SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

3 Da Shen

- ⁴ Department of Computer Science, University of Nebraska at Omaha
- ⁵ [South 67th Street, Omaha, NE 68182, USA]
- 6 dashen@unomaha.edu

7 Yuliya Lierler

- ⁸ Department of Computer Science, University of Nebraska at Omaha
- 9 [South 67th Street, Omaha, NE 68182, USA]
- 10 ylierler@unomaha.edu
- ¹¹ (b) https://orcid.org/0000-0002-6146-623X

12 — Abstract -

Many answer set solvers utilize Satisfiability solvers for search. Satisfiability Modulo Theory solvers extend Satisfiability solvers. This paper presents the CMODELS(DIFF) system that uses Satisfiability Modulo Theory solvers to find answer sets of a logic program. Its theoretical foundation is based on Niemela's characterization of answer sets of a logic program via so called level rankings. The comparative experimental analysis demonstrates that CMODELS(DIFF) is a viable answer set solver.

¹⁹ 2012 ACM Subject Classification Computing methodologies \rightarrow Logic programming and answer ²⁰ set programming, Software and its engineering \rightarrow Constraint and logic languages, Theory of ²¹ computation \rightarrow Constraint and logic programming

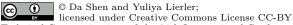
Keywords and phrases answer set programming, satisfiability modulo theories, constraint satis faction processing

²⁴ Digital Object Identifier 10.4230/OASIcs.ICLP.2018.11

²⁵ 1 Introduction

This paper describes a new answer set solver CMODELS(DIFF). Its theoretical foundation lies 26 on the generalizations of Niemela's ideas. Niemela [19] characterized answer sets of a normal 27 logic program as models of a propositional formula called program's completion that satisfy 28 "level ranking" requirements. In this sense, this system is a close relative of an earlier answer 29 set solver LP2DIFF developed by Janhunen et al. [10]. Yet, LP2DIFF only accepts programs 30 of a very restricted form. For example, neither choice rules nor aggregate expressions are 31 allowed. Solver CMODELS(DIFF) permits such important modeling constructs in its input. 32 Also, unlike LP2DIFF, the CMODELS(DIFF) system is able to generate multiple solutions. 33

The CMODELS(DIFF) system follows the tradition of answer set solvers such as ASSAT [16] 34 and CMODELS [11]. In place of designing specialized search procedures targeting logic 35 programs, these tools compute a program's completion and utilize Satisfiability solvers [9] 36 - systems for finding satisfying assignments for propositional formulas – for search. Since 37 not all models of a program's completion are answer sets of a program, both ASSAT and 38 CMODELS implement specialized procedures (based on loop formulas [16]) to weed out such 39 models. Satisfiability Modulo Theory (SMT) solvers [2] extend Satisfiability solvers. They 40 process formulas that go beyond propositional logic and may contain, for example, integer 41 linear expressions. The CMODELS(DIFF) system utilizes this fact and translates a logic 42



Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018). Editors: Alessandro Dal Palu', Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 11; pp. 11:1–11:14 OpenAccess Series in Informatics OASICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

11:2 SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

⁴³ program into an SMT formula so that any model of this formula corresponds to an answer ⁴⁴ set of the program. It then uses SMT solvers for search. Unlike CMODELS or ASSAT, the ⁴⁵ CMODELS(DIFF) system does not need an additional step to weed out unwanted models. Also, ⁴⁶ it utilizes SMT-LIB – a standard input language of SMT solvers [1] – to interface with these ⁴⁷ systems. This makes its architecture open towards new developments in the realm of SMT ⁴⁸ solving. There is practically no effort involved in incorporating a new SMT system into the ⁴⁹ CMODELS(DIFF) implementation.

Creation of the CMODELS(DIFF) system was inspired by the development of recent 50 constraint answer set programming solver EZSMT [21] that utilizes SMT solvers for finding 51 solutions for "tight" constraint answer set programs. On the one hand, CMODELS(DIFF) 52 restricts its attention to pure answer set programs. On the other hand, it goes beyond 53 tight programs. In the future, we will extend CMODELS(DIFF) to accept non-tight constraint 54 answer set programs. The theory developed in this work paves the way for such an extension. 55 Lierler and Susman [13] demonstrate that SMT formulas are strongly related to constraint 56 programs [17]. Many efficient constraint solvers¹ exist. Majority of these systems focus 57 on finite-domain constraint problems. The theoretical contributions of this work provide a 58 foundation for developing a novel constraint-solver-based method in processing logic programs. 59 Currently, CMODELS(DIFF) utilizes SMT-LIB to interface with SMT solvers. By producing 60

output in MINIZINC – a standard input language of constraint solvers [18] – in place of
 SMT-LIB, CMODELS(DIFF) will become a constraint-based answer set solver. This is another
 direction of future work.

The outline of the paper is as follows. We start by reviewing the concepts of a logic program, a completion, tightness and an SMT logic SMT(IL). We then present a key concept of this work, namely, a level ranking; and state theoretical results. Section 4 presents transformations from logic programs to SMT(IL) by means of variants of level rankings. After that, we introduce the architecture of the CMODELS(DIFF) system and conclude with comparative experimental analysis.

70 **2** Preliminaries

⁷¹ A vocabulary is a finite set of propositional symbols also called atoms. As customary, a *literal* ⁷² is an atom *a* or its negation, denoted $\neg a$. A *(propositional) logic program*, denoted by Π , ⁷³ over vocabulary σ is a finite set of *rules* of the form

$$a \leftarrow b_1, \dots, b_\ell, \text{ not } b_{\ell+1}, \dots, \text{ not } b_m, \text{ not not } b_{m+1}, \dots, \text{ not not } b_n$$

$$(1)$$

where a is an atom over σ or \bot , and each b_i , $1 \le i \le n$, is an atom or symbol \top and \bot in σ . Sometimes we use the abbreviated form of rule (1)

$$\pi a \leftarrow B$$
 (2)

where B stands for the right hand side of an arrow in (1) and is also called a *body*. We identify rule (1) with the propositional formula

$$b_1 \wedge \ldots \wedge b_{\ell} \wedge \neg b_{\ell+1} \wedge \ldots \wedge \neg b_m \wedge \neg \neg b_{m+1} \wedge \ldots \wedge \neg \neg b_n \to a$$

$$(3)$$

and B with the propositional formula

$$b_1 \wedge \ldots \wedge b_\ell \wedge \neg b_{\ell+1} \wedge \ldots \wedge \neg b_m \wedge \neg \neg b_{m+1} \wedge \ldots \wedge \neg \neg b_n.$$

$$\tag{4}$$

82

¹ http://www.minizinc.org/

Note that (i) the order of terms in (4) is immaterial, (ii) not is replaced with classical 83 negation (\neg) , and (iii) comma is replaced with conjunction (\wedge) . When the body is empty it 84 corresponds to the empty conjunction or \top . Expression $b_1 \wedge \ldots \wedge b_\ell$ in formula (4) is referred 85 to as the *positive* part of the body and the remainder of (4) as the *negative* part of the body. 86 The expression a is the *head* of the rule. When a is \perp , we often omit it and say that the 87 head is empty. We denote the set of nonempty heads of rules in Π by $hd(\Pi)$. We call a rule 88 whose body is empty a *fact*. In such cases, we drop the arrow. We sometimes may identify a 89 set X of atoms with the set of facts $\{a \mid a \in X\}$. 90

We say that a set X of atoms *satisfies* a rule (1) if X satisfies a formula (3). The reduct Π^X of a program Π relative to a set X of atoms is obtained by first removing all rules (1) such that X does not satisfy its negative part $\neg b_{\ell+1} \land \ldots \land \neg b_m \land \neg \neg b_{m+1} \land \ldots \land \neg \neg b_n$ and replacing all of its remaining rules with $a \leftarrow b_1, \ldots, b_\ell$. A set X of atoms is an *answer set*, if it is a minimal set that satisfies all rules of Π^X [15].

Ferraris and Lifschitz [6] show that a choice rule $\{a\} \leftarrow B$ can be seen as an abbreviation for a rule $a \leftarrow not not a, B$. We adopt this abbreviation here. Choice rules were introduced in [20] and are commonly used in answer set programming languages.

It is customary for a given vocabulary σ , to identify a set X of atoms over σ with (i) a complete and consistent set of literals over σ constructed as $X \cup \{\neg a \mid a \in \sigma \setminus X\}$, and respectively with (ii) an assignment function or interpretation that assigns truth value *true* to every atom in X and *false* to every atom in $\sigma \setminus X$.

¹⁰³ Consider sample programs listed in Figure 1. Program Π_1 has two answer sets, namely, ¹⁰⁴ $\{a, c\}$ and an empty set. Program Π_2 has two answer sets: $\{a, b, c\}$ and an empty set.

		$Comp(\Pi_1)$	$Comp(\Pi_2)$
Π_1	Π_2	$\neg \neg c \rightarrow c.$	$\neg \neg c \rightarrow c.$
$\{c\}.$		$c \to a.$ $c \to \neg \neg c.$	$c \rightarrow a.$
$a \leftarrow c.$	$a \leftarrow c$.	$c \rightarrow \neg \neg c.$	$b \rightarrow a.$
	$\begin{array}{c} a \leftarrow b. \\ b \leftarrow a. \end{array}$	$a \rightarrow c.$	$a \rightarrow b.$
	$b \leftarrow a$.		$c \rightarrow \neg \neg c.$
			$a \to c \lor b.$

Figure 1 Sample programs and their completions.

105 Completion and Tightness

Let σ be a vocabulary and Π be a program over σ . For every atom a in Π , by $Bodies(\Pi, a)$ we denote the set composed of the bodies B appearing in the rules of the form $a \leftarrow B$ in Π . The completion of Π [3], denoted by $Comp(\Pi)$, is the set of classical formulas that consists of the rules (1) in Π (recall that we identify rule (1) with implication (3)) and the implications

$$a \to \bigvee_{a \leftarrow B \in \Pi} B \tag{5}$$

for all atoms a in σ . When set $Bodies(\Pi, a)$ is empty, the implication (5) has the form $a \to \bot$. When a rule (2) is a fact a, then we identify this rule with the unit clause a.

For example, completions of programs Π_1 and Π_2 are presented in Figure 1.

For the large class of logic programs, called *tight*, their answer sets coincide with models of their completion [5, 4]. This is the case for program Π_1 (we illustrate that Π_1 is tight, shortly). Yet, for non-tight programs, every answer set is a model of completion but not

11:4 SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

¹¹⁷ necessarily the other way around. For instance, set $\{a, b\}$ is a model of $Comp(\Pi_2)$, but not ¹¹⁸ an answer set of Π_2 . It turns out that Π_2 is not tight.

Tightness is a syntactic condition on a program that can be verified by means of program's dependency graph. The *dependency graph* of Π is the directed graph G such that

121 the nodes of G are the atoms occurring in Π , and

for every rule (1) in Π whose head is an atom, G has an edge from atom a to each atom b_1, \ldots, b_ℓ .

¹²⁴ A program is called *tight* if its dependency graph is acyclic.

For example, the dependency graph of program Π_1 consists of two nodes, namely, a and c, and a single edge from a to c. This graph is acyclic and hence Π_1 is tight. On the other hand, it is easy to see that the graph of Π_2 is not acyclic.

¹²⁸ Logic SMT(IL)

¹²⁹ We now introduce the notion of Satisfiability Modulo Theory (SMT) [2] for the case when ¹³⁰ Linear Integer Arithmetic is a considered theory. We denote this SMT instance by SMT(IL).

Let σ be a vocabulary and χ be a finite set of integer variables. The set of *atomic formulas* of SMT(IL) consists of propositions in σ and linear constraints of the form

$$a_1 x_1 \pm \dots \pm a_n x_n \bowtie a_{n+1} \tag{6}$$

where a_1, \ldots, a_{n+1} are integers and x_1, \ldots, x_n are variables in χ, \pm stands for + or -, and \bowtie belongs to $\{<, >, \leq, \geq, =, \neq\}$. When $a_i = 1$ $(1 \le i \le n)$ we may omit it from the expression. The set of SMT(IL) formulas is the smallest set that contains the atomic formulas and is closed under \neg and conjunction \land . Other connectives such as $\top, \perp, \lor, \rightarrow$, and \leftrightarrow can be defined in terms of \neg and \land as customary.

139 A valuation τ consists of a pair of functions

- 140 $= \tau_{\sigma} : \sigma \to \{true, false\}$ and
- 141 $\tau_{\chi}: \chi \to \mathbb{Z}$, where \mathbb{Z} is the set of integers.
- ¹⁴² A valuation interprets all SMT(IL) formulas by defining
- ¹⁴³ $= \tau(p) = \tau_{\sigma}(p)$ when $p \in \sigma$,

 $= \tau(a_1x_1 \pm \cdots \pm a_nx_n \bowtie a_{n+1}) = true \text{ iff } a_1\tau_{\chi}(x_1) \pm \cdots \pm a_n\tau_{\chi}(x_n) \bowtie a_{n+1} \text{ holds},$

¹⁴⁵ and applying the usual rules for the Boolean connectives.

¹⁴⁶ We say that an SMT(IL) formula Φ is satisfied by a valuation τ when $\tau(\Phi) = true$. A set ¹⁴⁷ of SMT(IL) formulas is satisfied by a valuation when every formula in the set is satisfied by ¹⁴⁸ this valuation. We call a valuation that satisfies an SMT(IL) formula a *model*.

¹⁴⁹ **3** Level Rankings

¹⁵⁰ Niemela [19] characterized answer sets of "normal" logic programs in terms of "level rankings." ¹⁵¹ Normal programs consist of rules of the form (1), where n = m and a is an atom. Lierler and ¹⁵² Susman [13] generalized the concept of level ranking to programs considered in this paper ¹⁵³ that include choice rules and denials (rules with empty head).

By N we denote the set of natural numbers. For a rule (2), by B^+ we denote its positive part and sometimes identify it with the set of atoms that occur in it, i.e., $\{b_1, \ldots, b_l\}$. For a program Π , by $At(\Pi)$ we denote the set of atoms occurring in it.

Definition 1. For a logic program Π and a set X of atoms over $At(\Pi)$, a function lr: $X \to \mathbb{N}$ is a *level ranking* of X for Π when for each $a \in X$, there is B in *Bodies*(Π, a) such that X satisfies B and for every $b \in B^+$ it holds that $\ln(a) - 1 \ge \ln(b)$.

D. Shen and Y. Lierler

Niemela [19] observed that for a normal logic program, a model X of its completion is also its answer set when there is a level ranking of X for the program. Lierler and Susman [13] generalized this result to programs with double negation *not not*:

Theorem 2 (Theorem 1 [13]). For a program Π and a set X of atoms that is a model of its completion $Comp(\Pi)$, X is an answer set of Π if and only if there is a level ranking of X for Π .

The nature of a level ranking is such that there is an infinite number of level rankings for the same answer set of a program. Theorem below illustrates that we can add a *single* linear constraint to limit the number of level rankings by utilizing the size of a program.

▶ **Theorem 3.** For a logic program Π and its answer set X, we can always construct a level ranking of X for Π such that, for every $a \in X$, $lr(a) \leq |At(\Pi)|$.

¹⁷¹ **Proof.** Since there is an answer set X, by Theorem 2 there exists some level ranking lr' of

¹⁷² X for Π . Then, we can always use the level ranking lr' to construct a level ranking lr of X ¹⁷³ for Π such that, for every $a \in X$, $lr(a) \leq |At(\Pi)|$. Below we describe the method.

For an integer y, by s(y) we denote the following set of atoms

$$\{a \mid a \in X, lr'(a) = y\}.$$

Let Y be the set of integers so that

$$\{y \mid a \in X, lr'(a) = y\}.$$

Let Y^s denote the sorted list $[y_1, \ldots, y_k]$ constructed from all integers of Y, such that $y_1 < y_2 < \ldots < y_k$. Note that $y_i > y_j$ if and only if i > j. Obviously, $|Y| \le |At(\Pi)|$. Thus, $k \le |At(\Pi)|$. For every element y_i in Y^s and every atom $a \in s(y_i)$, we assign lr(a) = i. Consequently, $lr(a) \le |At(\Pi)|$.

Now we prove that lr is indeed a level ranking. According to the definition of lr', for each 178 atom $a \in X$, there exists B in $Bodies(\Pi, a)$ such that X satisfies B and for every $b \in B^+$ 179 it holds that $\ln'(a) - 1 \ge \ln'(b)$. We show that $\ln(a) - 1 \ge \ln(b)$ also holds for each b in this 180 B^+ . Atoms a, b belong to some sets $s(y_{k_a})$ and $s(y_{k_b})$ respectively, where $k_a, k_b \leq k$. By 181 the definition of $s(\cdot)$, $y_{k_a} = lr'(a)$ and $y_{k_b} = lr'(b)$. Since lr'(a) > lr'(b), $y_{k_a} > y_{k_b}$. Since 182 for any i and j, $y_i > y_j$ if and only if i > j, we derive that $k_a > k_b$. By the construction of 183 $lr, lr(a) = k_a$ and $lr(b) = k_b$. Consequently, $lr(a) - 1 \ge lr(b)$ also holds. Thus, lr is a level 184 ranking by definition. 185

186 Strong level ranking

Niemela [19] introduced the concept of a strong level ranking so that only one strong level ranking exists for an answer set. It is obviously stricter than the condition captured in Theorem 3. Yet, the number of linear constraints in formulating the conditions of strong level ranking is substantially greater. We now generalize the concept of a strong level ranking to the case of logic programs considered here and then state the formal result on the relation of answer sets and strong level rankings.

Definition 4. For a logic program Π and a set X of atoms over $At(\Pi)$, a function lr: $X \to \mathbb{N}$ is a *strong level ranking* of X for Π when lr is a level ranking and for each $a \in X$ the following conditions hold:

196 **1.** If there is B in $Bodies(\Pi, a)$ such that X satisfies B and B^+ is empty, then lr(a) = 1.

¹⁹⁷ **2.** For every B in $Bodies(\Pi, a)$ such that X satisfies B and B^+ is not empty, there is at least one $b \in B^+$ such that $lr(b) + 1 \ge lr(a)$.

▶ **Theorem 5.** For a program Π and a set X of atoms that is a model of its completion Comp(Π), X is an answer set of Π if and only if there is a strong level ranking of X for Π .

Proof. This proof follows the argument provided for Theorem 2 in [19], but respects the terminology used here. We start by defining an operator $T_{\Pi}(I)$ for a program Π and a set I over $At(\Pi) \cup \bot$ as follows:

$$T_{\Pi}(I) = \{a \mid a \leftarrow B \in \Pi, I \text{ satisfies } B\}$$

For this operator we define

 $T_{\Pi} \uparrow 0 = \emptyset,$

and for i = 0, 1, 2, ...

$$T_{\Pi} \uparrow (i+1) = T_{\Pi}(T_{\Pi} \uparrow i).$$

²⁰¹ Left-to-right: Assume X is an answer set of Π . We can construct a strong level ranking lr²⁰² of X for Π using the $T_{\Pi X}(\cdot)$ operator. As X is an answer set of Π , we know that $X = T_{\Pi X} \uparrow \omega$ ²⁰³ and for each $a \in X$ there is a unique *i* such that $a \in T_{\Pi X} \uparrow i$, but $a \notin T_{\Pi X} \uparrow (i-1)$. Let ²⁰⁴ lr(a) = i. We now illustrate that lr is indeed a strong level ranking.

First, we illustrate that lr is a level ranking. For $a \in X$ there is a rule $a \leftarrow B$ of the form (1) such that $a \leftarrow b_1, \ldots, b_l \in \Pi^X$ and $T_{\Pi^X} \uparrow (i-1)$ satisfies $b_1 \land \cdots \land b_l$. Consequently, for every b_j in $\{b_1, \ldots, b_l\}$, $lr(b_j) \leq i-1$. Thus, $lr(a) - 1 \geq lr(b_j)$. Also, from the way the reduct is constructed, it follows that X satisfies body B of rule $a \leftarrow B$.

Second, we show that Condition 1 of the definition of strong level ranking holds for lr. If there is $a \leftarrow B \in \Pi$ such that X satisfies B and B^+ is empty, then $a \leftarrow \top$ is in Π^X . By definition of the $T_{\Pi^X}(\cdot)$ operator, $a \in T_{\Pi^X} \uparrow 1$. Consequently, lr(a) = 1 holds.

Third, we demonstrate that Condition 2 holds for lr. For $a \in X$, by the construction of lr212 using the $T_{\Pi^X}(\cdot)$ operator we know that there is a unique *i* such that $lr(a) = i, a \in T_{\Pi^X} \uparrow i$, 213 but $a \notin T_{\Pi^X} \uparrow (i-1)$. Proof by contradiction. Assume that there is a rule $a \leftarrow B \in \Pi$ 214 such that X satisfies B and B^+ is not empty, but for all $b \in B^+$, lr(b) + 1 < lr(a) holds. 215 Then for all $b \in B^+$, lr(b) < lr(a) - 1. Thus, lr(b) < i - 1. It follows that all $b \in B^+$ 216 belong to $T_{\Pi^X} \uparrow (i-2)$. Hence, by the definition of $T_{\Pi^X}(\cdot)$ operator, $a \in T_{\Pi^X} \uparrow (i-1)$, 217 which contradicts that $a \notin T_{\Pi x} \uparrow (i-1)$. Thus, there is at least one $b \in B^+$ such that 218 $\ln(b) + 1 > \ln(a).$ 219

Right-to-left: Assume that there is a strong level ranking of X for Π . By the definition, it is also a level ranking. Recall that X is a model of $Comp(\Pi)$. By Theorem 2, X is an answer set of Π .

223 SCC level ranking

Niemela [19] illustrated how one can utilize the structure of the dependency graph corresponding to a normal program to reduce the number of linear constraints in capturing conditions
similar to these of level ranking. We now generalize these results to logic programs with
doubly negated atoms and denials.

Recall that a strongly connected component of a directed graph is a maximal set V of nodes such that each pair of nodes in V is reachable from each other. We call a set of atoms in a program Π a strongly connected component (SCC) of Π when it is a strongly connected component in the dependency graph of Π . The SCC including an atom a is denoted by SCC(a). A non-trivial SCC is an SCC that consists of at least two atoms. We denote the set of atoms in all non-trivial SCCs of Π by $NT(\Pi)$. ▶ **Definition 6.** For a logic program Π and a set X of atoms over $At(\Pi)$, a function lr: $X \cap NT(\Pi) \to \mathbb{N}$ is a *SCC level ranking* of X for Π when for each $a \in X \cap NT(\Pi)$, there is B in *Bodies*(Π, a) such that X satisfies B and for every $b \in B^+ \cap SCC(a)$ it holds that $1r(a) - 1 \ge lr(b)$.

The byproduct of the definition of SCC level rankings is that for tight programs SCC level ranking trivially exists since it is a function whose domain is empty. Thus no linear constraints are produced.

▶ **Theorem 7.** For a program Π and a set X of atoms that is a model of its completion ²⁴¹ $Comp(\Pi)$, X is an answer set of Π if and only if there is an SCC level ranking of X for Π .

This is a generalization of Theorem 4 in [19]. Its proof follows the lines of the proof presented there with the reference to Theorem 2.

▶ **Theorem 8.** For a satisfiable logic program Π and its answer set X, we can always construct an SCC level ranking of X for Π such that, for every $a \in X$, $lr(a) \leq |SCC(a)|$.

This theorem can be proved by applying the similar argument as in the proof of Theorem 3 to each SCC. This result allows us to set minimal upper bounds for lr(a) in order to reduce search space.

Further, Niemela [19] introduces the concept of strong SCC level ranking and states a similar result to Theorem 7 for that concept. It is straightforward to generalize these results to logic programs considered here.

In this section we present a mapping from a logic program to SMT(IL) such that the models of a constructed SMT(IL) theory are in one-to-one correspondence with answer sets of the program. Thus, any SMT solver capable of processing SMT(IL) expressions can be used to find answer sets of logic programs. The developed mappings generalize the ones presented by Niemela [19].

For a rule $a \leftarrow B$ of the form (1), the auxiliary atom β_B , equivalent to its body, is defined as

$$\beta_B \leftrightarrow b_1 \wedge \ldots \wedge b_\ell \wedge \neg b_{\ell+1} \wedge \ldots \wedge \neg b_m \wedge b_{m+1} \wedge \ldots \wedge b_n \tag{7}$$

When the body of a rule consist of a single element, no auxiliary atom is introduced (the single element itself serves the role of an auxiliary atom).

Let Π be a program. We say that an atom a is a *head atom* in Π if it is the head of some rule. Any atom a in Π such that

²⁶⁶ it is a head atom, or

it occurs in some positive part of the body of some rule whose head is an atom,

we associate with an integer variable denoted by lr_a . We call such variables level ranking variables. For each head atom a in Π , we construct an SMT(IL) formula

$$a \to \bigvee_{a \leftarrow B \in \Pi} (\beta_B \land \bigwedge_{b \in B^+} lr_a - 1 \ge lr_b).$$
(8)

²⁷¹ We call the conjunction of formulas (8) for the head atoms in program Π a *level ranking* ²⁷² *formula* of Π .

For example, the level ranking formula of program Π_2 in Figure 1 follows

$$(c \to \neg \neg c) \land (a \to (c \land lr_a - 1 \ge lr_c) \lor (b \land lr_a - 1 \ge lr_b)) \land (b \to a \land lr_b - 1 \ge lr_a).$$
(9)

Theorem 9. For a logic program Π and the set F of SMT(IL) formulas composed of Comp(Π) and a level ranking formula of Π

1. If a set X of atoms is an answer set of Π , then there is a satisfying valuation τ for F such that $X = \{a \mid a \in At(\Pi) \text{ and } \tau(a) = true\}.$

279 **2.** If valuation τ is satisfying for F, then the set $\{a \mid a \in At(\Pi) \text{ and } \tau(a) = true\}$ is an 280 answer set for Π .

This is a generalization of Theorem 6 in [19]. Its proof follows the lines of the proof presented there with the reference to Theorem 2.

283 SCC level ranking

For each atom a in the set $NT(\Pi)$, we introduce an auxiliary atom ext_a . If there exists some rule $a \leftarrow B$ in Π such that $B^+ \cap SCC(a) = \emptyset$, then we construct an SMT(IL) formula

$$ext_a \leftrightarrow \bigvee_{a \leftarrow B \in \Pi \text{ and } B^+ \cap SCC(a) = \emptyset} \beta_B; \tag{10}$$

²⁸⁷ otherwise, we construct a formula

$$\neg ext_a. \tag{11}$$

 $_{\rm 289}$ We also introduce an $\rm SMT(IL)$ formula:

$$a \to ext_a \lor \bigvee_{a \leftarrow B \in \Pi \ and \ B^+ \cap SCC(a) \neq \emptyset} (\beta_B \land \bigwedge_{b \in B^+ \cap SCC(a)} lr_a - 1 \ge lr_b).$$
(12)

²⁹¹ We call the conjunction of formulas (10), (11) and (12) a SCC level ranking formula of Π .

For instance, $NT(\Pi_1)$ is empty, so we introduce no SCC level ranking formula for program Π_1 . The SCC level ranking formula of program Π_2 follows

$$(ext_a \leftrightarrow c) \land \neg ext_b \land (a \to ext_a \lor (b \land lr_a - 1 \ge lr_b)) \land (b \to ext_b \lor (a \land lr_b - 1 \ge lr_a)).$$
(13)

The claim of Theorem 9 holds also when we replace a level ranking formula of Π with an SCC level ranking formula of Π in its statement.

297 Strong level ranking

For each rule $a \leftarrow B$ in program Π we construct an SMT(IL) formula

$$a \wedge \beta_B \to lr_a = 1 \qquad \text{when } B^+ = \emptyset,$$

$$a \wedge \beta_B \to \bigvee_{b \in B^+} lr_b + 1 \ge lr_a \quad \text{otherwise.}$$
(14)

We call the conjunction of formulas (8) and (14) a strong level ranking formula of Π .

For example, the strong level ranking formula of program Π_2 is a conjunction of formula (9) and formula

$$\begin{array}{l} (c \land \neg \neg c \to lr_c = 1) \land (a \land c \to lr_c + 1 \ge lr_a) \land \\ (a \land b \to lr_b + 1 \ge lr_a) \land (b \land a \to lr_a + 1 \ge lr_b) \end{array}$$

We now state a similar result to Theorem 9 that makes an additional claim on one-to-one correspondence between the models of a constructed SMT(IL) formula with the use of strong level ranking formula and answer sets of a program. **Theorem 10.** For a logic program Π and the set F of SMT(IL) formulas composed of Comp(Π) and a strong level ranking formula of Π

1. If a set X of atoms is an answer set of Π , then there is a satisfying valuation τ for F such that $X = \{a \mid a \in At(\Pi) \text{ and } \tau(a) = true\}.$

20. If valuation τ is satisfying for F, then the set $\{a \mid a \in At(\Pi) \text{ and } \tau(a) = true\}$ is an answer set for Π .

3. If valuations τ and τ' satisfy F and are distinct, then

$$\{a \mid a \in At(\Pi) \text{ and } \tau(a) = true\} \neq \{a \mid a \in At(\Pi) \text{ and } \tau'(a) = true\}.$$

310 Strong SCC level ranking

For each atom $a \in NT(\Pi)$, we construct a formula

$$s_{12} \qquad ext_a \to lr_a = 1,\tag{15}$$

and for each rule $a \leftarrow B$ such that $B^+ \cap SCC(a) \neq \emptyset$, we introduce a formula

$$a \wedge \beta_B \to \bigvee_{b \in B^+ \cap SCC(a)} lr_b + 1 \ge lr_a.$$

$$(16)$$

We call the conjunction of formulas (10), (11), (12), (15) and (16) a strong SCC level ranking formulas of Π .

For instance, $NT(\Pi_1)$ is empty, so we introduce no strong SCC level ranking formula for program Π_1 . The strong SCC level ranking formula of program Π_2 is a conjunction of formula (13) and formula

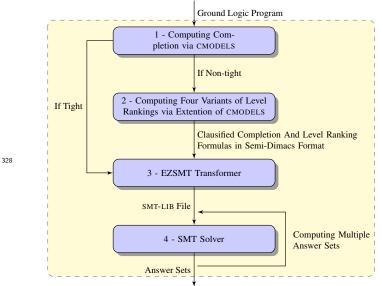
$$(ext_a \to lr_a = 1) \land (ext_b \to lr_b = 1) \land (a \land b \to lr_b + 1 \ge lr_a) \land (b \land a \to lr_a + 1 \ge lr_b).$$

The claim of Theorem 10 holds also when we replace a strong level ranking formula of Π with a strong SCC level ranking formula of Π in its statement.

5 The CMODELS(DIFF) system

We are now ready to describe the the $CMODELS(DIFF)^2$ system in detail. It is an extension of 320 the CMODELS [11] system. Figure 2 illustrates the pipeline architecture of CMODELS(DIFF). 321 This system takes an arbitrary (tight or non-tight) logic program in the language supported 322 by CMODELS as an input. These logic programs may contain such features as choice rules 323 and aggregate expressions. The rules with these features are translated by CMODELS [11] 324 into rules considered here. The CMODELS(DIFF) system translates a logic program into 325 SMT(IL) formulas, after which an SMT solver is called to find models of these formulas (that 326 correspond to answer sets). 327

² CMODELS(DIFF) is posted at https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php



(1,2) Computing Completion and Level Ranking Formulas

The CMODELS(DIFF) system utilizes the original algorithm of CMODELS to compute completion, during which CMODELS determines whether the program is tight or not. If the program is not tight, the corresponding level ranking formula is added.

Figure 2 CMODELS(DIFF) Pipeline

Flags -levelRanking, -levelRankingStrong, -SCClevelRanking, and 329 -SCClevelRankingStrong instruct CMODELS(DIFF) to construct a level ranking formula, 330 a strong level ranking formula, a SCC level ranking formula, and a strong SCC level ranking 331 formula, respectively. And, -SCClevelRanking is chosen by default. Finally, completion and 332 the level ranking formula are clausified using the same technique as in original CMODELS. 333 The CMODELS(DIFF) system outputs the resulting clauses into a text file in semi-Dimacs 334 format [21]. 335

336 (3, 4) Transformation and Solving

The transformer is taken from EZSMT v1.1. It converts the semi- Dimacs output from step (2) into SMT-LIB syntax (SMT-LIB is a standard input language for SMT solvers [1]). By default, the SMT-LIB output contains an instruction that sets the logic of SMT solvers to Linear Integer Arithmetic. If the transformer is invoked with the parameter difference-logic, then the SMT-LIB output sets the logic of SMT solvers to Difference Logic instead.

Finally, one of the SMT solvers CVC4, Z3, or YICES is called to compute models by using flags -cvc4, -z3, or -yices. (In fact, any other SMT solver supporting SMT-LIB can be utilized.) The CMODELS(DIFF) system post-processes the output of the SMT solvers mentioned above to produce answer sets in a typical format disregarding any auxiliary atoms or integer variables that are created during the system's execution.

The CMODELS(DIFF) system allows us to compute multiple answer sets. Currently, SMT 347 solvers typically find only a single model. We design a process to enumerate all models. 348 For a logic program Π , after an SMT solver finds a model and exits, the CMODELS(DIFF) 349 system constructs a clause that consists of (i) atoms in $At(\Pi)$ that are assigned false by the 350 model and (i) negations of atoms in $At(\Pi)$ that are assigned true by the model. This clause 351 is added into the SMT-LIB formula previously computed. Then, the SMT solver is called 352 again taking the new input. The process is performed repeatedly, until the SMT-LIB formula 353 becomes unsatisfiable. 354

In summary, CMODELS(DIFF) has eight possible configurations. We can choose one from the four variants of level ranking formulas, and choose a logic from either Linear Integer Arithmetic or Difference Logic for the invoked SMT solver.

D. Shen and Y. Lierler

358 **6** Experiments

We benchmark CMODELS(DIFF) on seven problems, to compare its performance with that of 350 other ASP solvers, namely CMODELS and CLASP [7]. All considered benchmarks are non-tight 360 programs. The first two benchmarks are Labyrinth and Connected Still Life, which are 361 obtained from the Fifth Answer Set Programming Competition³. We note that the original 362 encoding of Still Life is an optimization problem, and we turn it into a decision one. The next 363 three benchmarks originate from Asparagus⁴. The selected problems are RandomNonTight, 364 Hamiltonian Cycle and Wire Routing. We also consider five instances of Wire Routing 365 from RST Construction⁵. Then, we use Bounded Models as the sixth benchmark⁶. Our 366 last benchmark, Mutual Exclusion, comes from Synthesis Benchmarks⁷. We rewrite the 367 seven encodings to fit the syntax of GRINGO 4, and call GRINGO v. $4.5.3^8$ to produce ground 368 programs serving as input to all benchmarked systems. All benchmarks are posted at the 369 CMODELS(DIFF) website provided at Footnote 2. 370

All benchmarks are run on an Ubuntu 16.04.1 LTS (64-bit) system with an Intel core i5-4250U processor. The resource allocated for each benchmark is limited to one cpu core and 4GB RAM. We set a timeout of 1800 seconds. No problems are solved simultaneously. Numbers of instances are shown in parentheses after names of benchmarks. We present cumulative time of all instances for each benchmark with numbers of unsolved instances due to timeout or insufficient memory inside parentheses. All the steps involved, including grounding and transformation, are reported as parts of solving time.

Five distinct solvers are benchmarked: (1) CMODELS(DIFF) invoking SMT solver CVC4 v. 1.4; (2) CMODELS(DIFF) invoking SMT solver Z3 v. 4.5.1; (3) CMODELS(DIFF) invoking SMT solver YICES v. 2.5.4; (4) CLASP v. 3.1.3; (5) CMODELS v. 3.86.1 with Satisfiability solver Minisat v. 2.0 beta. We use DIFF-CVC4, DIFF-Z3, and DIFF-YICES to denote three variants of CMODELS(DIFF) used in the experiments.

Benchmark	DIFF-CVC4	DIFF-Z3	DIFF-YICES	DIFF-Z3	DIFF-YICES	CMODELS	CLASP
	LIA	LIA	LIA	DL	DL		
Still Life (26)	731	5423(1)	203	899	194	<u>647</u>	10.8
Ham. Cycl. (50)	15.39	9.78	4.54	6.61	3.57	<u>1.19</u>	0.53
Wire Rout. (10)	1378	562.36	1562	2983(1)	2089(1)	<u>409</u>	12.5
Bound. Mod. (8)	6.08	4.30	2.34	2.93	2.20	<u>1.59</u>	1.38
Labyrinth (30)	19543(8)	27794(12)	20425(10)	22023(9)	21836(9)	16408(7)	5826 (2)
Rand. Nont. (20)	27.8	8.65	6.84	7.72	6.47	<u>1.39</u>	3.52
Mut. Excl. (5)	5.26	2.72	1.70	2.28	1.50	0.30	0.13

Table 1 Experimental Summary

Table 1 summarizes main results. Under the name of variants of the CMODELS(DIFF) systems, we state the configuration used for this solver. Namely, "LIA" and "DL" denote that the logic of SMT solvers is set to Linear Integer Arithmetic and Difference Logic, respectively. All DIFF systems in the table are invoked with flag -SCClevelRanking. Systems CLASP

³ https://www.mat.unical.it/aspcomp2014/

⁴ https://asp.haiti.cs.uni-potsdam.de/

 $^{^{5}\ {\}tt http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/rst-basic.html}$

⁶ http://users.ics.aalto.fi/~kepa/experiments/boundsmodels/

⁷ http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/benchmarks030923.html

⁸ http://potassco.sourceforge.net/

11:12 SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

and CMODELS are run with default settings. We benchmarked CMODELS(DIFF) with all 387 eight possible configurations. Yet, we do not present all of the data here. CMODELS(DIFF) 388 invoked with -levelRanking and -levelRankingStrong flags shows worse performance 389 than settings -SCClevelRanking and -SCClevelRankingStrong, respectively. That is why 390 we avoid presenting the results on configurations -levelRanking and -levelRankingStrong. 391 Also, adding constraints for strong level ranking typically slightly degrades the performance so 392 we do not present the results for the -SCClevelRankingStrong configuration. We note that 393 SMT solver CVC4 implements the same procedure for processing Difference Logic statement 394 and Linear Integer Arithmetic statements. 395

396 Observations

We observe that system CLASP almost always displays the best results. This is not surprising as this is one of the best *native* answer set solvers currently available. Its search method is attuned towards processing logic programs. Given that SMT solvers are agnostic towards specifics of logic programs it is remarkable how good the performance of CMODELS(DIFF) is. In some cases it is comparable to that of CLASP.

It is the case that many Satisfiability solvers and answer set solvers share a lot in common [12]. For example, answer set solver CLASP starts by computing clausified programs completion and then later applies to it *Unit* propagator search technique stemming from Satisfiability solving. That is reminiscent of the process that system CMODELS(DIFF) undertakes. It also computes program's completion so that *Unit* propagator of SMT solvers is applicable to it.

We conjecture that the greatest difference between CMODELS(DIFF) and CLASP lies in the fact that

in CMODELS(DIFF) integer linear constraints encode the conditions to weed out unwanted
 models of completion; SMT solvers implement search techniques/propagators to target
 these integer linear constraint;

⁴¹³ in CLASP the structure of the program is taken into account by the so called *Unfounded* ⁴¹⁴ propagator for this task.

In case of Still Life, Hamiltonian Cycle, Wire Routing, and Bounded Models benchmarks 415 (marked in bold in Table 1) there is one more substantial difference. These encodings contain 416 aggregates. CLASP implements specialized search techniques to benefit from the compact 417 representations that aggregates provide. System CMODELS(DIFF) translates aggregates 418 away, which often results in a bigger problem encoding that the system has to deal with. 419 System CMODELS also translates aggregates away. This is why we underline the solving 420 times of CMODELS, as it is insightful to compare the performance of CMODELS to that 421 of CMODELS(DIFF) alone. Indeed, CMODELS(DIFF) utilizes the routines of CMODELS for 422 eliminating aggregates and computing the completion of the resulting program. Thus, the 423 only difference between these systems is in how they eliminate models of completion that are 424 not answer sets. System CMODELS(DIFF) utilizes level rankings for that. System CMODELS 425 implements a propagator in spirit of Unfounded propagator of CLASP, but the propagator of 426 CMODELS is only used when a model of completion is found; CLASP utilizes this propagator 427 as frequently as it utilizes Unit propagator [14, Section 5]. We believe that when we observe 428 a big difference in performance of CMODELS(DIFF) and CLASP, this attributes to the benefits 429 gained by the utilization of specialized Unfounded and "aggregate" propagators by CLASP. 430 Yet, level ranking formulas seem to provide a viable alternative to Unfounded propagator 431 and open a door for utilization of SMT solvers for dealing with non-tight programs. This 432 gives us grounds to believe that the future work on extending constraint answer set solver 433

434 EZSMT to accept non-tight programs is a viable direction.

As we noted earlier SCC level rankings yield best performance among the four variants of level rankings. Furthermore, Table 1 illustrates the following. The logic of SMT solvers does not make an essential difference. Overall, CMODELS(DIFF)-YICES with Linear Integer Arithmetic logic performs best within the presented CMODELS(DIFF) configurations. Obviously, utilizing better SMT solvers can improve the performance of CMODELS(DIFF) in the future. Notably, this does not require modifications to CMODELS(DIFF), since SMT-LIB used by CMODELS(DIFF) is a standard input language of SMT solvers.

442 **7** Conclusion

In this paper we presents the CMODELS(DIFF) system that takes a logic program and translates 443 it into an SMT-LIB formula which is then solved by an SMT solver to find answer sets of the 444 given program. Our work parallels the efforts of an earlier answer set solver LP2DIFF [10]. The 445 CMODELS(DIFF) system allows richer syntax such as choice rules and aggregate expressions, 446 and enables computation of multiple solutions. (In this work we extended the theory of 447 level rankings to the case of programs with choice rules and denials.) We note that the 448 LP2NORMAL⁹ tool can be used as a preprocessor for LP2DIFF in order to enable this system 449 to process logic programs with richer syntax. In the future, we will compare performance of 450 CMODELS(DIFF) and LP2DIFF experimentally. Yet, we do not expect to see great difference 451 in their performance when the same SMT solver is used as a backend. Also, we would like to 452 conduct more extensive experimental analysis to support our conjecture on the benefits of 453 specialized "aggregate" propagator and Unfounded propagator employed by CLASP. 454

The technique implemented by CMODELS(DIFF) for enumerating multiple answer sets of 455 a program is basic. In the future we would like to adopt the nontrivial methods for model 456 enumeration discussed in [8] to our settings. The theory developed in this paper provides 457 a foundation to extend the recent constraint answer set programming solver EZSMT [21] to 458 accept non-tight constraint answer set programs. The contributions of this work also open a 459 door to the development of a novel constraint-based method in processing logic programs 460 by producing intermediate output in MINIZINC [18] in place of SMT-LIB. We believe our 461 work will boost the cross-fertilization between the three areas: SMT, constraint answer set 462 programming, and constraint programming. 463

464 Acknowledgements

We are grateful to Cesare Tinelli for valuable discussions on the subject of the paper and for the insights on the CVC4 system. We are also thankful to Ben Susman. Da Shen was supported by the 2017-FUSE (Fund for Undergraduate Scholarly Experiences) Grant from the University of Nebraska at Omaha. Yuliya Lierler was partially supported by the NSF 1707371 grant.

470 — References –

- Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5.
 Technical report, Department of Computer Science, The University of Iowa, 2015.
- ⁴⁷³ 2 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund Clarke, Tom
 ⁴⁷⁴ Henzinger, and Helmut Veith, editors, *Handbook of Model Checking*. Springer, 2014.

⁹ https://research.ics.aalto.fi/software/asp/lp2normal/

11:14 SMT-based Answer Set Solver CMODELS(DIFF) (System Description)

- Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic and
 Data Bases, pages 293–322. Plenum Press, New York, 1978.
- 477 4 Esra Erdem and Vladimir Lifschitz. Fages' theorem for programs with nested expressions.
 478 In Proceedings of International Conference on Logic Programming (ICLP), pages 242–254,
 479 2001.
- François Fages. Consistency of Clark's completion and existence of stable models. Journal of Methods of Logic in Computer Science, 1:51–60, 1994.
- Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory
 and Practice of Logic Programming, 5:45-74, 2005.
- Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
 Schaub. Progress in CLASP series 3. In *Proceedings of the Thirteenth International Confer- ence on Logic Programming and Nonmonotonic Reasoning (LPNMR'15)*, 2015.
- Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflictdriven answer set enumeration. In *Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning*, LPNMR'07, pages 136–148, Berlin, Heidelberg, 2007. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1758481.1758496.
- Quarta P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. In
 Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, *Handbook of Knowledge Representation*, pages 89–134. Elsevier, 2008.
- Tomi Janhunen, Ilkka Niemelä, and Mark Sevalnev. Computing stable models via reductions to difference logic. In *Logic Programming and Nonmonotonic Reasoning*, pages 142–154. Springer Berlin Heidelberg, 2009.
- ⁴⁹⁷ 11 Yuliya Lierler. SAT-based Answer Set Programming. PhD thesis, University of Texas at
 ⁴⁹⁸ Austin, 2010.
- Yuliya Lierler. What is answer set programming to propositional satisfiability. Constraints, pages 1–31, 2016. URL: http://dx.doi.org/10.1007/s10601-016-9257-7, doi:10.
 1007/s10601-016-9257-7.
- Yuliya Lierler and Benjamin Susman. On relation between constraint answer set pro gramming and satisfiability modulo theories. *Theory and Practice of Logic Programming*,
 17(4):559–590, 2017.
- Yuliya Lierler and Miroslaw Truszczyński. Transition systems for model generators a
 unifying approach. Theory and Practice of Logic Programming, 27th Int'l. Conference on
 Logic Programming (ICLP) Special Issue, 11(4-5):629–646, 2011.
- ⁵⁰⁸ 15 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
 ⁵⁰⁹ programs. Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.
- Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program by sat solvers. *Artificial Intelligence*, 157:115–137, 2004.
- Kim Marriott and Peter J. Stuckey. *Programming with Constraints: An Introduction*. MIT
 Press, 1998.
- N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. Minizinc:
 Towards a standard cp modelling language. In *Proceedings of the 13th International Con- ference on Principles and Practice of Constraint Programming*, page 529–543, 2007.
- 19 Ilkka Niemela. Stable models and difference logic. Annals of Mathematics and Artificial Intelligence, 53:313–329, 2008.
- ⁵¹⁹ 20 Ilkka Niemelä and Patrik Simons. Extending the Smodels system with cardinality and
 ⁵²⁰ weight constraints. In Jack Minker, editor, *Logic-Based Artificial Intelligence*, pages 491–
 ⁵²¹ 521. Kluwer, 2000.
- Benjamin Susman and Yuliya Lierler. SMT-Based Constraint Answer Set Solver EZSMT
 (System Description). In *Technical Communications of the 32nd International Conference*
- on Logic Programming (ICLP 2016), volume 52, pages 1:1–1:15, 2016.