank-based [10],
and Safra-Piterman [8] on the set of randomly generated automata
used in the [13]. This collection holds a total of 11’000 automata
having 15 states, a transition density ranging from 1.0 to 3.0, and a
density of accepting states ranging from 0.1 to 1.0.



A Simple and Optimal Complementation Algorithm for Büchi Automata LICS ’18, July 9–12, 2018, Oxford, United Kingdom

For each algorithm we compare the number of states produced
by the implementation found in the GOAL tool8 [14] against our
own (Java) implementation of the algorithm. We shall note that this
implementation has been made available in the GOAL distribution
by Daniel Weibel under the name “Fribourg construction” [16].

The exact tuple algorithm we choose for this benchmark is the
one presented as A2 in Section 4.1.1, with an extra optimization
which aims at discarding all constructed states such that their state
description does not contain a 0-colored component. We give no
equivalence proof here, but it is easy to see that for a run of A2 to
permanently avoid accepting states, it has to contain an uninter-
rupted sequence of 0-colored components.

In the following tables we show the win ratio of our construction,
as defined by:

win-ratio := # instances where tuple outputs fewer states
# non-timed-out instance

where the time-out has been set to 60 seconds9. The table cells
where the tuple construction performs as well or better than the
opponent are shaded.

5.2.1 Slice-based construction
The slice-based construction we use for comparison is the one
described in [5], using these 3 optimizations proposed by GOAL10:
turnwise cut-point construction, reduce out-degree, and merge
adjacent 0-sets or *-sets.

The results are shown in Table 1. The ratio of instances where
one of the algorithms times out does not exceed 3%. These results
clearly show that the tuple construction performs better in nearly
all cases. The bottom line is interesting, and can be explained by
the fact that when the input automaton is universal, only the upper
part of the tuple construction is left, making it equivalent to the
slice-based construction in this case.

5.2.2 Rank-based construction
The rank-based construction against which we check our algorithm
is the optimal version described in [10]. The following optimizations
proposed by GOAL are used: tight-rank construction, turn-wise
cut-point construction, and reduce out-degree.

Due to the very large number of states produced by that con-
struction, we can only show partial results, and thus placed a dash
in the table when the rank-based construction is unable to produce
a significant number of complements within 60 seconds. The results
are shown in Table 2.

Again, the tuple construction outperforms the rank-based in
most cases. But it is interesting to see that there are areas where
the latter produces smaller automata, namely when the transition
density is low and the accepting density is high. That can probably
be explained by the fact that with many accepting states in the input
automaton, the tuple construction has to go through more steps
to create an accepting state because it takes longer to eliminate all
bad paths.

8http://goal.im.ntu.edu.tw
9each job was allocated one 2.57GHz processor and 2 GB memory.
10These heuristics allow reducing the size of the complement automata without having
too big an effect on the execution time. Other optimizations are available, like maxi-
mizing the acceptance set of the input automaton, but these have not been switched
on for fairness purposes, as we do not apply this kind of preprocessing on the tuple
construction either.

As with the slice-based, when the input is universal the two
constructions produce the same number of states (which explains
the line of 0’s). This can be explained by the fact that a tuple is
really a pre-order over the set of states, which can also be seen
as a ranking. So the rank-based and the slice-based constructions
degenerate to the same entity in that particular case.

5.2.3 Safra-Piterman construction
The third algorithm to be compared is the Safra-Piterman construc-
tion as described in [8]. It was described as giving the smallest
complements in [13]. The following optimizations were used in our
benchmark: use of Schewe’s history trees instead of compact Safra
trees, and reduction of transitions in the conversion from NPW to
NBW based on the idea in the slice-based construction.

Again, we do not enable any extra pre- or post-processing that
we do not also apply to the tuple construction. The number of
instance where any of the algorithms timed out is within 3%. The
results printed in Table 3 show that, although Safra-Piterman beats
the tuple algorithm in most cases, there are some cases where
the latter outperforms the former. This hints about the areas the
construction can further be improved.

6 Conclusion
We present in this paper a complementation procedure for Büchi-
automata that we claim is simple. By applying a construction based
on tuples of subsets (similar to slices), we create a deterministic
automaton that has the property that exactly those ω-words that
are not accepted by the original automaton for which the run of the
constructed automaton contains only finitely many state with com-
ponents that consist of accepting states and are continued. Similar
to the complementation of deterministic Büchi-automata, we create
the complement automaton by taking the constructed deterministic
automaton (the “upper” automaton) and a copy of it that we deco-
rate with a coloring of state components (the “lower” automaton).
An accepting continued component appears in a run of the lower
automaton if and only if the run is non-accepting. Therefore by
forcing the complement automaton to jump nondeterministically
from the upper to the lower automaton, we guarantee that it only
accepts ω-words that would create a run in the upper automaton in
which states with continued accepting components recur finitely
often (these are exactly the ω-words not accepted by the original
automaton).

By applying two simple improvement to the coloring of the
lower automaton, we can show that the resulting complement
automaton can in the worst case show a growth in O((0.7645n)n ),
the known lower bound for the complement automaton. So the
improved construction of the complement automaton is worst-case
optimal (sometimes also called tight). In the existing literature,
the factor 0.7645 in the worst-case bound was always estimated
numerically. In this paper we can give an exact expression for it:

1
ln(ϕ)·e , where ϕ is the golden ratio and e is Euler’s number.
An experimental evaluation shows that the worst-case optimal

construction performs worse when applied to benchmark automata
than the construction in which only one improvement of the state
component coloring is applied (a construction that is not worst-case
optimal). So we finally compare our complementation procedure
that performs best on the benchmark automata with other known
complementation algorithms for Büchi automata.

http://goal.im.ntu.edu.tw
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Transition density
Acc. density 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 94 100 98 99 99 100 100 100 99 98 99
0.2 95 99 97 100 100 100 100 100 100 100 100
0.3 97 97 99 100 100 100 100 100 100 100 100
0.4 89 96 100 100 100 100 100 100 100 99 100
0.5 93 96 100 100 99 100 100 100 100 100 100
0.6 87 100 99 99 100 100 100 100 100 100 100
0.7 76 88 98 95 100 100 100 100 100 100 100
0.8 69 81 91 98 100 100 100 100 100 100 100
0.9 55 63 84 99 100 100 100 100 100 100 100
1.0 0 0 0 0 0 0 0 0 0 0 0

Table 1. Win ratio in % of the tuple construction against the slice-based construction

Transition density
Acc. density 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 - - - - - - - - - - -
0.2 - - - - - - - - - - -
0.3 - - - - - - - - - - -
0.4 - - - - - - - - - - -
0.5 91 89 - - - - - - - - -
0.6 71 73 86 84 99 97 100 100 100 100 100
0.7 40 28 22 40 61 79 94 98 99 99 100
0.8 39 19 6 23 42 50 87 90 97 100 100
0.9 22 13 4 6 26 42 62 72 88 88 100
1.0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Win ratio in % of the tuple construction against the rank-based construction

Transition density
Acc. density 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 55 37 17 12 15 17 6 14 11 15 16
0.2 51 27 21 9 9 8 6 4 10 7 10
0.3 37 14 12 5 4 4 2 2 5 4 8
0.4 40 9 3 0 1 1 4 6 5 6 8
0.5 41 9 3 0 1 4 0 7 3 4 15
0.6 33 10 3 1 1 1 2 5 7 9 11
0.7 30 7 3 4 4 9 11 10 19 25 32
0.8 40 12 6 6 14 15 18 21 38 41 43
0.9 36 16 8 2 12 19 32 46 54 58 77
1.0 99 94 82 61 32 23 17 5 9 2 3

Table 3.Win ratio in % of the tuple construction against the Safra-Piterman construction
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