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Abstract—A cryptographic protocol can be deployed in a
variety of environments, but existing methods of protocol analysis
focus only on the protocol, without being sensitive to assumptions
about these environments.

We present LPA, a tool which analyzes protocols in context.
LPA uses two programs, cooperating with each other: CPSA, a
well-known system for protocol analysis, and Razor, a model-
finder based on SMT technology. Our analysis follows the enrich-
by-need paradigm, in which models of protocol execution are
generated and examined.

The choice of which models to generate is important, and
we develop a careful motivation for and evaluation of LPA’s
strategy of building minimal models. In fact “minimality” can
be defined with respect to either of two preorders, namely the
homomorphism preorder and the embedding preorder (i.e. the
preorder of injective homomorphisms); we discuss the merits
of each. Our main technical contributions are algorithms for
building homomorphism-minimal models and for generating a
set-of-support for the models of a theory, in each case by scripting
interactions with an SMT solver.

I. INTRODUCTION

Cryptographic protocol analysis is well-developed, and
many tools and rigorous techniques can be used to determine
what confidentiality, authentication (among others, [RGL16a],
[EMM09], [Bla02], [CM12]), and indistinguishability proper-
ties (e.g. [Bla04], [BAF08], [CCcCK16]) a protocol satisfies.

However, what goals a protocol needs to achieve depends
on the applications that use it. The applications require certain
security functionality; a protocol is acceptable if it achieves
at least what that functionality relies on. Often, an attack
shows that a protocol ensures less than an application needed.
For instance, in the TLS resumption attacks [RRDO10],
cf. [BDLF+14], [RGL16b], the protocol did not allow the
server application to distinguish unauthenticated input at the
beginning of a data stream from subsequent authenticated
input. This may lead to erroneous authorization decisions.

Conversely, a protocol may be good enough for an appli-
cation because of environmental assumptions the application
ensures. For instance, some protocols fail if the same long-
term key is ever used by a principal when playing the server
role and also when playing a client role. However, some
applications ensure that no server ever executes the protocol in
the client role at all. This policy would ensure that an otherwise
weak protocol reliably supports the application’s needs.

Logical Protocol Analysis is our term for combining a
protocol analyzer with these additional concerns, which we an-
alyze via model finding. Our goal is to analyze cryptographic
protocols that include trust axioms that cannot be stated using
the typical input to a protocol analyzer such as CPSA.

Flawed protocols are often deployed, and may be embedded
in widely used devices before the flaws are understood. Such
protocols can still achieve desired security goals when used
in a restricted context. If the context can be modeled using
environmental assumptions and other trust axioms, Logical
Protocol Analysis can be used to discover whether the goals
are met in the actual context of use.

A. An Example: DoorSEP

Consider a motivating scenario; see Section IV-A for more
details. The protocol, called the Door Simple Example Proto-
col (DoorSEP), is derived from an expository protocol due to
Bruno Blanchet [Bla08], who designed it to have a weakness.
Despite this weakness, the protocol can achieve the needs of
an application subject to a trust assumption.

Imagine a door D which is equipped with a badge reader,
and a person P equipped with a badge. When the person
swipes the badge, the protocol executes. Principals such as
doors or persons are identified by the public parts of their key
pairs, with D−1 and P−1 being the respective principal’s pri-
vate keys. We write {|M |}K for the encryption of message M
with key K. We represent digital signatures {|M |}P−1 as if
they were the result of encrypting with P ’s private key.

The person initiates the exchange by creating a fresh sym-
metric key K, signing it, and sending it to the door encrypted
with the door’s public key. The door extracts the symmetric
key after checking the signature, freshly generates a token T ,
and sends it to the person encrypted with the symmetric
key. The person demonstrates they are authorized to enter by
decrypting the token and sending it as plain text to the door.
DoorSEP may be expressed in Alice and Bob notation:

P → D : {|{|K|}P−1 |}D
D → P : {|T |}K
P → D : T.

An analysis of DoorSEP by CPSA shows an undesirable
execution of this protocol. Assume the person’s private key



P−1 is uncompromised and the door has received the token it
sent out. In this situation, CPSA deduces that person P freshly
created the symmetric key K. However, there is nothing in
this protocol to ensure that the person meant to open door
D. If adversary A gets P to use compromised door D′, the
adversary can perform a man-in-the-middle attack:

P → A : {|{|K|}P−1 |}D′
A→ D : {|{|K|}P−1 |}D
D → A : {|T |}K
A→ D : T.

Without additional assumptions, the door cannot authenticate
the person requesting entry.

But possibly we can trust the person to swipe her badge
only in front of doors our organization controls. And we can
ensure that our doors have uncompromised private keys. If so,
then the adversary cannot exercise the flaw.

We regard this as a trust assumption, and we can express it
as an axiom:

If an uncompromised signing key P−1 is used to
prepare an instance of the first DoorSEP message,
then its owning principal has ensured that the se-
lected door D has an uncompromised private key.

The responsibility for ensuring the truth of this axiom may be
split between the person and the organization controlling the
door. The person makes sure to swipe her badge only at legit-
imate doors of the organziation’s buildings. The organization
maintains a security posture that protects the corresponding
private keys.

Is DoorSEP good enough, assuming the trust axiom?
To analyze this protocol with this trust assumption we use a

model finder, namely Razor [SDD15]. We provide it a theory
leading to a model containing the man-in-the-middle attack.
We then add the trust axiom above. The axiom makes it so that
the adversary cannot decrypt the message sent by the person.

The generated model is then given to CPSA, which infers
that the door can decrypt the person’s message only if the
person intended it for this door. Thus, the protocol has
achieved its job, ensuring that the door opens only when an
authorized person requests it to open.

B. Protocols and theories

Security conclusions require protocol analysis combined
with other properties, which we will assume are given ax-
iomatically by a theory G. We also regard a protocol Π as
determining an axiomatic theory Th(Π), namely the theory
of Π’s executions, as Π runs possibly in the presence of a
malicious adversary. Thus, we would like to understand the
joint models of G ∪ Th(Π), where of course these theories
may share vocabulary.

The implications of policies expressed in first-order logic
can be understood from their models.

A policy that includes a theory about a cryptographic
protocol allows one to determine the impact of the policy
on the execution of a protocol. However, deducing protocol

executions is not something that can be efficiently done within
an SMT solver. An external, finely tuned tool is called for; this
is the role that CPSA plays.

In the DoorSEP case, the relevant G is the trust axiom. The
models of this theory are runs of the protocol in which the
doors and people act as assumed in it.

Enrich-by-need: Indeed, our approach is to construct min-
imal models in a homomorphism order. We refer to these
minimal models as shapes [Gut11]. The shapes show all of the
minimal, essentially different things that can happen subject
to G ∪ Th(Π): every execution contains instances—meaning
homomorphic images—of the shapes. This is useful to the
security analyst who can inspect the minimal models and
appraise whether they are compatible with his needs. The
analyst can do this even without being able to explicitly state
the key security goals. In the case in which G = ∅, so that
only Th(Π) matters, generating these shapes is the central
functionality of CPSA [RGL16a].

We call this approach to security analysis enrich-by-need,
since we build homomorphism-minimal models by rising
stepwise in the homomorphism order, gradually generating
them all. CPSA does so using a “authentication test” method,
which yields a compact, uniform way to generate the set of
minimal models of the protocol theory [Gut11], [LRT11].

Indeed, a further advantage arises in the case where there
is a finite set of finite shapes. In that case, we can summarize
them in a sentence, called a shape analysis sentence con-
structed as the disjunction of their diagrams [Gut14], [Ram12].
The diagram of a finite model is (roughly) the conjunction of
the atomic formulas true in it. The shape analysis sentence
is thus true in all of the shapes. Moreover, its syntactic form
ensures that its truth will be preserved by homomorphisms.
Thus, it will be true in all models of G ∪ Th(Π). Indeed,
no strictly stronger formula can be true in all the models.
We regard the shape analysis as a security goal achieved by
G ∪ Th(Π).

Thus, finding a finite set of finite shapes determines a
strongest security goal that the system achieves.

We already have a special tool, called CPSA [RG17], that
computes the shapes and their sentences for a protocol Π
acting alone. It uses optimized algorithms that we have proved
correct for protocol analysis [Gut11], [LRT11]. Thus, we need
to extend it so that it can cooperate with another tool to adapt
its results to provide models of the whole theory G ∪ Th(Π).
We effectively split Th(Π) into two parts, a hard part Th and
an easy part Te. Only CPSA will handle the hard part.

Our strategy is to use a general-purpose model-finder, Ra-
zor [SDD15] to look for minimal models of G∪Te that extend
a fragment of a model. When the resulting model A contains
additional behavior of Π, we return to CPSA to handle the hard
part Th, enriching A with some possible executions. We then
return these extensions to Razor. If this process terminates,
we have a minimal joint model. By iterating our search, we
obtain a covering set of minimal joint models.
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Razor, in turn, is built as a wrapper around a Satisfia-
bility Modulo Theories (SMT) [BSS+09] solver, specifically
Z3 [DMB08a].

C. Contributions

This report has two goals. First, we define and justify the
methods that the new Razor uses to drive Z3 to generate
homomorphism-minimal models of a given theory. These
homomorphisms are not necessarily embeddings; that is, a
homomorphism to construct may map distinct values in its
source model to the same value in its target model. To begin
with, we need a method to construct, from a model A, a set of
sentences homFromA, true in precisely those models B such
that there is a homomorphism from A to B. We also need
a method to construct, from a model A, a set of sentences
homToA, true in precisely those models B such that there is
a homomorphism from B to A.

We show how to use these two resources to compute a set
of minimal models that covers all of the models; this method
is codified in Razor.

Second, we develop a particular architecture for coordi-
nating Razor and CPSA. In this architecture, Razor handles
all aspects of G ∪ Th(Π) except that it does not enrich
a fragmentary execution of Π to obtain its shapes, i.e. the
minimal executions that are its images. Instead, we generate
an input to CPSA that contains the substructure A0 containing
only protocol behavior. CPSA computes the shapes and extracts
the strongest security goal that applies to A0. It returns
this additional information to Razor, which then iterates. We
call this cooperative architecture LPA for Logical Protocol
Analysis.

Structure of the paper: In Section II we fix some
preliminary definitions and notation; we introduce the two
existing tools which coordinate to make LPA in Section III.
In Section IV we describe LPA itself and how it is used to
analyze the DoorSEP protocol. Section V is a development
of some of the underlying theory of using SMT solving
to compute and present models, with an emphasis on the
question: which models should be presented to the user? We
end with conclusions and a discussion of future work.

D. Related Work

Model-finding is an active area of investigation [ZZ95],
[McC01], [CS03], [BS06], [NM06], [TJ07], [BFDNT09],
[RTGK13]. But—with some exceptions noted below—existing
model-finders compute an essentially random set of models.
Close in spirit to our goals and techniques are lightweight
formal methods tools such as Alloy [Jac12] and Mar-
grave [FKMT05], [NBD+10]. These three tools are based on
the Kodkod model-finder [TJ07].

Logic programming languages produce single, least models
as a consequence of their semantics; this is not a notion
of minimality based on homomorphisms, and is traditionally
tied to Horn-clause theories. Generalizations for non-Horn
theories have already been used in specifying the semantics

of disjunctive logic programming [LMR92] and of database
updates [FUV83] and in non-monotonic reasoning, especially
circumscription [Rob01]. In more specialized settings, genera-
tion of minimal models usually relies on dedicated techniques,
often based on tableaux [Nie96] or hyperresolution [BY00].
Aluminum [NSD+13b] supports exploration by returning min-
imal models: it instruments the model-finding engine of Alloy.
The Network Optimized Datalog tool [LBG+14], which has
been released as a part of Z3 [DMB08b], presents limited
minimization for reasoning about beliefs in the context of
network reachability policies.

There is surprisingly little work devoted to analyzing se-
curity protocols in the context of trust assumptions. Our
previous work on a Cryptographic Protocol Programming Lan-
guage [GTC+04], [GHRS05] led to a programming language
that would allow protocol actions to be controlled by a trust
management policy.

The Tamarin prover [MSCB13] can limit the context in
which a protocol is to be analyzed by restricting its analysis to
a user-specified subset of all protocol traces. In contrast, our
primary interests lie in enriching the context in which analysis
is done by including trust management, access control, etc.,
and in generating principled output instances. There was also
related work in the applied π-calculus [BFGP04], [GP05],
[FGM05]. Protocol analysis sometimes builds in environmen-
tal assumptions in a security goal hypothesis, by assuming that
some keys are uncompromised, or that some principal names
are unequal. However, the focus of that research has been
on the pure problem of determining the security properties of
protocols in isolation.

The mathematical motivations for minimality are detailed
in II, but one can also ask for motivations grounded in user-
experience research. There has been relatively few user studies
of formal methods tools; [DNH+17] reports preliminary work
in the model-finding context.

II. FOUNDATIONS

A. Models and Homomorphisms

In this chapter we present some of the foundations of model-
finding, focusing on the use of an SMT solver. In broadest
terms, model-finding is the following task: given a logical
theory T , produce one or more (finite) models of T .

Of course a typical satisfiable theory will have many mod-
els. Special emphasis is given in this paper to the question of
which models should be presented to the user? One answer—
embodied in the LPA tool—is based on the fundamental notion
of homomorphism between models, with a focus on models
that are minimal (see Section V) in the pre-order determined
by homomorphism.

Fix a signature Σ. A model A for signature Σ is defined as
usual: a collection of sets interpreting the sorts of Σ, and a
collection of functions and relations interpreting the function
and relation symbols of Σ. In this paper we work with finite
models exclusively.
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Definition 1. Let A and B be Σ-models. A function h : |A| →
|B| is a homomorphism if

1) A |= f [a1, . . . , an] = a implies
B |= f [h(a1), . . . , h(an)] = h(a) and

2) A |= R[a1, . . . , an] implies B |= R[h(a1), . . . , h(an)].
Model B is a submodel of A if |B| ⊆ |A| and the inclusion
function is a homomorphism.

Write A - B if there is a homomorphism h : A → B, and
write A ≈ B if A - B and B - A. Write A -i B if there
is an injective homomorphism h : A → B, and write A ≈i B
if A -i B and B -i A. We will sometimes use the phrase
“hom-cone of A” to refer to the set of models B for which
there is a homomorphism h : A→ B.

Definition 2. Let M be a class of models. A model M ∈M
is a-minimal for M if whenever A ∈ M and A - M, we
have A ≈ M. The definition of i-minimal is similar, using
injective homomorphisms. (The modifier “a−” is to suggest
“arbitrary”.)

Typically we are interested in the case whenM is the class
of models of a theory T .

One could imagine yet another notion of minimality, where
the preorder on models is given by the submodel relation: a
model A of T is “submodel-minimal” for T precisely if no
proper submodel of A is a model of T . But it is not hard to
see that this condition is equivalent to i-minimal for T , so we
will use these characterizations interchangeably.

The notion of the core of a model is standard [HN92],
[FKP05]; it is important for us because cores will give
canonical representatives of ≈ equivalence classes.

Core are defined in terms of retractions, as follows.

Definition 3. A retraction r : A→ B is a homomorphism such
that there is a homomorphism e : B→ A with r ◦ e = idB.

A submodel C of A is a core of A if there is a retraction
r : A→ C but no retract r′ : A→ C′ for any proper submodel
C′ of C.

A model C is a core if it is a core of itself.

Definition 4 (PE formula, Geometric theory). A formula is
positive-existential, or PE, if it is built from atomic formulas
(including true and false) using ∧, ∨ and ∃. A geometric
sentence is one of the form

∀~x. α(~x)→ β(~x)

where α and β are positive-existential.

Theorem 5. The following are equivalent, for a formula α(~x):
1) α is preserved by homomorphism: if h : A → B is a

homomorphism, and ~a is a vector of elements from A
such that A |= α[~a], then B |= α[ ~ha].

2) α is logically equivalent to a PE formula.
3) α is equivalent, in the categoryMΣ of finite models, to

a PE formula.

Proof. The equivalence of (1) and (2) is a classical result in
model theory when considering arbitrary models. The equiva-
lence of (1) and (3) is a deep result of Rossman [Ros08].

The case for geometric logic as a logic of observable
properties was made clearly by Abramsky [Abr91]. As detailed
in [Gut14], typical security goals for protocols are naturally
expressed as geometric sentences. (As is well-known, any
theory is equisatisfiable with one in conjunctive normal form,
by introducing Skolem functions. Such an enrichment of
the theory signature is not innocent, however, since it has
consequences for the existence of homomorphisms between
models.)

It is straightforward to see that when T is geometric, if A
is a model of T then a retraction of A is a model of T .

Lemma 6. Let T be a geometric theory, A |= T , and r :
A→ B a retraction. Then B |= T .

Proof. Let e : B→ A satisfy r ◦ e = idB. Consider an axiom
σ of T true in A

σ ≡ ∀~x. α(~x)→ β(~x)

where α and β are positive-existential formulas. To show σ is
true in B, consider a tuple ~b of elements such that α[~b] is true
in B. Since PE formulas are preserved by homomorphisms,
A |= α[ ~e(b)]. Since A |= σ, A |= β[~eb]. Since PE formulas are
preserved by homomorphisms, B |= β[ ~r(e(b))]. Since r ◦ e =
idB, B |= β[~b], as desired.

Definition 7. IfM is a class of Σ-models andM0 ⊆M say
that M0 is an a-set of support for M if for all B ∈M, there
exists A ∈M0 with A - B. Similarly for i-set of support.

A set of support for a class of models provides a complete
“testbed” for entailment of geometric sentences:

Lemma 8. Let σ ≡ ∀~x. α(~x) → β(~x) be geometric and let
M be a class of models. Let M0 be an a-set of support for
{A ∈M | A |= ∃~x. α(~x)}. If every model in M0 satisfies σ
then every model in M satisfies σ.

Proof. Let P ∈M with P |= α[~a]; we want to show that P |=
β[~a]. Let M ∈ M0 with M - P. Since M |= σ, M |= β[~a].
Since β is PE and M - P, P |= β[~a].

B. Strand Spaces

We can formalize protocol executions as models, as follows.
A run of a protocol is viewed as an exchange of messages by
a finite set of local sessions of the protocol. Each local session
is called a strand: a strand is a sequence of nodes n, each of
which is a transmission or a reception of the message msg(n)
at that node.

A strand space Θ is a finite sequence of strands. A
message that originates in exactly one strand of Θ is uniquely
originating, and represents a freshly chosen value. A message
is mentioned in Θ if it occurs in a strand of Θ, or if it is
an asymmetric key, its inverse occurs in a strand of Θ. A
message that is mentioned but originates nowhere in Θ is non-
originating, and often represents an uncompromised key.

A protocol Π is a finite set of strands, which are the roles
of the protocol. A strand s is an instance of a role ρ ∈ Π, if
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s = α(ρ), i.e. if s results from ρ by applying a substitution α
to parameters in ρ.

Skeletons are fragmentary executions of the regular par-
ticipants, which factor out adversary behavior. A skeleton
K = (nodes,�, non, unique) consists of a finite set of regular
nodes, a partial ordering on them, a set of values assumed non-
originating, and a set of values assumed uniquely originating.
These components are designed to code in the aspects of
executions that we care about, namely the ordering, and
what values are uncompromised (“non”) or freshly chosen
(“unique”).

A skeleton K is an execution if it is realized. This means
that the message transmissions in K, when combined with
possible adversary behavior based on the Dolev-Yao adversary
model [DY83], suffice to explain every message received in
K.

Associated with each CPSA protocol Π is a first-order
language L(Π) used to specify security goals [Gut14]. The
language can be used to exchange information between CPSA
and an SMT solver. These mechanisms are described in Sec-
tion IV.

III. CONSTITUENT TOOLS

A. CPSA

The Cryptographic Protocol Shapes Analyzer [RG17]
(CPSA) can be used to determine if a protocol achieves
authentication and secrecy goals. CPSA will—given a protocol
Π and a skeleton of interest K—generate all of the minimal,
essentially different realized skeletons that are homomorphic
images of K. We call these minimal, essentially different
skeletons shapes, and, although in general there could be
infinitely many of them, frequently there are very few of them.

CPSA begins a run with a protocol description and an initial
scenario K0. The initial scenario is a partial description of
executions of a protocol. If CPSA terminates, it characterizes
all the executions of the protocol consistent with the initial
scenario. For example, if it is assumed that one role of a
protocol runs to completion, CPSA will determine what other
roles must have executed.

Each skeleton K has a characteristic sentence σK such that,
for all K′, h : K→ K′ (for some homomorphism h) iff K′ |=
σK.

Homomorphisms play an essential role in CPSA. At each
step in the algorithm, an unrealized skeleton K is replaced by
a set of skeletons {K1, . . . ,Kn}, called a cohort, by solving
an authentication test [GT02]. The skeletons {K1, . . . ,Kn}
form an a-set of support for the realized skeletons that are
homomorphic images of K. That is, if there is an execution
(or “realized skeleton”) Kr such that h : K→ Kr, then there
exists some homomorphism h′ : Ki → Kr such that h =
h′◦hi. This ensures that CPSA produces a complete description
of all of the executions of a protocol described by the initial
scenario.

For an initial scenario K0, CPSA produces a set of realized
skeletons {K1, . . . ,Kn} and homomorphisms hi : K0 → Ki.
These are built up by a succession of cohort steps; thus, they

remain an a-set of support for the realized skeletons that are
homomorphic images of K0. The set hi : K0 → Ki—called
the shapes of this scenario—are a compact way of describing
all of the executions compatible with the initial scenario.

By Lemma 8, if a geometric sentence σ holds in each shape,
then σ holds in every realized skeleton that is an image of K0.

There is a key geometric sentence that can be extracted
from the results of a run of CPSA. A Shape Analysis Sentence
(SAS) [Ram12] encodes everything that has been learned about
the protocol from a CPSA analysis starting with a given initial
scenario. It holds in every realized skeleton of the protocol. A
SAS is used to import the results of a CPSA analysis into the
SMT solver.

The antecedent of a SAS is a conjunction of atomic formulas
that specify the initial scenario K0. The universally quantified
variables are the ones that occur in the antecedent. The con-
clusion is a disjunction of formulas, one for each shape. The
ith disjunct is an existentially quantified conjunction of atomic
formulas that describes the mapping hi and the additions to
the antecedent required to specify shape Ki.

B. Razor

Razor is a general-purpose model-finder: it takes as input an
arbitrary first-order theory T and attempts to find finite models
of T (CPSA can be viewed as a domain-specific model-finder,
working over various theories of strand spaces).

Razor finds models by (i) preprocessing the input theory
as described below, (ii) using an off-the-shelf SMT solver,
currently Z3, and (iii) postprocessing the results of the solver’s
output to fulfill certain goals: return minimal models by
default, allowing the user to explore and augment models, and
computing a set-of-support of models for T . Razor can be used
in REPL mode or batch mode; only the latter is used as part
of LPA (refer to [SDD15] for a fuller description of Razor’s
REPL mode).

Once the SMT solver has determined that a theory T is
satisfiable, and computed—internally—a model for T , the
application must extract the model from the solver. But the
API mandated by the SMT-Lib Standard (v.2.6) [BST+10]
for doing this is quite restricted. The model can be inspected
only through certain commands returning the solver’s internal
representation of values of terms.

This is inconvenient for us, especially since the solver might
create only a partial model internally.

To address this, we first ensure that the language we use
to communicate with the solver has enough ground terms
at each sort to name all elements of a model, by adding
fresh constants. Then we can query the solver for the values
of the functions and predicates, and build a “basic” model
representation

equations ci = cj and
equations f~c = c and

facts R~c
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Fig. 1. LPA Architecture

where the ci range over the fresh constants. Using standard
techniques we then construct from these equations a conver-
gent (terminating and confluent) ground rewrite system, which
facilitates working with the models.

IV. LPA

This section shows how to use CPSA and Razor to analyze
cryptographic protocols in context. Our architecture for LPA
is displayed in Figure 1. An analysis begins with a CPSA
protocol Π and an initial theory T0. The initial theory contains
a specification of the trust policy and a description of the initial
scenario of the protocol as a collection of sentences in L+(Π),
an extension of L(Π).

The program prot2smt2 uses protocol Π to generate
a set of axioms TΠ. These axioms allow Razor to produce
models from which skeletons can be extracted. For example,
an axiom about the transitivity of node orderings allows Razor
to compute the partial ordering of the nodes. Other axioms
ensure that a uniquely originating value is received only after
it is transmitted and that the double inverse of each asymmetric
key is equal to itself.

The initial theory is appended to TΠ to form the first the-
ory T1 to be analyzed by Razor. A skeleton is extracted from
each model. If the skeleton is realized, the model describes
the impact of the trust policy on complete executions of the
protocol. If the skeleton is not realized, it is used as the initial
scenario for CPSA. The results of CPSA is turned into a SAS
(shape analysis sentence, cf Section III-A) and added to the
current theory for further analysis. The process is repeated
until all of the extracted skeletons are realized.

A. Analyzing the Door Simple Example Protocol

Imagine there is a door with a badge reader, and a person
with a badge. The door has opened. We want to know what
else must have happened.

To begin this analysis, we must know how the person’s
badge was used to authenticate. Assume participants practice
the protocol Π in Figure 2, introduced in the Introduction. In
this protocol, a person begins by generating a fresh symmetric

door person

•

��

{|{|K|}P−1 |}Doo

•

��

{|T |}K //

• Too

•

��

{|{|K|}P−1 |}Doo

{|T |}K // •

��
•Too

Fresh: T Fresh: K

Fig. 2. DoorSEP Protocol

door person

•

��

�
{|{|K|}P−1 |}Doo •

{|{|K|}P−1 |}D′oo

•

��

{|T |}K //

• Too

Uncompromised: P Fresh: K,T

Fig. 3. DoorSEP First Shape

key, signing it, and then encrypting the result using the door’s
public key. If the door accepts the first message, it responds
by freshly generating a token and uses the symmetric key to
encrypt it. If the door receives the token back unencrypted,
the door concludes the person that generated the key is at the
door and opens.

The initial theory specifies the trust axiom and the fact that
the door is open. To assert the door is open, one asserts there
is a strand that is a full length instance of the door role. We
further assert that the person’s private key is uncompromised.
The trust axiom will be explained later.

Recall the diagram in Figure 1 to visualize the analysis
process. After appending the initial theory to the protocol
axioms TΠ, Razor finds model M0. As expected, model M0

specifies a full length door strand in which the person’s private
key is uncompromised and other facts such as the fact that
double inverse of the model’s asymmetric keys are equal to
themselves.

At this stage, we have a model that characterizes an unre-
alized skeleton, and we would like to use CPSA to find out
what else must have happened. The shape produced by CPSA
is displayed in Figure 3.

The shape shows the lack of mutual authentication built into
this flawed protocol. To open the door, a person can use an
arbitrary compromised key for the door. That is, without the
trust axiom, the answer to the “what else happened” question
is that the person holding private key P−1 swiped with their
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badge, but the key used to identify the door may have been
compromised, and an adversary may have completed the rest
of the protocol.

Consider the case in which the door is well known to the
owner of the badge. For example, suppose the badge is issued
by the institution that owns the door and is tamper proof. In
that case, the person knows to initiate the DoorSEP protocol
(swipe their badge) only when in front of a door with the
correct key. The trust axiom in the initial theory codifies this
policy. It states that if a person with an uncompromised key
initiates the protocol, the door key used is uncompromised.

The next step in the analysis makes use of the trust axiom.
The result of the CPSA analysis is transformed into a SAS. The
antecedent specifies the initial scenario described by the first
model. The consequence specifies what else must be added to
make the initial scenario into the complete execution shown
in Figure 3.

When the SAS is added to the current theory, Razor finds
one modelM1. The skeleton extracted from this model is very
similar to the shape in Figure 3 with one crucial difference:
the key D′ is uncompromised. Razor applied the trust axiom.
The skeleton extracted from M1 is unrealized, so CPSA can
make a contribution. It finds a SAS that extends the length of
the person strand to full length and equates D and D′. The
addition of this SAS produces model M2 that characterizes
a realized skeleton with full agreement between the door and
person strands. Because the skeleton is realized, CPSA has
nothing more to contribute and the analysis terminates.

V. MINIMALITY, CORES, AND SET-OF-SUPPORT

In this section we explore the question which models
should we compute and show to the user of a model-finding
tool? Our proposal, motivated by Lemma 8 and implemented
by LPA, is: compute a set-of-support for the input theory
comprised of minimal models. As we have observed there
are two natural notions of minimality; we point out some
theoretical differences between them. Most importantly, we
present algorithms for computing minimal models and sets-of-
support: these involve programming against the functionality
of SMT solvers.

A. Comparing i-minimal and a-minimal

One way to think about a-minimality of a modelM is that if
any atomic fact of M is removed, the resulting model would
no longer be a model of the theory at hand. In particular,
since equality is an atomic predicate, if two terms denote—
unnecessarily—the same model-element, this is a failure of
a-minimality.

Neither of i-minimality or a-minimality implies the other.
Example 9.
• Let T be the single sentence ∃x.P (x) ∧ ∃x.Q(x), and

let A have one element a with A |= P [a] ∧Q[a].
Then A is i-minimal but not a-minimal: the model B with
two elements a1 and a2 such that B |= A[a1] ∧ B[a2] is
strictly below A in the - preorder. (B is a-minimal for
T .)

• Let T be ∃x.P (x) and let A have two elements a1 and a2

with A |= P [a1] and A |= P [a2]. Then A is a-minimal
but is not i-minimal: the induced model determined by
a1 is a model of T .

However, an a-minimal model which is a core will be i-
minimal.

Lemma 10. If A is a-minimal for T and is a core, then A is
i-minimal for T .

Proof. Suppose B is a model of T and j : B→ A is injective.
Since A is a-minimal, there is a homomorphism h : A → B.
The composition j ◦h is an endomorphism of A. Since A is a
core this map is injective, so h is injective, and A ≈i B.

We should observe that for a given theory there might be
no finite a-minimal models at all. An example is the theory
with one unary function and no axioms. The initial (hence
unique minimal) model of this theory is the natural numbers.
Another way to put this is: the � preorder is not well-founded
in general.

On the other hand, we will typically add axioms to a theory
to ensure that there is an upper bound on the size of its models.
In such a case there will be only finitely many models of T ,
and the � preorder will be well-founded. This observation is
the key to the termination of many of the algorithms in this
section.

Lemma 11. Let T be a theory with only finitely many models.
Then the � and �i preorders on models of T are well-founded.

Proof. Suppose for the sake of contradiction that we have an
infinite descending chain of strict homomorphisms:

. . . � M2 � M1 � M0

Then we have Mi+k � Mi for any k ≥ 0. Since T has finitely
many models, we eventually get i and k ≥ 0 with Mi+k+1

isomorphic toMi. SoMi+k+1 � Mi+1. But that impliesMi �
Mi+1, a contradiction.

The same argument applies to -i as well.

There will always be a-minimal models for theories T that
are bounded in this way.

B. Minimal Models for protocol analysis.

When model-finding is used for protocol analysis, specifi-
cally when reasoning about an authentication goal, minimality
with respect to arbitrary homomorphisms is of particular inter-
est. Consider, for example, the analysis of the authentication
properties of DoorSEP. The model A corresponding to the
failure of authentication described in the Introduction is one
in which there are keys for two different doors D and D′

involved in the protocol run. The model B which would arise
from identifying D and D′ would still represent a protocol
execution (indeed, the hoped-for behavior of the protocol).
But A is strictly below this B in the - ordering, and it is A
that gives insight in to the possibility of the man-in-the-middle
attack (in the absence of the trust axiom, of course).
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C. Computing Minimal Models and Set-of-Support

We present the following algorithms, each of which relies
on the primitive operation of asking an SMT solver for a
single finite model of a given theory. Recall that an SMTLib-
compliant solver need not return any particular model for a
satisfiable theory, and that repeated requests to a solver for the
same theory will typically return the same model.

Fix a theory T .
• iMinimize: given model A |= T , compute an i-minimal

model M |= T with M -i A.
• aMinimize: given model A |= T , compute an a-minimal

model M |= T with M - A.
• computeCore: given model A, compute the core of A.
• SetOfSupport (resp. iSetOfSupport): compute a stream

of models comprising a (resp. injective) set of support
for theory T .

• aHomTo (resp. iHomTo): given model A |= T , compute
a sentence homToA defining the models P |= T such that
there is a (resp. injective) homomorphism h : P→ A.

• aHomFrom (resp. iHomFrom): given model A |= T ,
compute a sentence homFromA defining the models P |=
T such that there is a (resp. injective) homomorphism
h : A→ P.

The algorithms aMinimize and computeCore each rely on
the sentences homToA and homFromA. Since the latter of
these in particular is subtle, we first present the other
algorithms in terms of these, then develop aHomTo and
aHomFrom.

D. i-Minimization

The following procedure was originally developed for use
in the Aluminum tool [NSD+13a]

For this algorithm we use the notation flipP to denote∧
{¬α | α is an atomic sentence, P |= ¬α}

∧
∨
{¬β | β is an atomic sentence, P |= β}

Note in particular that if c and c′ are constants naming distinct
elements of a model P, then c 6= c′ is one of the conjuncts of
flipP.

Algorithm 12 (i-Minimize).
input: theory T and model A |= T
output: model P |= T such that N is i-minimal for T
and P -i A
initialize: set P to be A
while T ′ def= T ∪ {flipP} is satisfiable

set P to be a model of T ′

return P

Lemma 13. Algorithm 12 is correct: if A is a finite model of
T then Algorithm 12 terminates on A, and the output P is an
i-minimal model of T with P -i A

Proof. Each iteration goes down in the �i ordering, thus
termination. To show that the result is i-minimal for T , it
suffices to argue that the result is a minimal T -submodel of

the input, under the submodel ordering. But this is clear from
the definition of the sentences flip .

E. a-Minimization

Computing a-minimal models is harder. If we bound the
size of the domain(s) of our models then a-minimal models
exist: the � preorder is well-founded, so the set of minimal
elements with respect to this order is non-empty. The question
is, how to compute a-minimal models?

The idea is that, given a model A, we can use the sentences
homToA and homFromA to iterate the process of constructing
a model that is strictly below A in the - ordering.

Algorithm 14 (a-Minimize).
input: theory T and model A |= T
output: model P |= T such that P is a-minimal for T
and N - A
initialize: set P to be A
while T ′ def= T ∪ {homToP} ∪ {¬homFromP} is satisfi-
able

set P to be a model of T ′

return P

Lemma 15. Algorithm 14 is correct: if A is a finite model of
T then Algorithm 12 terminates on A, and the output P is an
a-minimal model of T with P - A

Proof. Each iteration constructs a model lower in the �
ordering; termination follows from well-foundedness of the
� ordering.

F. Computing Cores

Cores are interesting for us because—when the input theory
T is geometric—they give a way to build models that are both
a-minimal and i-minimal.

Testing whether a model is a core is NP-complete [HN92].
So computing cores is presumably expensive, from a worst-
case complexity perspective. But it is not difficult, using an
SMT solver, to write a program that behaves well in practice.
The key point is the well-known observation that a model
C has no proper retracts if and only if it has no proper
endomorphisms.

Definition 16. If A is a finite model for signature Σ, the
sentence endoA, over the signature Σh that extends Σ by
adding a new function symbol hs : S → S at each sort S,
is the conjunction of
• the diagram of A,
• the sentence expressing “h is a homomorphism”, and
• the sentence expressing “h is not injective.”

Algorithm 17 (ComputeCore).
input: model A over signature Σ
output: a core P of A
initialize: Set P to be A
while endoP is satisfiable
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let P′ be a model of endoP;
let P0 be the image of endoP in P’;
let P be the reduct of P0 to the original signature Σ

return P

Lemma 18. Algorithm 17 computes a core of its input.

Proof. The algorithm terminates because the size of the model
P decreases at each iteration. The resulting model is a core,
since it has no proper endomorphisms.

G. Set of Support

We take the ability to generate a set-of-support for the
class of all models of a theory T to be a natural notion of
“completeness” in model-finding. Lemma 8 makes a precise
claim of completness with respect to reasoning about geomet-
ric consequences of T .

Computing sets-of-support is another application of the
homFromA technique. Given theory T and model A, if we
construct the theory T ′

def
= T ∪ {¬homFromA} then calls to

the SMT solver on theory T ′ are guaranteed to return models
of T outside the hom-cone of A if any exist. So a set-of-
support for T can be generated by iterating this process.

Completeness of this strategy does not require that the
models A we work with are minimal. But if we do work
with minimal models there will be fewer iterations. We give
SetOfSupport here, for iSetOfSupport simply use i-minimal
models and the iHomFromA sentence.

It should be noted that if a class C is a set-of-support for
a theory T with respect to i-homomorphisms then C is a set-
of-support for T with respect to a-homomorphisms; this is
immediate from the definitions.

Of course, there will be typically many more models com-
prising an i-set of support. However, it is true that if there is a
finite C which is a set-of-support for a theory T with respect
to a-homomorphisms then there is a finite C′ set-of-support
for T with respect to i-homomorphisms. To see this, suppose
C is a set of support for a class of models. Each A in this set
has a finite number of i-minimal models B1, . . . Bk below it.
The collection of all these taken over the models in C makes
a i-set of support.

Algorithm 19 (SetOfSupport).
input: theory T and profile prf
output: a stream M1,M2, . . . of minimal models of T
such that for any prf -model P |= T , there is some i such
that Mi - P.
initialize: set theory T ∗ to be T
while T ∗ is satisfiable

let M be an a-minimal model of T ∗

output M
set T ∗ to be T ∗ ∪ ¬homFromM

H. Hom-To

This is straightforward “solver programming”. Given model
A, we want to characterize those P such that there is a hom

h : P→ A, by constructing a sentence homToA axiomatizing
such models.

Algorithm 20 (HomTo).
input: model A over signature Σ.
output: sentence homToA in an expanded signature Σ+,
such that for any model P |= Σ, P - A iff there is an
expansion P+ of P to Σ+ with P+ |= homTomM .
define Σ+ to be the extension of Σ obtained by

adding a set of fresh constants in one-to-one corre-
spondence with the elements of the domain of A
adding a function symbol hS : S → S at each sort
S

define homToA as the conjunction of the following
sentences, one for each function symbol f and predicate
R in Σ.

∀~x, y. f~x = y =⇒
∨
{( ~hx = ~e ∧ y = e′) | A |= f~e = e′}

∀~x. R~x = true =⇒
∨
{( ~hx = ~e) | A |= R~e = true}

For iHomTo, simply add a sentence to say that h is
injective.

Lemma 21. Suppose A and B are Σ models. There is a Σ
hom h : B→ A iff there is a model B+ |= homToA such that
B is the reduction to Σ of B+.

Proof. Suppose B is the reduction of B+ |= homToA. The
interpretation of h in B+ defines a function from |B| to |A|.
We want to show h is actually a Σu hom. But that’s just what
homToA does.

Suppose B |= Σ and there is a hom h : B → A. We
want to show that there is an expansion B+ of B satisfying
B |= homToA. The actual homomorphism h determines the
interpretation in B+ of the symbol h and the interpretation of
the new constants c′. And since h is a homomorphism, the
clauses in homToA are satisfied.

I. Hom-From

Our eventual goal is: given a model A, find a formula to
capture not being in the hom-cone of A.

This is more interesting than the aHomTo problem, because
we are going to negate the sentence we build, to express hom-
cone-avoidance. Since universal quantifiers can be bottlenecks
in SMT-solving, we want to minimize the number of existen-
tial quantifiers we use here.

The ideal outcome would be to construct an existential
sentence capturing the complement of the hom cone of A.
Equivalently we might look for a structure D such that for any
X, X - D iff A 6- X. This is called “homomorphism duality”
in the literature [EPTT17]. Such a structure doesn’t always
exist; and even when it does, it can be exponentially large in
the size of A [EPTT17]. So we turn to heuristic methods.

Our strategy is to construct a sentence guaranteed to charac-
terize models in the hom-cone of M, then refine this sentence
to eliminate (some) quantifiers.
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We start with the C-rules of the standard model repre-
sentation for A as described in Section II. By replacing the
Razor-defined constants by existentially-quantified variables
we arrive at a sentence repA, which is a positive-existenial
sentence (without disjunctions).

By the fact that homomorphisms preserve positive existen-
tial formulas and the fact that the equations of repA completely
describe the functions and predicates true of A we have:

Lemma 22. Let A and F be Σ models. Then A - F iff F |=
repA.

The trouble with repA is that it has as many existential
quantifiers in repA as there are domain elements. If we were
to take homFromA to be repA, simply negating this would
lead to a sentence inconvenient for the SMT solver. We can
compress the representation, though. This will lead to a nicer
representation sentence, which we will take as homFrommM .

Algorithm 23 (HomFrom).
input: model A over signature Σ
output: sentence homFromA over signature Σ, such that
for any model P |= Σ, A - P iff P |= homFromA.
comment: sentence homFromA is designed to use as few
existential quantifiers as possible, in a “best-effort” sense.
initialize: Set sentence homFromA to be repA, the stan-
dard model representation sentence for A.
while there is a conjunct in the body of homFromA of
the form

f(t1, . . . , tn) = x

such that x does not occur in any of the ti,
replace all occurrences of x in homFromA by
f(t1, . . . , tn). Erase the resulting trivial equation
f(t1, . . . , tn) = f(t1, . . . , tn) and erase the (∃x)
quantifier in front.

For iHomFrom , first enrich repA to say that each of the
fresh constants naming elements of A is distinct. The rest of
the development goes through as described.

Lemma 24. For any model P |= Σ, A - P iff P |=
homFromA. Similarly for iHomFromA and -i.

Proof. By Lemma 22 the assertion is true at the initialization
step. So it suffices to observe that each transformation of
homFromA yields a logically equivalent sentence.

We may write homFromA as

∃xy1 . . . yn.f(t1, . . . , tn) = x ∧ β(x, ~y)

so that the transformed sentence is

∃y1 . . . yn.β[x := f(t1, . . . , tn)](~y)

Suppose P satisfies the first sentence with environment η =
x 7→ a, ~y 7→ ~b. Then P satisfies the second sentence with
η′ = ~y 7→ ~b, since P |= f(t1, . . . , tn) = x under η.

Suppose P satisfies the second sentence with environment
δ = ~y 7→ ~b. Then P satisfies the first sentence with δ′ = x 7→

f(δt1, . . . δtn), ~y 7→ ~b (this is a suitable environment because
x does not occur in f(t1, . . . , tn).)

The order in which we do these rules matters. Smaller
formulas result if we process nodes as follows. Construct a
graph in which the nodes are the variables occurring in the
set of equations, and in which, if fx1 . . . xn = x is a rule,
then there is an edge from each xi to x. Then process the
nodes according to the preorder given by this graph.

Example 25. Start with

σ ≡ ∃x0x1x2 . fx0 = x2 ∧ fx1 = x0 ∧ fx2 = x1 ∧ c = x2

Making the graph as defined above, we treat the variables in
the order x2, then x1 then x0. We then derive, in order:

∃x0x1 . fx0 = c ∧ fx1 = x0 ∧ fc = x1

∃x0 . fx0 = c ∧ ffc = x0

fffc = c

The sentence fffc = c is a much more efficient model
representation then the original sentence σ, and an SMT solver
will work much more happily with its negation than with ¬σ.

J. Section Summary

We can summarize the work in this section as follows.
1) i-minimal models for a theory T always exist; there may

be no finite a-minimal models for a given theory.
2) a-minimal models are better suited to protocol analy-

sis since they do not make unnecessary identifications
between terms.

3) i-minimal models are easier to compute than a-minimal
models.

4) If T is a geometric theory, and M is an a-minimal model
and a core, then M is i-minimal (Lemma 10).

5) If a class C is a set-of-support for a theory T with respect
to i-homomorphisms then C is a set-of-support for T
with respect to a-homomorphisms.

6) If there is a finite C which is a set-of-support for a
theory T with respect to a-homomorphisms then there
is a finite C′ set-of-support for T with respect to i-
homomorphisms.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a method for analyzing
systems with cryptographic protocols in the context of first-
order theories such as trust assumptions, and presented an
analysis of a specific example, the DoorSEP protocol.

We have described an implementation of these methods
as the Logical Protocol Analysis (LPA) system. LPA is a
coordination between a general-purpose model-finder, Razor,
and a cryptographic protocol-specific tool, CPSA. We have
shown how to share labor between Razor and CPSA so that the
latter can apply its authentication test solving methods, while
Razor is handling the remainder of the axiomatic theory of the
protocol together with some non-protocol axioms.
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The project explored the comparative virtues of minimality
with respect to injective homomorphisms versus arbitrary ho-
momorphisms, and developed algorithms for finding minimal
models and computing a set-of-support of models for a theory.

Unfortunately, as the size of a protocol grows, so does the
size of its theory, and especially its number of universally
quantified variables. SMT solvers struggle with performance
in the presence of a significant number of universal quantifiers.
In future work, we plan to reorganize the software architecture
as well as the selection of logical theories to deliver to the
components. This motivates an architecture in which only
subtheories are delivered to Z3, preferably governing smaller
parts of the domain.
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