Formal verification of neural networks

Georg Nithrenberg

fortiss - Landesforschungsinstitut des Freistaats Bayern
nuehrenberg@fortiss.org

Abstract. In the last few years, neural networks have become the most
powerful tool for perception tasks, especially in image processing, and
superior performances in these tasks sparked the desire to use them in
safety-critical systems, e.g., autonomous vehicles. However, verifying the
safety of systems that are using neural networks remains a challenge,
because neural networks raise certain dependability concerns (such as
adversarial inputs). Resulting from this need, the research topic of formal
verification of neural networks emerged. We identify some of the main
challenges of this field and discuss how to address them.

1 Introduction

In recent years, neural networks have become the most popular and powerful tool
for perception tasks such as image classification [9] and object detection [10,|12].
The superior performance of neural networks in these tasks has led to the desire
to use them in safety-critical systems, e.g., autonomous vehicles. However, it
remains a challenge to verify the safety of systems that are using neural networks,
since traditional methods of safety-engineering do not transfer well to neural
networks [3]. Although performing well, neural networks exhibit dependability
concerns, the most prominent one being so-called adversarial inputs, which fool
neural network classifiers [6]. Resulting from these needs, the research topic of
formal verification of neural networks emerged. The first result of using an SMT-
solver to verify multi-layer perceptrons with logistic activation functions [11],
was followed by a few years of inactivity. Then there was a recent burst of
works focussing on neural networks with piecewise-linear activation functions
(e.g., ReLU) |7, [8 5, |2]. We will briefly introduce the neural network verification
problem for piecewise-linear activation functions, outline the state-of-the-art and
propose a few directions for advancing the topic.

A neural network is a function f : R™ — R"L, where ng and nj, denote the
dimension of the input and the output space respectively. Let (®) € R™ and
xl) € R™ denote the input and output of the neural network: (&) = f(2(%)).
The neural network is comprised of L layers, where each layer [€ {0,..., L} has
n; nodes. Each layer is a function f; : R™-1 — R™ with input (=) and output
x® for all I € {1,..., L}, except the input layer where I = 0. The function of
a layer is defined by the layers weights w(") € R™*™ -1 biases b() € R™ and
activation function ¢(®) : R™ — R™.

V) = W (w® . =D 1 p0) vie{1,... L} (1)

We consider piecewise-linear activation functions, e.g., ReLU(z) = max(z,0). A
single ReLU-node is given by the following equation:
a:l(l) = max(w(l) AL bgl), 0) Vie{l,...,n} (2)

7

2 The neural network verification problem

The neural network verification problem has first been defined in [11]. Summa-
rizing multiple works [8 |5 2], we give the following definition:

Problem 1 (Neural network verification problem). Given an input set Z C R"™0
and an output set O C R"L, which are defined by a finite number of linear
constraints, and a neural network f the neural network verification problem is
to find an input z(®) € 7 such that f(:c(o)) € O or prove that no such input
exists.

The neural network verification problem is NP-hard [8] and the existing meth-
ods to encode and solve it are summarized in [1]. The definition of Problem
allows the encoding of various properties, where two cases can be distinguished:
(i) The neural network has interpretable input variables, such as measurements
from single sensors (e.g. ReLUplex case study [§], collision detection bench-
mark [5]), which allows to encode safety-properties. (ii) Single input variables
are not interpretable, which applies to most cases where neural networks are
used for image processing (e.g., image classification, object detection) and the
inputs are the pixels of the image. For these cases the only known application of
formal verification is to verify robustness properties of the neural network, i.e.,
prove the presence or absence of so-called adversarial examples.

There are four existing versions for solving Problem [I} Encoding it for an
SMT-solver [5] 8], encoding for MILP-solver |2], the adapted simplex algorithm
ReLUplex [8] and transforming it to an optimization problem and applying
branch-and-bound directly |1]. Currently, all methods achieve roughly the same
sizes of benchmarks [1]. The methods are based on the fact that is piecewise-
linear, and Problem [l] can be written as a conjunction of linear equations and
piecewise linear equations:

e (3a)
25 c O (3b)
iL‘Z(-l) = max(:cgl)/,O) vie{l,...,my} Vie{l,...,L} (3c)
ol = wl . g1 4 p? vie{l,...,n} Vie{l,...,L} (3d)

Modeling the ReLU activation functions for an SMT-solver is straightfor-
ward using if-then-else, for MILPs it is done by introducing a binary variable
encoding the two cases of the piecewise linearity and ReLUplex introduces a
special derivation rule to the simplex algorithm for these constraints. A further
crucial part exploited by all algorithms are lower and upper bounds on the vari-
ables V), which can be derived from lower and upper bounds on the input x(®,

denoted by l(o), 1(®) € R™ such that 19 < £(0 < 40 These input bounds are
usually given by the application domain of the neural network. It turns out that
the quality of the encoding heavily depends on the tightness of these bounds [5|
3. 12].

Even though neural network verification proves to be a hard to solve problem,
the hope is to speed-up the verification times by exploiting the structure of the
problem, in order to achieve applicability on industrial scale instances. Judging
the current methods in terms of potential for performance improvement, SMT
and MILP encodings have the drawback that they rely on solvers, which offer
limited capabilities to steer the solving process. Thus, we focus on improvement
strategies for the direct branch-and-bound technique [1], which is briefly outlined
in the next section. However, most of the proposed improvements have potential
benefits for all the verification methods, since all of them are exploiting the
piecewise linearity and benefit from tight variable bounds.

3 Branch-and-bound verification

In order to apply direct branch-and-bound the verification problem is trans-
formed into an optimization problem. Intuitively speaking, we optimize by “how
much” a property can be violated. The property encoded by Z and O is modeled
by appending additional layers to the neural network, where the final network
has only one output variable 2. If the minimum of x” is less than zero (resp.
greater than or equal to zero) the original property is unsatisfiable (resp. satis-
fiable) [1].

min 2 (4a)
subject to constraints (4b)
10) < 2(0) < 4, (4c)

The branch-and-bound method can be used to solve the optimization prob-
lem |1]. The branching is carried out over the input domain given by , by
splitting this hyper-rectangle into smaller hyper-rectangles to obtain branches.
Branch-and-bound is based on computing a lower and upper bound on the objec-
tive xy, for each branch. The goal is to prune large parts of the branch-and-bound
tree that cannot contain the optimum because their lower bound is greater than
the upper bound of another part of the tree. In the next section we will discuss
some approaches to improve the bounds, which is likely to lead to more pruning,
thus, enhancing the performance of the branch-and-bound algorithm.

4 Improvement strategies for branch-and-bound

4.1 Lower bounds

Lower bounds are computed by solving an LP-relaxation of 7 which is given
by replacing constraints with their convex hull (requiring pre-computed

bounds on the node-variables) [5]. Since the convex hull relaxation is already
tight for each node individually, further strengthening the LP-relaxation of the
whole problem could be done by exploiting information about the relationship
between different nodes. Furthermore, tightening lower and upper bounds on
individual variables and increasing the performance of computing these bounds
is a major area for improvement, because it directly effects the quality of the
LP-relaxation.

Another promising method for computing a lower bound for is based on
weak duality for mixed-integer programming [4].

4.2 Upper bounds

The method proposed by Bunel et al. |1] is randomly sampling points from the
input domain of the current node and evaluating the objective value (4al) to
obtain an upper bound. (Note that fixing 20 fixes all other variables, which is
equivalent to running the neural network inference.) We propose a simple heuris-
tic, which often yields a better upper bound: Instead of randomly sampling a
value for (9, we re-use a valuation of z(°) that is a result of solving the LP-
relaxation of optimization problem for the lower bound computation. Then,
as previously, an upper bound is obtained by evaluating the objective for a
fixed z(°). We have experimented this method on the PLANET collision detec-
tion benchmark [5] and compared the original algorithm of |1} to our modified
version using the minimum of random sampling and our upper bound heuris-
tic. In total there was a speed-up of about 12%, however, the speed-up is mainly
achieved on the SAT-instances, which appear to be easier to verify than UNSAT-
instances (see Table []).

Furthermore, an idea to be investigated is to use gradient-descent to improve
a given upper bound. Initial experiments indicate that gradient-descent can pro-
vide better upper bounds, but it has to be carefully implemented to achieve a
performance improvement.

BaB_orig|Bab_ub_heuristic

SAT-instances 837 s 337 s
UNSAT-instances 3578 s (3394 s
time out 1200 s |1200 s

total verification time|5615 s 4931 s

Table 1. Preliminary evaluation of the simple heuristic for improved upper bounds

4.3 Gradient-guided branching

Even the order, in which the branches are explored in the branch-and-bound
algorithm, may influence how much of the search tree can be pruned. We aim to
study branching strategies that should reach low objective values early by using
heuristics such as analyzing neural network gradients to decide which branch to
explore next.

References

Rudy Bunel et al. “A Unified View of Piecewise Linear Neural Network
Verification”. In: arXiv preprint arXiv:1711.00455 (2017).

Chih-Hong Cheng, Georg Niihrenberg, and Harald Rueff. “Maximum Re-
silience of Artificial Neural Networks”. In: Automated Technology for Ver-
ification and Analysis - 15rd International Symposium , ATVA. 2017.
C.-H. Cheng et al. “Neural Networks for Safety-Critical Applications -
Challenges, Experiments and Perspectives”. In: ArXiv e-prints (Sept. 2017).
arXiv:|1709.00911 [cs.SE]l

Krishnamurthy Dvijotham et al. “A Dual Approach to Scalable Verifica-
tion of Deep Networks”. In: arXiv preprint arXiv:1803.06567 (2018).
Ruediger Ehlers. “Formal verification of piece-wise linear feed-forward neu-
ral networks”. In: International Symposium on Automated Technology for
Verification and Analysis. Springer. 2017, pp. 269-286.

Tan Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672-2680.

Xiaowei Huang et al. “Safety Verification of Deep Neural Networks”. In:
Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. 2017, pp. 3—
29. por: |10.1007/978-3-319-63387-9_1. URL: https://doi.org/10.
1007/978-3-319-63387-9_1.

Guy Katz et al. “Reluplex: An Efficient SMT Solver for Verifying Deep
Neural Networks”. In: Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceed-
ings, Part I. 2017, pp. 97-117. DOI: [10.1007/978-3-319-63387-9_5.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097-1105.

Wei Liu et al. “Ssd: Single shot multibox detector”. In: Furopean confer-
ence on computer vision. Springer. 2016, pp. 21-37.

Luca Pulina and Armando Tacchella. “An abstraction-refinement approach
to verification of artificial neural networks”. In: Computer Aided Verifica-
tion. Springer. 2010, pp. 243-257.

Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”.
In: Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Con-
ference on. IEEE. 2017, pp. 6517-6525.

http://arxiv.org/abs/1709.00911
http://dx.doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
http://dx.doi.org/10.1007/978-3-319-63387-9_5

	Formal verification of neural networks

