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Abstract—Attribute-based access control (ABAC) is a general
access control (AC) model that subsumes numerous earlier AC
models. Its increasing popularity stems from the intuitive generic
structure of granting permissions based on domain-dependent
attributes of users, subjects, objects, and other entities in the
system. Multiple formal and informal languages have been
developed to express policies in terms of such attributes.

The utility of ABAC policy languages is potentially undermined
without a properly formalized underlying model. The high-level
structure in a majority of ABAC models consists of sets and
sets of sets, expressions that demand that the reader unpack
multiple levels of sets and tokens to determine what things mean.
The resulting reduced readability potentially endangers correct
expression and reduces maintainability and validation. These
problems could be multiplied with models that employ nonuni-
form representations of actions and their governing policies.

In this paper, we address these problems by recasting the
high-level structure of ABAC models in a logical formalism that
treats all types of actions uniformly. Our formalism uses a simple
variant of description logics to model the high-level structure,
and function-free first-order logic with equality to represent and
reason about the policies. Use of description logics for model
formalizations, including hierarchies of types of entities and
attributes, is a promise of improved usability, compared with
existing ABAC models, in specifying the relationships between
and requirements on domain-dependent attributes. Our formal
model provides improved flexibility in supporting a variety of
different requirements depending on the domain. Specifically,
we will discuss how to modify the model if time plays a role
in authorizing a requested action, if different policies would
potentially arrive at conflicting decisions, and if default and
exception rules are in application.

Keywords—attribute-based access control, description logics,
first-order logic, logical formalism, policy language

I. INTRODUCTION

Access control (AC) concerns the problems of designing,
expressing, and mechanizing policies that decide whether a
party, such as a human user or one of a user’s subject compu-
tational processes, has been granted permissions sufficient to
perform some action, such as read or write, on a specific ob-
ject, such as a file in a computer system. As summarized in [1]
and surveyed in [2], recent years have seen significant develop-
ment of attribute-based access control (ABAC) models, which
provide generality and subsume many AC models by allowing
definitions of domain-dependent properties called attributes.
Translations have shown how one can simulate in ABAC [3],

[4] the discretionary access control (DAC), mandatory access
control (MAC), and role-based access control (RBAC) models.

Research on formalizing ABAC currently takes two major
directions. One direction develops policy languages [5], [6],
[7], [8] for use with ABAC models. The other develops means
for representing the high-level structure and components of
ABAC models and for determining how different components
relate to each other [3], [4], [9], [10], [11], [12].

The formal policy language specifications [5], [6], [7], [8],
[13] often have a well-defined semantics and a uniform syntax
of actions and policies. The underlying model representations
of the language specifications, however, do not provide a
clear picture of how the main components interact with each
other, leading to less readable and more error-prone ABAC
modeling, especially during system design and maintenance.
For example, hierarchies of users or subjects and of attributes
cannot be conveniently and efficiently represented in an au-
thorization policy, and if an attribute is only defined on some
subset of the users, administrators have the burden of making
sure the other users do not have a value for that attribute.

On the other hand, the high-level structures for ABAC
models in the current literature lack the expressiveness and
uniformity often found in formal policy languages. We say that
an ABAC model is uniform if the representations for different
types of actions and their corresponding governing policies are
in a consistent syntax. For instance, [4] does not support such
uniformity as it specifies three types of actions for which their
governing policies also have different representations. One
type of action is for administrators creating and deleting a user,
governed by fixed policies that are implicitly encoded in the
model. Another type of action is for non-administrative users
creating and modifying a subject and for their subjects creating
and modifying an object, which are governed by various re-
stricted forms of “constraints”. The third type consists of other
domain-dependent actions, such as read and write, governed
by authorization predicates. Such non-uniform representation
limits the expressiveness and usability of the model.

Previously, we have proposed to bridge the gap between
the two research directions by combining the formalism of the
high-level structure of an ABAC model with a policy language
specification [14]. In RBAC literature, the combination of
a high-level model and a policy language has been widely



utilized. For instance, in [15], hierarchies are used to structure
users, roles and groups and a simple policy language can be
configured to support various conflict resolution mechanisms
and propagation policies.

In this paper, we formalize such an ABAC model that uses
a simple variant of description logics, ALCN1 , to set out the
high-level structure of how the components are represented
and interact with each other, and that supports an expressive
embedded policy language with a uniform treatment of actions
using function-free first-order logic with equality. As described
in [16], using logical formalisms would render clean founda-
tions (hence formal guarantees), flexibility, and expressiveness.
Moreover, description logics offer a natural representation
of formalizing ontologies and have been used in various
applications, such as diagnostic and configuration systems.
Our proposed formalization would have the advantages of
the current policy language specifications and of the current
formalisms of high-level structures of models.

Our formalism would also be flexible in that it could be
adjusted to incorporate additional desirable features, such as
when time is a factor in making policy decisions regarding
a requested action. In the many applications in which DAC,
MAC, and RBAC are sufficient, the time of when an action
is requested does not play a role. While in more complicated
scenarios, such as large corporations and hospitals, whether
an action can be authorized often depends on the time of the
request. For example, a senior care facility might authorize
its manager to delete the medical records of a resident only
after at least seven years have passed since the resident left the
facility. Offering such flexibility by allowing the designers of
an ABAC system to tailor the functionalities of the underlying
ABAC model to their requirements is a desirable feature of an
ABAC formalism. The formalism in [9] shows how to incor-
porate conflict resolution and default policies. Our formalism
offers a more generic framework by incorporating a variety of
widely used features, including the time component, common
mathematical domains, conflict resolution mechanisms, and
default and exception policies.

The rest of the paper is organized as follows. Section II
reviews the current literature on ABAC models. Section III de-
fines the syntax and semantics of the description logicALCN1

and function-free first-order logic with equality. Section IV
discusses the detail of our ABAC model. Section VI describes
some variations of our model to incorporate the extensions
of time, conflict resolution mechanisms, and default and
exception policies. Section VII introduces some techniques to
achieve separation of duties. Section VIII concludes the paper.

II. RELATED WORK

In this section we discuss current work on ABAC policies
and models. We catalog some issues in current work and
address those issues in the rest of the paper.

A. Policy Languages

Many formal authorization policy languages have been
proposed, as surveyed in [16]. XACML [17] and PTaCL

[7] are specifically designed for ABAC policies. XACML
distinguishes the notions of policy sets, policies, and rules.
A policy set may contain policies or other policy sets. A
policy consists of one or more rules and the rules may be
evaluated in a certain order. The hierarchy of policies reflect
some real world requirements and is useful for defining default
and exception policies, and for handling conflicts. A decision
is made upon analyzing the subject’s, object’s, action’s and
environment’s attributes, which are called the target of a policy
set, policy, or rule. XACML is extremely expressive. However,
it does not pose a generic structure or restrictions on the
subjects, objects, actions and their attributes. Moreover, several
semantics have been proposed for XACML [5], [18], [19] and
an agreement on the standard has not been established yet.

The policy language PTaCL [7] provides the same problem
space as XACML but with a formal semantics and simpler
syntax. The semantics is defined by a three-valued logic.
PTaCL is able to indicate whether some attribute values are
missing. [20] extends PTaCL by implementing a probabilistic
policy evaluation mechanism that probabilistically retrieves the
missing attributes. Just as in case of XACML, these languages
do not provide a formalization of the high-level structure of
ABAC models.

Many other AC formal policy languages have been devel-
oped. For instance, the language PBel proposed in [6] is based
on a four-valued logic, namely the Belnap logic. The work in
[21] also proposes a generic framework for ABAC, but focuses
on defining a policy language such that the resulting model is
monotonic and complete instead of discussing in detail how
the components are represented and interact with each other
in the framework.

B. ABAC Models

This subsection reviews the current AC literature that fo-
cuses on developing high-level ABAC models, and explain
in detail some of their common problems, especially the ones
found in the logical models that use a symbol-set notation [3],
[4], [22].

1) Semantics: The ABACα model [3], [4] representations
are based on sets of tokens or symbols that denote users,
subjects, objects, attributes, roles, and actions. ABACα regards
attributes as functions whose domains and ranges are also sets
of symbols. Intuitively, one regards a user attribute symbol
attr as a function on the set of users, one that maps each
user u to the value attr(u) of the attribute exhibited by the
user. Each ABACα policy consists of a condition expressed
in first-order syntax together with predicates from set theory,
such as “is an element of” (∈) and “is a subset of” (⊆). For
example, in the ABACα representation of DAC [3, Table 6,
p. 51], the condition given for authorization of a subject s to
read an object o is SubCreator(s) ∈ reader(o), meaning that
the user who created s must be one of the users given in the
set of allowed readers of o.

Unfortunately, interpreting an attribute symbol as standing
for a mapping from symbols to other symbols or sets of



symbols divorces attributes from their intuitive meaning. Con-
sider, for example, a user role indicating the organizational
positions held by the user. In a symbol-set representation, this
might mean that the value of Alice’s orgPos attribute is a set
{StatutoryEmployee,Manager , . . . }. What does Manager ∈
orgPos(Alice) mean? According to the definitions of ABACα,
it means that one symbol is in a set of symbols. This has
little to do with the intended meaning, namely that Alice is
a manager, or in standard logical notation, Manager(Alice).
If one wants to say that managers can access all files owned
by their subordinates, a direct statement would use predicate
symbols to state properties of things. Stating this in terms
of sets of symbols is an indirect expression that still leaves
symbols such as Manager without a formal interpretation.

It is important to note that mere use of logic in some way
would not necessarily address the semantical issue. Indeed, the
symbol-set view of ABACα is visible in several ABAC efforts
that employ logical expressions [9], [23], [24]. For example,
Wang et al. [9] present a logic-programming formalization of
ABAC that uses predicates for sets, elements, and subsets,
as in ABACα, but that uses a different vocabulary to specify
authorization conditions. Although the formalization in [9] is
proved consistent and complete, it reasons about facts that
describe its handling of sets of symbols, not about facts that
describe entities in the ABAC system. Similarly, Finin et al.
[23] recast RBAC using OWL [25], and Sharma and Joshi
[24] recast ABACα using OWL and N3 [26]. Although these
treatments do place AC entities within taxonomic hierarchies,
these translations do not fully utilize the power of description
logics and at their core depend on concepts that correspond
directly to sets of attribute symbols, much as in ABACα
[4], thus abandoning a good bit of the value of a logical
formalization.

2) Readability and Maintainability: One hallmark of a
convenient representation is that one can use it to describe the
key things of interest in a simple and direct way, and that when
time comes to modify the description, one can describe simple
changes simply. Unfortunately, symbol-set representations fall
short of this ideal with respect to simple modifications of a
model. To extend a symbol-set model such as ABACα with
new attributes, one must change the elements of one or more
sets. If sets are defined by explicitly listing their elements,
say by using U = {Alice,Bob,Carol} to define the set of
users and UA = {a1, a2, . . . , an} to define the set of user
attributes, adding a new user requires replacing the former
list with a new one, say U = {Alice,Bob,Carol ,David},
and making corresponding changes in other lists, such as the
value of each of the attributes in UA. Modifying numerous
lists offers numerous chances to make an error of omission,
which one can expect to become more frequent as protected
systems and organizations become larger and larger.

As shown in [16], one step toward minimizing the potential
for error is to employ a more modular representation with
incremental modification such that one just adds the new
information, say by stating that David is a user, along with
the values of David ’s attributes. Such modularity of statement

lies at the heart of standard logical languages, and carries over
to description logics as well. One also can make specification
of non-additive changes, such as changing David ’s address,
modular as well, as is common in databases.

3) Prohibitions: In many ABAC systems, authorization
decisions are made with a bias toward denial, meaning that a
request is authorized only if the antecedent of some authoriza-
tion rule evaluates to true. This approach can cause problems
when the system lacks the information needed to determine
whether a condition is true or false. In other cases, the default
might be that everyone has access apart from some exceptions.
For example, all medical personnel in a hospital might have
blanket permission to see any patient’s medical records, except
for the records of other medical personnel at the same hospital.
Moreover, [27] has shown that having prohibitions along with
authorization policies would reduce the total number of rules,
and hence, the time for evaluating access requests.

The formal policy languages mentioned in Section II-A
support both authorizations and prohibitions, some of which
may even have explicit undecided decisions. But the ABAC
models that focus on formalizing a high-level structure [3],
[4] often have less expressive and direct representations of
policies and they only explicitly support authorizations. Direct
specification of the actual policies governing access would
benefit from using explicit prohibitions in tandem with explicit
authorizations. Thus, a policy language that handles both pro-
hibitions and authorization would be suitable for AC models.

4) Terminological Axioms as Policies: A few works use
description logics to formalize AC models [12], [28]. However,
in these models, terminological (TBox) axioms of description
logics are used to represent policies, rather than to construct
a high-level ontology of the components of a model. For
instance, in [28], the policy that says “all friends can down-
load some music” is formalized as the terminological axiom
Friend v ∃Download .Music.

Even though terminological axioms are “syntactic sugar” of
certain first-order formulas, treating policies as terminological
axioms can be confusing and does not fully utilize the power of
description logics in constructing a readable and maintainable
ontology. For instance, the axioms Manager v User and
Intern v User for specifying managers and interns as two
types of users are obviously not policies. However, they are
treated similarly as policies in a description logic knowledge
base.

III. BACKGROUND

In this section, we define the syntax and semantics of a
variant of description logic and the function-free first-order
logic with equality. Readers who are familiar with these logics
may skip this section.

A. Description Logic ALCN1

A description logic (DL) provides a succinct syntax to
express the ontology of a domain, specifically, what kinds of
individuals are in the domain and what kinds of relationships
the individuals have. Usually, a DL knowledge base consists of



a TBox and an ABox. A TBox is to axiomatize the ontology
of the domain using concepts and roles, where DL “roles”
are a different notion than RBAC “roles”. For instance, when
formalizing a family tree, we might have concepts People
and Female , and a role HasDaughter of People with fillers
in Female . An ABox assigns individuals to appropriate con-
cepts and roles, e.g., Female(x) means x is a female and
HasDaughter(x, y) means x has daughter y.

What differs a DL from another is the possible constructors
on concepts and roles. We here define the minimal DL we
use, ALCN1 , to formalize our ABAC model. In ALCN1 , a
concept expression is defined inductively as

C ::=A | > | ⊥ | ¬C | C u C | C t C | ≤1R

| ≥1R | ∀R.C | ∃R.C

where A is an atomic concepts, and R is an atomic role.
We only have atomic roles for simplicity. Note that since we
have the negation of an arbitrary concept ¬C, the concepts
C t D and ∃R.C are derivable from C u D and ∀R.C,
respectively, and vice versa. In this paper, we use capitalized
words for atomic concept names, lower case words for atomic
role names, named individuals and variables.

A TBox consists of general inclusion axioms of the form
C v D, meaning C is subsumed by D, where C and D are
certain forms of concept expressions, discussed in detail in
Section IV. In an ABox, an axiom is either a concept assertion
of the form C(a), or a role assertion of the form R(a, b),
meaning a is in concept C or a is related to b by role R
respectively, where a and b are named individuals.

The semantics ofALCN1 is an interpretation I = (∆I , ·I),
where ∆I is a non-empty set, and ·I is a function that maps
a concept to a subset of ∆I and a role to a subset of ∆I ×
∆I . The concept constructors are interpreted inductively as
follows, where a and b are variables for the individuals.

AI ⊆ ∆I >I = ∆I

⊥I = ∅ (¬C)I = ∆I/CI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI

(≤1R)I =
{
a ∈ ∆I

∣∣ |{b | (a, b) ∈ RI}|≤1
}

(≥1R)I =
{
a ∈ ∆I

∣∣ |{b | (a, b) ∈ RI}|≥1
}

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

An interpretation I satisfies a TBox axiom C v D if CI ⊆
DI , and we say I is a model of C v D. Similarly, I satisfies
an ABox axiom C(a) if a ∈ CI , and R(a, b) if (a, b) ∈ RI .

We introduce the following kinds of TBox axioms that are
useful in formalizing ABAC. The first is to specify the domain
and range of a role. Given a role R of concept C with fillers
in concept D, C is R’s domain and D is the range. Then we
have axioms ∃R.> v C, and > v ∀R.D. The second kind
of TBox axioms we will be using is to indicate that a role
is functional, i.e., for every individual in the domain, exactly
one individual in the range fills the role. Formally, given a
functional role R with domain C and range D, we have TBox
axioms C v ≤1R.D, and C v ≥1R.D. Third, to express two
concepts C and D are disjoint from each other, we add an
axiom C uD v ⊥.

B. Function-free First-order Logic with Equality

We use the function-free first-order logic with equality
(FFOLE) to formalize the policies. A term t in FFOLE is
used to refer to an individual, which is either a variable x or
a constant c. An atom A is either a predicate or an equation
between two terms, defined using the following syntactical
rule:

A ::= P (t1, ..., tn) | t1 = t2.

A literal L is either an atom A or the negation ¬A of atom
A. Finally, a formula is inductively defined as follows:

φ ::=L | φ ∧ φ | φ ∨ φ | φ→ φ | ∀x.φ.

The semantics for FFOLE is an interpretation I = (∆I , ·I),
where ∆I is a non-empty set of named individuals, and ·I is
a function that maps each term to a named individual in ∆I ,
and a predicate name P with arity n to a subset of (∆I)n.
For instance, if (a1, a2) ∈ P I where P is a predicate name
with arity 2, then P (a1, a2) evaluates to true.

IV. MODEL FORMALIZATION AND POLICY SPECIFICATION

The components in a standard access control (AC) model
are users, subjects, objects, actions, and policies. In this paper,
what we mean by users are user accounts, instead of the human
beings who own the accounts. Subjects are computer processes
or login sessions of users. Objects are the accessible resources,
which can be concrete such as a printer, or abstract such as
a file in a computer. Actions generally are restricted to access
control actions, such as reading and writing. Policies are rules
used to decide whether an action is authorized or not.

AC models differ on what properties of the components
can be used in expressing policies. In DAC, the properties are
restricted to the owner property of the objects. In MAC, the
properties are the security levels of the subjects and objects.
In RBAC, the properties are restricted to the roles of the users,
subjects and objects. In ABAC, the properties are generalized
to include any user defined attributes.

The structure of our ABAC model is illustrated in Figure 1.
An ABAC model is composed of two major parts: the ontology
and policies. The ontology formalizes the high-level structure
of a model, including the definitions of the components in
the model and the relations among the components. We
formalize the ontology using the description logic ALCN1

defined in Section III-A. The policies include the authorization
policies that govern the actions in the model, each of which is
represented as a formula in the function-free first-order logic
with equality (FFOLE) defined in Section III-B.

In the ontology part of an ABAC model in Figure 1,
each rounded box represents a component in the model,
formalized as a concept in ALCN1 , and each arrow represents
an attribute, formalized as a role. An ABAC model consists of
all the standard components in any AC model, namely poli-
cies, User , Subject , Object , and Action , and other domain-
dependent types of entities, indicated by the boxes labeled
〈other〉. The concept ActionObject subsumes all the concepts



Fig. 1. Structure of an ABAC Model

that an action can act upon, and ActionSubject subsumes all
the concepts that can perform an action. Follow the tradition of
AC models, we restrict the subconcepts of ActionSubject to be
only User and Subject , where the user actions are for logins
and logouts. AuthorizedAction and ProhibitedAction are
subconcepts of Action for authorized and prohibited actions,
respectively. The attributes can be defined for any component
in the ontology, including the domain-dependent ones. There
are three distinguished attributes subCreator , actSub, actObj ,
indicating the creating user of a subject, the subject of an
action, and the object of an action, respectively.

Formally, our ABAC model is defined as follows.
Definition 1 (ABAC Model): An attribute-based access

control (ABAC) model is a tuple M = 〈C,R, T ,P〉, where
• C is a finite set of atomic concept names, includ-

ing but not limited to User , Subject , Object , Action ,
ActionObject , ActionSubject , AuthorizedAction , and
ProhibitedAction such that
– User , Subject and Object are disjoint from each other

and are subconcepts of ActionObject ;
– Action is disjoint from ActionObject and
ActionSubject ;

– AuthorizedAction and ProhibitedAction are subcon-
cepts of Action; and

– ActionSubject is subsumed by User t Subject ;
• R is a finite set of atomic role names, including but not

limited to
– subCreator with domain Subject and range User ,
– actSub with domain Action and range ActionSubject ,
– actObj with domain Action and range ActionObject ;
such that
– subCreator and actSub are functional, and
– actObj has maximum cardinality 1;

• T is a finite set of inclusion axioms, each of which is of
one of the following forms:

1) C v D1tD2t· · ·tDn(n≥1), meaning C is subsumed
by the union of D1, D2, . . . , Dn;

2) C1 u C2 v ⊥, meaning C1 and C2 are disjoint;
3) ∃R.> v C, meaning the domain of R is C;
4) > v ∀R.D, meaning the range of R is D;
5) C v ≤1R.D, and C v ≥1R.D, meaning each

individual in C is related to at most, and at least one
individual in D by role R, respectively;

where C,D,Ci, Di ∈ C(1≤i≤n), and R ∈ R;
• P is a finite set of conditional FFOLE formulas whose

predicate names are from C and R. �

The DL concepts User , Subject , Object , and Action rep-
resent the users, subjects, objects, and actions in an ABAC
model. The DL roles represent the attributes. We will discuss
the policy language in detail in Section IV-C. Intuitively, a
policy is a conditional formula whose antecedent represents
the conditions under which an action is authorized or prohib-
ited. The set of axioms T is essentially a restricted ALCN1

TBox. We list the axioms in T for the required concepts and
attributes in Table I for clarification.

Subsumption relation between the concepts in C
User v ActionObject Subject v ActionObject
Object v ActionObject User v ActionSubject
Subject v ActionSubject AuthorizedAction v Action

ProhibitedAction v Action ActionSubject v User t Subject

Disjointness relation between the concepts in C
User u Subject v ⊥ User uObject v ⊥
Subject uObject v ⊥ ActionObject uAction v ⊥

ActionSubject uAction v ⊥
Domain and range of each role in R

∃subCreator .> v Subject > v ∀subCreator .User
∃actSub.> v Action > v ∀actSub.ActionSubject
∃actObj .> v Action > v ∀actObj .ActionObject

Number restrictions of roles in R
Subject v ≤1subCreator .User
Subject v ≥1subCreator .User

Action v ≤1actSub.ActionSubject
Action v ≥1actSub.ActionSubject
Action v ≤1actObj .ActionObject

TABLE I
AXIOMS FOR REQUIRED CONCEPTS AND ROLES IN AN ABAC MODEL

The rest of this section explains the definition of our ABAC
model in detail by drawing on the following case study of
access control in an aged care facility’s health information
system reported in [29]. The ontology of the scenario is
illustrated in Figure 2 using Graphol [30], a graphical language
for drawing ontologies.

Example 1 (An Aged Care Facility): An aged care facility
offers accommodation for some residents. It has a manager,
who is in charge of the administrative duties including adding
and deleting user accounts for the residents and staff. The
health care workers at the facility are responsible for taking
care of the residents. Doctors from nearby hospitals visit
regularly and each of them is in charge of some residents.
The Health Information System for the care facility stores the
personal information, medical records, and medical insurance
information of the residents. Medical records includes the past
medical recodes, the care plan, and the private notes entered
by the visiting doctors for each resident. �

A. Concepts

We define the base concepts in an ABAC model as User ,
Subject , Object , Action , ActionObject , ActionSubject ,
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Fig. 2. Depiction of the ontology for the care facility scenario in Graphol[30]

AuthorizedAction , and ProhibitedAction . As mentioned ear-
lier, the users in our model refer to user accounts rather than
the human beings who own the accounts. The subjects are
the login sessions of users, and the objects are resources in
the system. Therefore, User , Subject and Object are disjoint
from each other. We also require the concept Action to
be disjoint from ActionObject for security reasons, e.g., a
requested action would not be modified on the fly or an au-
thorized action would not be modified to access other objects.
The concepts AuthorizedAction and ProhibitedAction are
subconcepts of Action , used for authorized and prohibited
actions, respectively. Note that the two subconcepts of Action
are not necessarily disjoint from each other, nor do they
cover Action . Thus, an action may be both authorized and
prohibited, or neither authorized nor prohibited.

1) Uniformity: To obtain a uniform representation of ac-
tions, we group the entities that an action may act upon into
concept ActionObject , and that may perform an action into
concept ActionSubject . The subconcepts of ActionObject are
User , Subject , Object , and other domain-dependent concepts.
For instance, a subject of an administrator user can create or
delete a user, a subject or an object; a subject of a regular
user can read or write an object. On the other hand, we
require the only subconcepts of ActionSubject to be User
and Subject . All actions, except for user logins and logouts,
are performed by subjects. Different types of actions, e.g.,
read an object and create a user, are domain dependent and
defined as subconcepts of Action . Moreover, for each concept
whose entities can be created, we require a corresponding
subconcept of Action . For example, if User has only two
subconcepts U1 and U2 and all users can be created, then
Action has a subconcept CreateUserAction , which has two

further subconcepts CreateU1Action and CreateU2Action .
The reason is that when creating an individual a, since a does
not exist yet, the policies cannot use it as an argument to
specify which concept the to-be-created individual belongs to.

2) Maintainability: Most modifications of our model re-
quire only incremental changes to the set of axioms T . To
add a new subconcept U of User , one could simply add the
axiom U v User . If U is disjoint from another subconcept U ′

of User , one may add the axiom U u U ′ v ⊥. However, one
may need to be careful with the usage of coverage axioms of
the form C v D1 t · · · tDn (n > 1) because it might result
in non-incremental modifications. Suppose an ABAC model
contains an axiom User v U1 t U2. To add another User
subconcept U3, the original axiom User v U1 t U2 would
needs to be modified to User v U1 t U2 t U3.

3) Concepts in Example 1: As shown in Figure 2,
User has four disjoint subconcepts: Admin , Resident ,
HealthCareWorker , and VisitingDoctor . The concept
Resident is further classified into the disjoint concepts
InAdmissionResident , AdmittedResident , and
FormerResident , for the residents who are in the admission
process, who have been admitted and finished the admission
process, and who have left the facility, respectively. The
subsumption and disjointness axioms for the subconcepts of
User are listed in Table II. We do not define any coverage
axioms for maintainability, as discussed above.

The subconcepts of Subject are often defined similarly
as those for User . In this care facility scenario, for each
subconcept of User , there is a corresponding subconcept of
Subject . For instance, the subconcept AdminSub of Subject
corresponds to Admin and the User subconcept ResidentSub
corresponds to Resident .



Subsumption

Admin v User
Resident v User

HealthCareWorker v User
VisitingDoctor v User

InAdmissionResident v Resident
AdmittedResident v Resident
FormerResident v Resident

Disjointness

Admin u Resident v ⊥
Admin uHealthCareWorker v ⊥
Admin uVisitingDoctor v ⊥

Resident uHealthCareWorker v ⊥
Resident uVisitingDoctor v ⊥

HealthCareWorker uVisitingDoctor v ⊥
InAdmissionResident uAdmittedResident v ⊥
InAdmissionResident u FormerResident v ⊥
AdmittedResident u FormerResident v ⊥

TABLE II
AXIOMS FOR User IN THE CARE FACILITY SCENARIO

The classification of objects are often trickier than
that of users due to the granularity of an object. In
the care facility scenario, we have three subconcepts of
Object : PersonalInfo, MedicalRecord and InsuranceInfo,
and MedicalRecord is further classified into GeneralMR,
CarePlan , and PrivateNote . For simplicity, we assume all of
the personal information of a resident is contained in a single
file, which is represented as one object in the information
system, and the same holds for insurance information and
care plans. As for the general medical records and private
notes, the scenario is concerned about the multiple entries for
a resident rather than the information as a whole. Thus we
formalize each such entry is an object in concept GeneralMR
or PrivateNote .

The concept Contact contains the individuals who are listed
as the emergency contacts of some resident. The administrators
are authorized to add or delete an individual from Contact ,
thus it is a subconcept of ActionObject .

Figure 3 shows the (partial) hierarchy of Action in the sce-
nario. Action has four immediate subconcepts, ReadAction ,
WriteAction , CreateAction , and DeleteAction . As men-
tioned earlier, CreateAction needs to be further classified
according to the kinds of individuals that can be created.
Besides the subconcepts CreateContactAction ,
CreateUserAction , CreateSubAction and CreateObjAction
in the figure, there are also concepts CreateResidentAction
and CreateAdminAction , etc.. We also require that for each
subconcept of Action , its subconcepts are disjoint from each
other. For instance, an action cannot both delete an object and
create a user account.

B. Attributes

The base attributes in an ABAC model are subCreator ,
actSub, and actObj . The attribute subCreator indicates the
creating user of a subject and it is functional, i.e., each subject
has exactly one creating user. Every time a user logs in, a
subject is created. The attribute actSub indicates the subject,
or the performer, of an action and it is also functional. We do
not consider collaborative actions in this paper. The attribute
actObj indicates the object of an action. However, actObj

Action

ReadAction

WriteAction

CreateAction

DeleteAction

CreateObjAction

CreateUserAction

CreateSubAction

CreateContactAction

Fig. 3. Types of actions in the care facility scenario

has max cardinality 1 instead of being functional because the
policies governing the actions for creating an individual cannot
take the to-be-created individual as an argument.

In cases where the to-be-created individual is needed in
some attribute to express a policy, we define a corresponding
attribute for the action such that the action takes the place
of the to-be-created individual. The definition for how to
specify such an action attribute is in Definition 2. For instance,
suppose an attribute owner of an object o is needed in a policy
for creating the object, we define an attribute ownerActSpec1
for the creation action a with the same value u as owner .
Thus, instead of owner(o, u), we use ownerActSpec1(a, u)
in the policy definition.

Definition 2 (Action Specification Attribute): Let attr be an
attribute on x with value y, i.e., attr(x, y). If a is an action that
creates the individual x, then the action specification attribute
for attr on x is an attribute attrActSpec1 on a with value
y, i.e., attrActSpec1(a, y). Similarly, if a is an action that
creates the individual y, then the action specification attribute
for attr on y is an attribute attrActSpec2 on x with value a,
i.e., attrActSpec2(x, a).

1) Maintainability: Similar as the representation for con-
cepts, the representation for attributes in our formalism is
also modular and its modification is incremental. For instance,
to add a new attribute attr whose domain is C and whose
range is D, one only needs to add the axioms ∃attr .> v C
and > v ∀attr .D. Similarly, cardinality and functionality
constraints C v ≤1attr .D and C v ≥1attr .D can also be
easily added without modifying existing axioms

2) Attributes in Example 1: Table III lists the attributes
we use in formalizing some of the policies in the care
facility scenario. The attribute owner indicates the owner
resident of an object and it is functional. The attribute
hasEmergencyContact indicates the emergency contact of a
resident and each resident must have exactly one emergence
contact. The consultedWith attribute means a care plan has
been consulted with a resident or a resident’s emergency
contact and its minimum cardinality restriction is one. Finally,
hasPatient indicates the residents each visiting doctor is
responsible for.

C. Policies

A policy for an action is a conditional formula in FFOLE.
We only consider authorization and prohibition policies in this



Attribute Name Domain Range

owner Object Resident

hasEmergencyContact Resident Contact

consultedWith CarePlan Resident t Contact

hasPatient VisitingDoctor Resident

TABLE III
SOME ATTRIBUTES IN THE AGED CARE FACILITY SCENARIO

paper. For each policy, the consequent is the requested action
being either authorized or prohibited, and the antecedent is
the preconditions need to be satisfied to authorize or prohibit
the action. As mentioned earlier, the actions for creating
an individual are essentially different from the other types
of actions. Therefore, we formalize the policies governing
creation actions in a slightly different way than the policies
governing other types of action. The formal definitions for the
two types of policies are in Definition 3 and Definition 4.

Definition 3 (Non-creation Policy): Let M = 〈C,R, T ,P〉
be an ABAC model defined in Definition 1. A policy for a non-
creation action inM is a conditional formula in the following
form:

[C1(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
C2(s) ∧ C3(o) ∧ ψ(a, s, o, ~x,~c)]→ P (a),

where a, s, and o are free variables representing the requested
action, the subject of the action, and the object of the action,
respectively. C1, C2, and C3 are arbitrary ALCN1 concepts
constructed from concept names in C such that they are
subconcepts of Action , ActionSubject , and ActionObject ,
respectively. And ψ(a, s, o, ~x,~c) is a formula in FFOLE speci-
fying the rest of the preconditions, in which the only predicate
names are concept names in C and role names in R, ~x
represents the free variables other than a, s, and o, and ~c
is for the constants used ψ. The consequent P (a) is either
AuthorizedAction(a) or ProhibitedAction(a).

Definition 4 (Creation Policy): LetM = 〈C,R, T ,P〉 be an
ABAC model defined in Definition 1. A policy for a creation
action is in the following form:

[C1(a) ∧ actSub(a, s) ∧ C2(s) ∧ φ(a, s, ~x,~c)]→ P (a),

where the symbols are defined similarly as above in Def-
inition 3. However, the binary predicates used here cannot
directly involve the to-be-created individual. Instead, we use
the corresponding action specification attribute (Definition 2)
for the to-be-created individual. �

1) Uniformity: Besides the necessity to have two different
representations for policies, one for creation actions and the
other for non-creation ones, each of the two representations
is able to express a wide range of policies. For instance, the
policies for the subjects of regular users reading an object, and
for those of administrator users modifying the attributes of a
user can both be represented using non-creation policies. Sim-
ilarly, the policies for the subjects of administrators creating

a user and for user logins can also both be represented using
creation policies.

2) Effects of policies: We do not define a language spec-
ification for the effects of policies in this paper. Intuitively,
when an action is authorized, the set of assertions in the
ABAC configuration S is updated accordingly. For example,
if an action for adding the value v to an attribute attr for an
individual x is authorized, then the role assertion attr(x, v) is
added, assuming v is already defined. By Definition 5 (Section
IV-D), an ABAC configuration is essentially an ALCN1

ABox knowledge base with a fixed set of individuals for
interpretation. The details on how to update an ABox and the
corresponding interpretation can be found in [31].

3) Policies in Example 1: In this subsection, we illustrate
the usage of policies through some example policies in the
care facility case study, one for each of the action types
ReadAction , WriteAction , DeleteAction , CreateSubAction ,
and CreateUserAction .

Example 2: The health care workers can view the medical
records of the residents. Formalized as:

[ReadAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
HealthCareWorkerSub(s) ∧MedicalRecord(o)]→
AuthorizedAction(a).

Example 3: Only an administrator can update the care plan
of a resident and the care plan is updated in consultation with
the resident or the resident’s emergency contact. Formalized
as the following two policies. Note that due to the way we
formalize the policies here, if an administrator requests to
update the care plan of a resident without consulting with
the resident or his/her emergency contact, we do not have a
conclusive decision on whether the update is authorized or
prohibited.

[WriteAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
AdminSub(s) ∧ CarePlan(o) ∧ subCreator(s, u)∧
owner(o, u) ∧ (consultedWith(o, u)∨
(hasEmergencyContact(u, p) ∧ consultedWith(o, p)))]

→ AuthorizedAction(a)

[WriteAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
¬AdminSub(s) ∧ CarePlan(o)]→ ProhibitedAction(a)

Example 4: Only the medical records of a resident who has
left the facility can be deleted and they are to be deleted by
an administrator. Formalized as:

[DeleteAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
AdminSub(s) ∧ subCreator(s, u) ∧ owner(o, u)∧
FormerResident(u)]→ AuthorizedAction(a),

[DeleteAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
(¬AdminSub(s) ∨ (subCreator(s, u) ∧ owner(o, u)∧
¬FormerResident(u)))]→ ProhibitedAction(a).



Example 5: A visiting doctor can create private notes for
the patients he/she is responsible for. Formalized as:

[CreateCarePlanAction(a) ∧ actSub(a, s)∧
VisitingDoctorSub(s) ∧ subCreator(s, u)∧
ownerActSpec1(a, p) ∧ hasPatient(u, p)]→
AuthorizedAction(a),

[CreateCarePlanAction(a) ∧ actSub(a, s)∧
VisitingDoctorSub(s) ∧ subCreator(s, u)∧
ownerActSpec1(a, p) ∧ ¬hasPatient(u, p)]→
ProhibitedAction(a).

Example 6: A user can only log in as a subject that corre-
sponds to the concept the user is in. We need one policy for
each subconcept of User . For instance, one for administrators
Admin , and one for admitted residents AdmittedResident .
The policy for an administrator user login is formalized as:

[CreateAdminSubAction(a) ∧ actSub(a, u)∧
Admin(u)]→ AuthorizedAction(a).

D. ABAC Configuration

An ABAC model defines the generic structure of the compo-
nents and policies in an application domain. In this paper, we
refer to an ABAC configuration as a specification of an ABAC
model that fills the components with named individuals. The
formal definition for an ABAC configuration is in Definition 5.

Definition 5 (ABAC Configuration): Let M = 〈C,R, T ,P〉
be an ABAC model. An ABAC configuration of M is a tuple
S = 〈M,∆,A〉, where
• ∆ is a finite set of named individuals;
• A is a finite set of axioms, each of which is either of

the form C(a) or of R(a, b), where C ∈ C, R ∈ R, and
a, b ∈ ∆. �

Intuitively, an ABAC model M forms an ALCN1 TBox
knowledge base with governing policies, and an ABAC
configuration is an ABox knowledge base with a fixed
set of individuals. Suppose Alice is a visiting doctor of
the care facility and Bob is one of Alice’s patients, then
we have the individuals Alice,Bob ∈ ∆, and axioms
hasPatient(Alice,Bob),VisitingDoctor(Alice),
Resident(Bob) ∈ A.

Let S = 〈M,∆,A〉 be an ABAC configuration of an ABAC
model M = 〈C,R, T ,P〉. All of the information specified in
A can be stored in a database, which can then be checked
against the axioms in T to make sure the constraints are
satisfied. Given a policy φ ∈ P , since all variables in φ are
free, they are substituted for the named individuals in ∆, and
whether C(a) or R(a, b) is true can be determined by a simple
lookup of the tables in the database. Suppose S is consistent
w.r.t.M, then each unary predicate C(x) in φ evaluates to true
if C(x) ∈ A, i.e., C(x) is stored in the database. Otherwise,
C(x) is false. Similarly, each binary predicate R(x, y) in φ
evaluates to true if R(x, y) ∈ A, and false otherwise. For

instance, in Example 5, even if we do not have negation of
roles in ALCN1 , ¬hasPatient(u, p) would evaluate to true if
hasPatient(u, p) is not in A.

V. IMPLEMENTATION IN OWL AND N3

The formalism of our ABAC model can be easily imple-
mented using OWL 2 [32] and N3 [26]. We briefly discuss
the implementation in this section.

A component in the ontology of our ABAC model is
represented as a concept in ALCN1 , corresponding to a
class in OWL 2. The base concepts can be defined as in
the following.
User a owl:class.
Subject a owl:class.
Object a owl:class.
Action a owl:class.
AuthorizedAction a owl:class.
ProhibitedAction a owl:class.
ActionObject a owl:class.
ActionSubject a owl:class.

The subsumption axioms are listed as follows, using the
subClassOf RDF schema.
User rdfs:subClassOf ActionObject.
Subject rdfs:subClassOf ActionObject.
Object rdfs:subClassOf ActionObject.
User rdfs:subClassOf ActionSubject.
Subject rdfs:subClassOf ActionSubject.
ActionSubject rdfs:subClassOf

owl:unionOf (User Subject).
AuthorizedAction rdfs:subClassOf Action.
ProhibitedAction rdfs:subClassOf Action.

The axioms for the disjointness of two concepts can be
enforced using the OWL statement disjointWith, listed
as following:
User owl:disjointWith Subject.
User owl:disjointWith Object.
Subject owl:disjointWith Object.
ActionObject owl:disjointWith Action.
ActionSubject owl:disjointWith Action.

An attribute in an ABAC model is represented as an
ALCN1 role, corresponding to an ObjectProperty in
OWL 2. The axioms for the domain, range, and number restric-
tions of each role are listed as follows, using the OWL state-
ments FunctionalProperty, maxCardinality and
minCardinality, and RDF schemas domain and range.
subCreator a owl:ObjectProperty,
owl:FunctionalProperty;
rdfs:domain Subject;
rdfs:range User.

actSub a owl:ObjectProperty,
owl:FunctionalProperty;
rdfs:domain Action;
rdfs:range ActionSubject;

actObj a owl:ObjectProperty;
owl:maxCardinality "1"ˆˆxsd:nonNegativeInteger;
rdfs:domain Action;
rdfs:range ActionObject.

The property of modular representation and incremental
modification of our ABAC formalism is also preserved in
the OWL 2 implementation. To add a new concept, the
corresponding subsumption and disjointness axioms can be



added without modifying the existing axioms. Similarly, to
add a new attribute, the axioms for its domain, range, and
number restrictions can also be added without modifying the
existing axioms.

We express policies using N3 syntax. In an N3 rule, each
symbol ?X starting with ? is a free variable. An individual x
is in concept C, i.e., C(x) is written as x a C and R(x, y) is
written as x R y. For instance, the policy in Example 2 for
health care workers viewing the medical records of residents
is represented as an N3 rule in the following.
{?A a ReadAction;

actSub ?S;
actObj ?O.

?S a HealthCareWorkerSub.
?O a MedicalRecord.} => {?A a AuthorizedAction.}.

The policy for administrator user logins is expressed as the
following N3 rule.
{?A a CreateAdminSubAction;

actSub ?U.
?U a Admin.} => {?A a AuthorizedAction.}.

The axioms A in an ABAC configuration S = 〈M,∆,A〉
can also be easily implemented in OWL 2. For instance, the
fact that the resident Bob is a patient of the visiting doctor
Alice is expressed as in the following. We use capitalized
words for named individuals only in this section to keep
consistent with OWL 2 syntax.

Alice a VisitingDoctor.
Bob a AdmittedResident.
Alice hasPatient Bob.

Given an OWL 2 implementation of the axioms and an N3
implementation of the policies, one may use the EYE reasoner
to evaluate whether an action is authorized or prohibited [33].

VI. INCORPORATING ADDITIONAL FEATURES

The formalism of our ABAC model can be modified to
incorporate a wide range of additional features. We discuss in
this section how to add time, conflict resolution mechanisms,
and default and exception policies.

A. Time
In many applications, the policies take time into considera-

tion when making decisions, such as the time when an action
is requested. To be able to talk about time in our formalism, we
need a distinguished individual representing the environment
or context and a way of representing the timestamps in the
environment.

First, we add another concept constructor to ALCN1 ,
namely the “one-of” constructor. {a1, . . . , an}. We formalize
the environment as a named individual environment and
create a concept Env that only contains environment , which
can be expressed by adding the following axioms to the set of
axioms T of an ABAC model M defined in Definition 1:

Env v {environment}, and {environment} v Env .

Accordingly, the definition of an ABAC configuration
S = 〈M,∆,A〉 is modified by including the in-
dividual environment in ∆ and the concept assertion

Env(environment) in A. To keep the runtime complexity for
checking whether the axioms in T are satisfied reasonably
low, one may disallow the one-of constructor to be used in
arbitrary concepts.

Adding timestamps is more complicated than adding the
environment. One approach is to formalize a temporal version
of ALCN1 . In this paper, we discuss another simpler approach
by adding concrete domains to our ABAC model [34]. A
concrete domain D is simply a set of individuals ∆D that
have a set of predicates pred(D) other than the ones in a DL
knowledge base defined upon them. For instance, the concrete
domain N consists of the set of all natural numbers, the binary
predicate names <, ≤, >, and ≥, and the unary predicate
names <n, ≤n, >n, and ≥n, defined in the obvious way. These
predicates are called concrete predicates. For simplicity, we
useN to represent time in our model. The resulting description
logic after adding Env and N to ALCN1 is still decidable
[35].

Example 7: We define the functional attributes currentTime
for the current time of environment and leftTime for the
time when a resident leaves the care facility. The domain of
currentTime is Env and range is the set of natural numbers.
The domain of leftTime is FormerResident and range is the
set of natural numbers. Suppose the natural numbers represent
the years. Then the policy that says “an administrator can
delete a resident’s medical records if the resident left the
facility before 2000 and it is after 2007 now” is formalized as
follows, where > and < are concrete predicates in N .

[DeleteAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
AdminSub(s) ∧ subCreator(s, u) ∧ owner(o, u)∧
FormerResident(u) ∧ currentTime(environment , t1)∧
(t1 > 2007) ∧ leftTime(u, t2) ∧ (t2 < 2000)]→
AuthorizedAction(a)

B. Conflict Resolution

Explicit conflicts among policies can arise if the policies can
express both authorizations and prohibitions. Explicit conflicts
cannot arise when using either a prohibition- or permission-
by-default approach; instead, implicit conflicts between rules
would manifest as erroneous or unexpected decisions, with the
expected governing rule failing to produce an authorization,
but an unexpected rule producing an authorization.

Space limitations preclude detailed discussion of resolving
conflicting policies. We here only briefly demonstrate that our
formalism is able to incorporate conflict resolution mecha-
nisms rather than discuss the details of how the mechanisms
work. One simple approach to incorporate conflict resolution
in our formalism is to assign priorities to policies. When two
policies are in conflict, the policy with the higher priority takes
precedence. However, this approach is not maintainable. When
a new policy is added, the priorities of the other policies may
need to be adjusted as well. Another similar approach is to
define a predicate dominates(p1, p2) between two policies
such that when p1 and p2 are in conflict, p1 takes precedent



over p2. This approach would be more maintainable but it may
result in cyclic dominating relations.

Our framework is also able to incorporate other various
kinds of conflict resolution techniques, such as inheritance hi-
erarchies with exceptions [36], answer set programming [37],
and preference-based nonmonotonic or default argumentation
techniques [36], [38], [39].

C. Default and Exception Policies

A default policy is useful when an action is not governed
by any other policies defined in the system. Our formalism is
able to incorporate this feature by simply adding policies of
the following forms:

[C1(a) ∧ ¬AuthorizedAction(a) ∧ φ(a, ~x,~c)]→
ProhibitedAction(a)

[C1(a) ∧ ¬ProhibitedAction(a) ∧ φ(a, ~x,~c)]→
AuthorizedAction(a),

where a is a free variable representing a requested action, C1

is a subconcept of Action , and φ(a, ~x,~c) represents the rest of
the preconditions with free variables in ~x and constants in ~c.
In this way, our formalism allows a granular incorporation of
default policies, as illustrated in the following Example. Dif-
ferent types of users may subject to different default policies
for the same action. Similarly, different types of actions may
be governed by different default policies.

Example 8: In the care facility scenario, a health care
worker is authorized to read the medical records of any
resident unless said otherwise, while a visiting doctor is
prohibited to read the medical records unless said otherwise.
Formalized as the following two policies, respectively.

[ReadAction(a) ∧ ¬ProhibitedAction(a) ∧ actSub(a, s)∧
HealthCareWorkerSub(s)]→ AuthorizedAction(a)

[ReadAction(a) ∧ ¬AuthorizedAction(a) ∧ actSub(a, s)∧
VisitingDoctorSub(s)]→ ProhibitedAction(a) �

Furthermore, the close and open policies can be formalized
as in the following, respectively.

[Action(a) ∧ ¬AuthorizedAction(a)]→
ProhibitedAction(a)

[Action(a) ∧ ¬ProhibitedAction(a)]→
AuthorizedAction(a)

Adding exception policies often result in conflicting poli-
cies. We here only demonstrate our formalism’s ability to
add exception policies. Conflict resolution mechanisms can
be further incorporated as discussed in Section VI-B.

To add an exception policy pol1 for an original policy pol2,
one can simply assign a higher priority to pol2 than pol1. Thus,
pol2 would take precedence when authorizing a requested
action. In this way, one would not need to modify the original
policies.

Example 9: Suppose the environment is defined in the care
facility scenario using the one-of constructor. Let the following
be a policy originally defined in the model with priority 2
for prohibiting anyone who is not a health care worker from
reading a resident’s medical record.

[ReadAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
¬HealthCareWorkerSub(s) ∧MedicalRecord(o)]→
ProhibitedAction(a)

To add an exception that says any staff of the facility and
visiting doctors can read any resident’s medical records in
case of an epidemic, one may add the following policy with
priority 3, or any number greater than 2:

[ReadAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
(HealthCareWorkerSub(s) ∨AdminSub(s)∨
VisitingDoctorSub(s)) ∧MedicalRecord(o)∧
InEmergency(environment , epidemic)]→
AuthorizedAction(a),

where InEmergency(environment , epidemic) indicates the
facility is in epidemic. �

To avoid such potential conflict between an original and an
exception policy, one could also modify the original policy
such that it is only applicable when there is no ongoing
epidemic, as expressed in the following.

[ReadAction(a) ∧ actSub(a, s) ∧ actObj (a, o)∧
¬HealthCareWorkerSub(s) ∧MedicalRecord(o)]→
¬InEmergency(environment , epidemic)]→
ProhibitedAction(a)

However, when there are many exceptions, modifying the
original policy to take into account the exception conditions
may result in policies that are too complicated to understand
and maintain.

VII. SEPARATION OF DUTIES

Separation of duties (SoD) is a fundamental principle in
security systems, requiring that more than one users are needed
to perform a critical task so that no single user is able to
control all the steps involved in the task. A generalization of
the principle is a k-n SoD, stating that given a task composed
of n permissions, no less than k (1 < k ≤ n) users are
required to perform the task. A permission is simply a pair of
an action and an object. The n permissions do not necessarily
involve different objects or types of actions. Jha et.al. [40],
[41] analyze the k-n SoD problem in an ABAC model using
a symbol-set notation and propose a method for implementing
a limited version of SoD using mutually exclusive policies,
specifically when k = n. The rest of this section discusses how
to achieve limited versions of k-n SoD using mutual exclusion
of concepts and attributes, or using more expressive policies.



A. Mutual Exclusion

When k = n (n > 1), a k-n SoD constraint simply states
that given n permissions, each of them needs to performed by
a different user. For example, in the control of implementing
an information system, the person who implements the system
cannot be the same person who reviews and tests it.

One may use a similar approach as in RBAC to achieve
such SoD constraint, i.e., through the usage of mutually
exclusive, or disjoint, concepts. To achieve static separation
of duties (SSoD), one may specify that some subconcepts
of User are disjoint. For instance, suppose we have two
User subconcepts: Developer for developing an information
system, and Tester for reviewing and testing the system. To
satisfy the requirement that says no single user can be both
a developer and a tester, one may simply add the disjoint
axiom Developer u Tester v ⊥. On the other hand, to
achieve dynamic separation of duties (DSoD), one may require
some subconcepts of Subject to be disjoint. For instance,
a user can be both a developer and a tester, but it cannot
login as a developer and a tester at the same time, i.e.,
DeveloperSub u TesterSub v ⊥.

However, the above approach for achieving DSoD using
disjoint subconcepts of Subject is not sufficient or appropri-
ate in some cases. In the information system development
example, the subconcepts Developer and Tester of User may
be required to overlap in some cases. A user who is both a
developer and a tester would breach the security by logging in
first as a developer to implement a system and then logging
in as a tester to test the same system. In such cases, our
formalism needs to be extended to be able to state that the
two functionalities of developing and testing are disjoint given
the same object. Such disjointness can be achieved by adding
disjoint axioms between ALCN1 roles. For example, suppose
each information system that is under development is an
object, and it has two attributes: developedBy and testedBy ,
with range User . The DSoD requirement can be simply stated
as disjoint(developedBy , testedBy), meaning for any object,
no single user can both develop and test it.

B. k-n SoD

A k-n SoD requirement states that suppose a task t is
composed of n (n > 1) permissions, each of which is pair
(a, o) where a is an action and o is an object, then at least
k (1 < k ≤ n) users are needed to complete task t. Whether
a k-n SoD requirement is static or dynamic depends on the
time it is applied.

Suppose the n actions in the permissions are to be per-
formed sequentially. We illustrate how to (partially) enforce
a k-n SSoD for the sequential actions through the following
example. A k-n DSoD can be specified similarly. The idea
is that for each type of action, we define an ActionObject
functional attribute to indicate the creating user of a subject
that performs an action of the type on the object. For instance,
if the subject s with creating user u places an order o, we have
orderedBy(o, u). Then the last action in the n permissions is
authorized if there are at least k distinct users among the n−1

(not necessarily distinct) users who have completed the first
n− 1 actions and the user who requests the last action.

Example 10: An inventory task is composed of ordering
goods from suppliers, receiving goods from suppliers, and
logging in the received goods, and at least 2 (at most 3) users
are required to perform the task. We represent each order as an
object, and the inventory task as three actions: OrderAction ,
ReceiveOrderAction , and LoginOrderAction . After an oder
is placed and received, the functional attributes orderedBy and
receivedBy for the order is updated accordingly to indicate
which user(s) placed the received the order. Then the policy
for logging in an order is formalized as:

[LoginOrderAction(a3) ∧ actSub(a3, s) ∧ actObj (a3, o)∧
subCreator(s, u3) ∧ orderedBy(o, u1) ∧ receivedBy(o, u2)

∧ ((u3 6= n2) ∨ (u3 6= n1))]→ AuthorizedAction(a)

Note that in the above example, all 3 of the actions of the
task act on the same object and k = 2. In more complicated
cases where more than one objects are involved or k > 2, the
policy language needs to be extended to include existential
quantifiers. However, this approach does not prevent potential
violations of a k-n SoD by prohibiting any of the first n− 1
actions.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a direct logical formalism of ABAC
models using a variant of description logics and function-free
first-order logic with equality. Our formalism has a clear and
well-defined semantics for both the high-level structure of the
model and the language specification. The model also has a
uniform representation for different types of actions and their
governing policies, such as creating an individual and reading
an object.

We are able to demonstrate that our formalism is more
maintainable for administrators than the set- or tuple-based
formalisms. Adding a new concept of individuals is easily
done by adding extra axioms to the knowledge base to indicate
the added concept’s superconcept and its disjoint concepts.
Adding a new attribute is also easily done by adding extra
axioms to indicate its domain, range, and cardinality con-
straints. We demonstrate the flexibility of our formalism by
illustrating how to add several widely used features, including
the environment, time, conflict resolution mechanisms, and
default and exception policies. We also briefly discuss several
methods in achieving several versions of (static and dynamic)
separation of duties.

Because our logical formalization of ABAC treats autho-
rization policies about all types of actions in a uniform way,
one can consider straightforward extensions of our AC frame-
work to application domains and actions other than access
control. Furthermore, one may also utilize the formalization of
the high-level structure incorporation with an existing policy
language, such as XACML.
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