
Analysis and Verification of Message Passing
based Parallel Programs

Dhriti Khanna

IIIT Delhi, India
dhritik@iiitd.ac.in

Ph.D. co-advisors: Dr. Rahul Purandare, IIIT Delhi; Dr. Subodh Sharma, IIT Delhi

1 Introduction and Motivation

Many complex applications which have to tackle with the simulation tasks and
data analysis are prerogative to High-Performance Computing. And so, high data
volumes and performance requirements have held the parallel community devel-
opers with a clasp to deliver scalable, accurate, and most importantly bug-free so-
lutions. Writing correct and bug-free parallel programs is harder than sequential
programs because the participating entities interact in such non-deterministic
ways which leads to an exponentially huge number of schedule scenarios that
are difficult to anticipate and visualize before-hand. Message Passing (MP) is
a prominent programming model via which nodes of a distributed system com-
municate. In distributed MP based programs, the communication races leading
to data corruption or communication deadlocks assume importance. Program-
mers have to predict messaging patterns, perform data marshaling and compute
locations for coordination in order to design correct and efficient programs. Un-
fortunately, there is a shortage of verification and formal-method techniques that
can guarantee the development of correct solutions.

1.1 Research Problem

This thesis aims to provide efficient solutions to the problem of detection and
debugging of errors manifested because of the parallel paradigm. Discovering the
errors in MP parallel programs amounts to discovering unsafe communication
structure of the programs. The work in this dissertation is instantiated for the
pioneer API in MP programming model: Message Passing Interface (MPI). MPI
Programs are hard to reason about correctness because of non-determinism in-
troduced in the programs by wildcard receive calls and the different buffering
facilities provided by different library implementations as MPI standard does
not mandate that standard blocking sends will always block in the runtime.
Relevance: (i) Programmer productivity can be increased through formal ver-
ification tools which can prove the correctness of programs precisely, handle
problems of scale, and enhance coverage by avoiding redundant searches. (ii)
There are many emerging MP based technologies like MCAPI1 (fastest grow-

1www.multicore-association.org/workgroup/mcapi.php



ing industry standard MP library) that will benefit from the techniques and
approaches developed to verify MPI applications.

2 Literature and Research Challenges

Last few years have seen the development of variety of verification tools for MPI
applications employing different concepts. Traditional error-checking and debug-
ging tools are simply not equipped to handle parallel programming model. Tools
based on static model checking [5] and explicit-state runtime model checking [8]
are exhaustive but not scalable. Symbolic or predictive analyses which concer-
tize one execution and predict the behaviors of other executions [3] do address
the problem of interleaving explosion by symbolically encoding all the sched-
ules simultaneously, but the technique is a trace verification technique and can
not handle programs with multiple traces depending on the non-determinism in
communication.

Static Analysis, although leveraged extensively for multi-threaded shared
memory programs, remains a lesser scratched surface in the context of MPI
programs. This is primarily because the number of processes is an unknown pa-
rameter before execution. Other reasons are mentioned in Section 4. It will be
interesting to see how MPI programs can be statically analyzed and how the
static analysis can be utilized to solve bigger problems.

3 Research Progress

As a first step towards this thesis, we have completed the following work which
aims to outskirt the inadequacy of single-path trace verifiers [3] and non-scalability
of runtime verifiers [8]. We evaluated our prototype tool on benchmarks from
FEVS test suite [6] and from the previous research. Results show that the tool
performs drastically better than the state-of-the-art runtime verifiers.

Dynamic Symbolic Verification of MPI Programs

In this work, we provide a hybrid verification technique for discovering deadlocks
in multi-path message passing programs, i.e. those programs where the commu-
nicated message contents sent to a non-deterministic receiver affect the control
flow of the program and the further communications. The technique is sound
and complete under a fixed input and a given number of processes. We combine
dynamic verification with symbolic analysis to exhaustively explore the execu-
tions of the program as follows: (i) obtain a concrete run ρ of the program via
dynamic analysis; (ii) encode symbolically the set of feasible runs obtained from
the same set of events and same control-flow branches as observed in ρ. An SMT
solver is used to solve the formula encoding all interleavings corresponding with
this control path; (iii) check for violations of the deadlock absence property; and
(iv) if no property is violated, then alter the symbolic encoding to explore the



feasibility of taking an alternate control flow behavior which is different from ρ
and initiate a different concrete run in case of such a feasibility. The work has
been accepted in FM 2018.

4 Future Work

Towards the goal of helping developers create reliable software, we targeted the
analysis of multi-path MPI programs for deadlock absence with better scalabil-
ity. Following is the list of directions we will like to explore further:

1. Combining Symbolic Execution and Predictive Analysis: We have already
attempted to cover non-determinism aspect of the MPI programs for the de-
tection of deadlocks. It will be interesting to see how the predictive analysis
approach can be combined with symbolic execution on the whole program
to provide input coverage and to verify the program not just for a single
input but under any input. Achieving full coverage of the state space biases
the search towards the beginning of the space. For this problem, symbolic
execution can be combined with certain heuristic-based search methods to
limit the exploration space of the tool. Given a limited amount of verification
time, this can greatly prune the search space without compromising on code
coverage.

2. Sequential programs have been the target of many compiler analyses for
optimizations and performance benefits. Many static race detection tech-
niques have been worked upon for verifying properties for multi-threaded
programs [2,4]. However, there has been a dearth of static analysis techniques
for MPI programs. This is because of the following reasons: (i) The num-
ber of processes can not be known at compile time. Moreover, the number
of processes can be unbounded. (ii) The non-deterministic communication
primitives make it hard to analyze the program before execution. (iii) The
arithmetic expressions to specify process ranks in the communication calls
can be complex. In the past, only a few works have tried to extract CFG
out of an MPI application code partially [1, 7]. We want to develop some
methodology for static analysis of MPI, especially for the following purposes:

(i) Hybrid Program Analysis for Deadlock Avoidance: Since dynamic analy-
sis is inherently unsound, we think a wide variety of errors and some kind
of deadlocks can be found by static analysis of a CFG specific to MPI. This
will come at a cost of some definite false positives. Instead of putting efforts
on deciding whether a defect reported by the static analysis is genuine or
not (and then repairing), it will be interesting to see if it can be decided at
run-time if the error will actually be occurring and then mitigating it. The
idea is to develop some restrictive logic offline which is based on the results
of the static analysis. This can then be instrumented at appropriate places
in the code so as to avoid the situations arising due to property violations.
In the field of multi-threaded programming, deadlock avoidance has been



considered positively [9, 10]. This approach will reduce the burden from de-
velopers to code keeping the error situations in mind. They will be able to
focus solely on the problem to be solved and to code the application with
maximum performance optimizations.

(ii) Hybrid Program Analysis for State Space Reduction: Results of static
analysis can also be used to find the culprit wildcard receives for communi-
cation races and deadlocks and which must be examined at runtime. This
information about such wildcard receives can be further fed into a dynamic
scheduler to focus on property violations only in interleavings involving these
events. This will help prune out a large state space of the problem.

Acknowledgements

The author is thankful to her PhD advisors, collaborators, and reviewers for
their invaluable feedback and time. This research work is supported by TCS
Fellowship awarded to the author.

References

1. Bronevetsky, G.: Communication-sensitive static dataflow for parallel message
passing applications. In: CGO. (2009) 1–12

2. Engler, D., Ashcraft, K.: Racerx: Effective, static detection of race conditions and
deadlocks. In: SOSP. (2003) 237–252

3. Forejt, V., Joshi, S., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise predic-
tive analysis for discovering communication deadlocks in MPI programs. TOPLAS
39(4) (2017) 15:1–15:27

4. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: PLDI.
(2006) 308–319

5. Siegel, S.F.: Verifying parallel programs with MPI-spin. In: EuroMPI User’s Group
Meeting. (2007) 13–14

6. Siegel, S.F., Zirkel, T.K.: Fevs: A functional equivalence verification suite for high-
performance scientific computing. Mathematics in Computer Science (Dec 2011)
427–435

7. Strout, M.M., Kreaseck, B., Hovland, P.D.: Data-flow analysis for MPI programs.
In: ICPP. (2006) 175–184

8. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic verification of MPI
programs with reductions in presence of split operations and relaxed orderings. In:
CAV. (2008) 66–79

9. Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., Mahlke, S.A.: Gadara: Dynamic
deadlock avoidance for multithreaded programs. In: OSDI. (2008) 281–294

10. Zhang, L., Wang, C.: Runtime prevention of concurrency related type-state viola-
tions in multithreaded applications. In: ISSTA. (2014) 1–12


