
A Study on the Preservation of
Cryptographic Constant-Time Security

in the CompCert Compiler
Alix Trieu

Univ Rennes, Inria, CNRS, IRISA
35000, Rennes, France

Email: alix.trieu@irisa.fr

Abstract—Cryptographic constant-time programming is an
established coding discipline used in cryptography to secure
programs against timing attacks. Most, if not all, cryptography
library try to adhere to this coding style. The C programming
language is oftentimes considered a portable assembly, and is
hence used by a great number of cryptography libraries. However,
what is executed by the hardware is actual assembly, not C.
One can thus wonder whether security properties are preserved
through compilation as even formally verified compilers only
ensure preservation of observable behaviors.

We present in this paper how to derive a natural framework to
prove preservation of cryptographic constant-time security from
simulation based proofs of compiler correctness. We also give
insights on how this could be adapted to CompCert.

Index Terms—formal verification, Coq proof assistant,
constant-time security, timing attacks, CompCert, verified com-
pilation

I. INTRODUCTION

Timing and cache side-channels in critical software are
among the most dangerous sources of attacks as they can be
exploited remotely. Cryptographic constant-time programming
has been lauded as a programming discipline that ensures
that these side-channels cannot be exploited. This name is
actually a bit of a misnomer, as the program does not run
in a constant amount of time, but rather that the variation in
execution time is independent of secret information. Indeed,
this coding style enforces two rules, branching instructions shall
not depend on secret information, and neither shall memory
accesses. Imposing that branching instructions do not depend
on secrets ensures that whether the different branches have the
same execution time, an attacker would still not obtain any
information on the secrets. Making sure that memory accesses
do not depend on secrets is to ensure that no cache attack can
be used.

Though the rules of constant-time security are quite simple
to state, it is actually very difficult to get right as shown
by the diverse list of attacks that exploit such errors in
implementations. Consequently, a number of tools to verify
that a code is cryptographically constant-time have been
proposed [6, 4, 12]. A large number of these tools [1, 5] target
a high-level language such as C as it is the language used in
most cryptography libraries. However, no compiler guarantees
that the security provided by these tools is preserved through

compilation, and some even violates this property. For instance,
consider the following C code1 that implements three different
ways to write a “selection” function. y is returned if b is true,
else x is returned.

unsigned not_constant_time
(unsigned x, unsigned y, bool b)

{
if (b) { return y; }
else { return x; }

}

unsigned constant_time_1
(unsigned x, unsigned y, bool b)

{ return x + (y - x) * b; }

unsigned constant_time_2
(unsigned x, unsigned y, bool b)

{ return x ^ ((y ^ x) & (-(unsigned) b)); }

The first version is self-explanatory, it returns y if b is
true and x otherwise. The second version uses the fact that
parameter b has type bool, which in C, is represented by
unsigned integers 0 (false) or 1 (true)2. If its value is 1 (true),
then the returned value is x + (y - x) which is equal to
y. Otherwise, it returns simply x since (y - x) * 0 = 0.
The third version is more elaborate, it uses bitwise operator
XOR ^ and bitwise operator AND &. It also exploits the wrap
around behavior of unsigned integers and since b is either 0 or 1,
-(unsigned) b becomes either -0 = 0 or the integer which
has only 1 as bits (232−1 for 32 bits architectures). The result
of the bitwise AND operation ((y ^x) & (-(unsigned)
b)) is thus y ^ x if b is true and 0 otherwise. Finally, since
x ^ (y ^ x) = y and x ^ 0 = x, the function returns
the expected result of y if b is true, and x otherwise.

If we consider the boolean parameter to be secret information,
the first version is not constant-time as it branches on it, whereas
the second and third version are constant-time. However, when
compiled for older architectures that do not support conditional

1The example is inspired from https://twitter.com/volatile_void/status/
957899300322840576

2More precisely, it is only true since C99 when <stdbool.h> is included

https://twitter.com/volatile_void/status/957899300322840576
https://twitter.com/volatile_void/status/957899300322840576


moves such as i386 or i486, the compiler Clang version 7.0.03

produces code that is not constant-time. The assembly code
generated by the compiler is reproduced below in AT&T syntax.

1 not_constant_time: # not constant time
2 movb 12(%esp), %al
3 testb %al, %al
4 jne .LBB0_1
5 leal 4(%esp), %eax
6 movl (%eax), %eax
7 retl
8 .LBB0_1:
9 leal 8(%esp), %eax

10 movl (%eax), %eax
11 retl
12 constant_time_1: # not constant time
13 movb 12(%esp), %al
14 testb %al, %al
15 jne .LBB1_1
16 leal 4(%esp), %eax
17 movl (%eax), %eax
18 retl
19 .LBB1_1:
20 leal 8(%esp), %eax
21 movl (%eax), %eax
22 retl
23 constant_time_2: # not constant time
24 movb 12(%esp), %al
25 movl 4(%esp), %ecx
26 testb %al, %al
27 jne .LBB2_1
28 xorl %eax, %eax
29 xorl %ecx, %eax
30 retl
31 .LBB2_1:
32 movl 8(%esp), %eax
33 xorl %ecx, %eax
34 xorl %ecx, %eax
35 retl

We first notice that not_constant_time and
constant_time_1 both compile to the exact same
code except for the label names as the compiler manages
to understand that the multiplication by the boolean b is
equivalent to testing it. The code works as follows, the value
at esp + 12 represents the third parameter of the function
which is the boolean b in the source code according to calling
conventions and is moved into register al. The testb
instruction then sets the ZF (Zero Flag) flag if b is false (i.e.
0) and clears the flag otherwise. If the flag is set, then the
jne jump at line 4 is taken and the effective address esp
+ 8 which represents y in the source code is computed and
loaded into register eax before returning. Otherwise, the
flag is cleared, and the jump is not taken, esp + 4 which

3Tested on March 1st, 2018 using the Godbolt compiler explorer https:
//godbolt.org/g/dx4nzC

represents x is similarly computed and loaded into eax before
returning.

The code is thus not constant-time, as the jne jumps at line
4 and 15 depend on whether the previous testb instructions
set the ZF flag. This is however decided by the value of
the secret b. Similarly, for constant_time_2, the jne
jump at line 27 depends on the boolean b and the code is
thus not constant-time. The code for constant_time_2 is
interesting as the compiler manages to optimize away the &
operator and only uses XOR operations. In the case when b is
false, the instruction at line 28 sets eax to zero as the compiler
managed to conclude that the ((y ^x) & (-(unsigned)
b)) operation would result in zero. eax is then XORed
with ecx which contains variable x. In the other branch, the
operation at line 32 moves y into eax, then stores the result of
y ^x into eax at line 33. The AND operation was removed as
it is redundant. However, a peephole optimization could have
noticed that the operations at line 33 and 34 are redundant,
as the result in eax is the same before and after the two
operations.

One could argue that it is not really harmful as both branches
contain the exact same number of operations for the compiled
constant_time_1 function. However, this does not protect
the program from an attack. For instance, an attacker could
manage to modify the cache so that the leal load instruction
is faster in one of the branches. This would make an attacker
be able to distinguish which branch was taken and thus leak
the secret.

What’s most worrying is that constant_time_2 uses
the style of code recommended by cryptographers4 that abuses
bitwise operators in the hope that compilers do not manage to
optimize it and therefore not break constant-time security.

Another example can be found in [8] where the authors
present a timing attack on a constant-time implementation
of an elliptic curve by exploiting the MSVC compiler which
transforms a constant-time 64-bit multiplication into a variable-
time routine on architectures that do not natively support 64-bit
integers.

In order to tackle this issue, we present how to derive a
natural methodology to prove preservation of cryptographic
constant-time security by adapting the simulation theory that
is usually used in order to prove compiler correctness. More
specifically, we will give insights on the issues that need to
be tackled in order to adapt this framework to the formally
verified CompCert C compiler [10].

This paper is organized as follows. First, section II recalls
background on the CompCert compiler. Section III derives a
theoretical framework that can be used to prove that a correct
compiler preserves constant-time security by taking advantage
of its proofs of correctness. Section IV presents some insights
on why we think CompCert preserves constant-time security
and our experience trying to apply the framework we present.
Finally, section V presents some related work and details the

4For example, it is recommended in page 9 of RFC7748 Elliptic Curves
for Security https://tools.ietf.org/html/rfc7748#page-10

https://godbolt.org/g/dx4nzC
https://godbolt.org/g/dx4nzC
https://tools.ietf.org/html/rfc7748#page-10


main differences with [3] which presents a work concurrent to
ours with a similar approach while section VI concludes.

II. COMPCERT

CompCert is an optimizing compiler that compiles C
programs down to assembly code. It has 20 compilation passes
bridging the gap between 11 intermediate languages from C
down to assembly. Each intermediate language is defined by a
formal semantics that associates to each program to observable
behaviors. Observable behaviors can be normal termination,
abnormal termination (due to a runtime error such as division
by zero for instance) or divergence. Divergence can be silent
if it computes something forever for instance, or non-silent if
the user can also observe input/output such as writing to the
terminal.

A seemingly desirable property for a compiler is that its
generated code has the same observable behavior as the given
source code. However, there are two considerations that are not
taken into account. First, assembly is a deterministic language
while the source language may not be. For instance, the C
standard allows for several evaluation order of expressions.
Consequently, compilers usually pick one specific evalation
order. Second, this does not take into account one of the many
pitfalls of C which is undefined behavior. The compiler can
replace undefined behavior by any of its choice.

CompCert thus comes with the following semantics preser-
vation theorem:

Theorem 1 (Semantics preservation). If the compiler trans-
forms source code S into compiled code C, without reporting
errors, then every observable behavior of C is an observable
behavior of S, or it “improves” over one of C by replacing
undefined behaviors.

The semantics preservation theorem is actually a corollary
of another property called simulation diagrams. Each transfor-
mation pass is associated with a simulation diagram and these
diagrams are then composed together to establish a diagram
for the whole compiler from which the semantics preservation
theorem is derived. Simulation diagrams allows us to reason
“locally” while proving a property “global” to a program, they
form the crux of the methodology we present in the following
section.

III. FRAMEWORK

Suppose that we have a compiler that compiles programs
in a source language S to a target language T modeled by a
partial function compile : S ⇀ T . We further assume that both
languages are deterministic as it will make further reasoning
easier and that the compiler is correct, i.e., it satisfies the
following theorem:

Theorem 2 (Correctness of compilation). For all source pro-
gram p, if p is safe and compiles into program compile(p) = p′,
then p′ has the same observable behavior as p.

As before, “safe” means no undefined behavior, the semantics
of the program does not get stuck. Observable behavior

corresponds to the trace of events that can be observed when
executing the program, such as asking an input to an user
on the command line or writing an integer to it. Whether the
program terminates can also be observed.

The theorem only states that observable behavior is preserved,
it has no relation with constant-time security. Therefore, a
correct compiler does not give guarantee that security is
preserved.

We assume that a program has a unique initial state that is
determined by the initial values contained in the program. In
C and in CompCert, this is determined by the main function
and all global declarations, i.e., the global variables and the
function definitions. A program may have no initial state if it
is not well-formed, for instance if it does not contain a main
function. Having a unique initial state allows to state constant-
time security informally as if two programs are “similar” then
they have “same leakage”. We will use a predicate φ(p, p′)
to say that both programs have the same values for some
initial public variables that are defined by φ and that both the
programs are syntactically equal otherwise. It reads as p and p′

are φ-similar. Given a smallstep semantics with transition · → ·,
we use s l−→ s′ to say that the semantic step from state s to
state s′ produces the leak l. For constant-time security, the leak
is either the value of a branching condition, i.e., executing if
(x) ... leaks the value of x, or the address of a memory
access, i.e., *p = *x + 5 leaks the value of p and x.

As we previously assumed the languages to be deterministic,
constant-time security can thus be defined as follows:

Definition 1 (Constant-time security). A program p is φ-
constant-time if for any program p′ such that φ(p, p′) then
p and p′ have same leakage, i.e., if s0 and s′0 are the initial
states of respectively p and p′, then for all n ∈ N, s1 and s′1
such that s0 →n s1 and s′0 →n s′1, then either there exists
a (possibly empty) leak l, s2 and s′2 such that s1

l−→ s2 and
s′1

l−→ s′2 or both executions are stuck at s1 and s′1.

Constant-time security can be stated as a non-interference
property as previously, but it can also be defined with a
simulation-based view. This will be more useful as all compiler
correctness proof are usually stated as a simulation, and thus
constant-time security preservation amounts to proving that
simulations can be composed in a certain way that we will
detail later. Without determinacy, this property wouldn’t be
“strong” enough as it uses an existential quantifier which does
not constrain the actual executions of the programs to follow
the execution given by the quantifier.

In order to prove that a program p is φ-constant-time, it
suffices to prove that p is safe and that for all program p′ such
that φ(p, p′), there exists a leak-preserving lockstep simulation
illustrated in Figure 1 and defined as follows:

Definition 2 (Leak-preserving lockstep simulation). A leak-
preserving lockstep simulation between a program p and a
program p′ is defined by a relation · ∼ · between states of p
and states of p′ such that:



s1 s′1

s2 s′2

∼

l l

∼

Figure 1: Leak-preserving lockstep diagram
(Hypotheses in plain lines, conclusion in dashed lines)

• If si is the initial state of p and s′i is the initial state of
p′, then si ∼ s′i;

• For every step s1
l−→ s2 leaking information l of program

p and state s′1 of p′ such that s1 ∼ s′1, there exists a state
s′2 such that s′1

l−→ s′2 and s2 ∼ s′2;
• For every state s and s′ such that s ∼ s′, if s is a final

state, then so is s′.

Given a leak-preserving lockstep simulation, we prove that
it implies same leakage in the following lemma.

Lemma 1. If p is safe and there is a leak-preserving lockstep
simulation · ∼ · between p and p′, then they have same leakage.

Proof. Both p and p′ have an initial state, respectively s0 and
s′0.

We first prove by induction on n ∈ N that if s0 →n sn and
s′0 →n s′n then sn ∼ s′n.

• For n = 0, we only need to prove that s0 ∼ s′0 which is
true by definition of a leak-preserving lockstep simulation;

• Let’s now prove for n+ 1 assuming that it is true for n.
We have s0 →n sn → sn+1 and s′0 →n s′n → s′n+1. By
induction hypothesis, we know that sn ∼ s′n. Thus, by
using the leak-preserving lockstep simulation, we have that
there exists s′′n+1 such that s′n → s′′n+1and sn+1 ∼ s′′n+1

(we omit the leak given by the simulation as we don’t need
it). However, since we assume the languages deterministic,
we have that s′n+1 = s′′n+1, and thus, sn+1 ∼ s′n+1.

The property is thus proven by induction.
Now, we prove that both programs have same leakage, i.e.,

for all n ∈ N, if s0 →n sn and s′0 →n s′n, then either both
executions are stuck at sn and s′n, or there exists a leak ln and
states sn+1 and s′n+1 such that sn

ln−→ sn+1 and s′n
ln−→ s′n+1.

This is true since for any such sn and s′n, we just proved
that sn ∼ s′n. And since we assume that p is safe, either sn
is a final state of p and therefore s′n is also a final state of p′

thanks to the simulation, or there exists a leak ln and a state
sn+1 such that sn

ln−→ sn+1, and again, by the leak-preserving
lockstep simulation and by determinacy, there exists a unique
s′n+1 such that s′n

ln−→ s′n+1.
Finally, we proved that both programs have same leakage.

However, the converse is not generally true, if two programs
have the same leakage, it does not mean that either of them is
safe. It is not a problem as we assume a compiler correctness
setting, i.e., we assume that the source program is safe. The

following lemma can thus be considered the converse of the
previous one.

Lemma 2. If p and p′ have same leakage, then there exists a
leak-preserving lockstep simulation between p and p′.

Proof. Let s0 and s′0 be the initial states of respectively p and
p′. We define s ∼ s′ as there exists n ∈ N such that s0 →n s
and s′0 →n s′.
• We have trivially s0 ∼ s′0 by taking n = 0.
• If s1

l−→ s2 and s1 ∼ s′1, we need to prove that there
exists s′2 such that s′1

l−→ s′2 and s2 ∼ s′2. Such a s′2 exists,
since by definition of s1 ∼ s′1, there exists a n such that
s0 →n s1 and s′0 →n s′1. Since s1

l−→ s2, there exists
s′2 such that s′1

l−→ s′2 or p and p′ wouldn’t have same
leakage. Furthermore, s2 ∼ s′2 by definition.

• If s is the final state of p and s ∼ s′, then s′ is the final
state of p′, or there would be l and s′′ such that s′ l−→ s′′

which is impossible since p and p′ have same leakage.
The leak-preserving lockstep simulation is thus defined.

Constant-time security is a symmetrical property in the sense
that if p and p′ have same leakage, then p′ and p have same
leakage. Thus, an equivalent definition would be that there
exists a leak-preserving lockstep simulation between p and
p′ and another one between p′ and p. However, we chose
to trade the second simulation with the assumption that p is
safe. This trade has a few advantages, in that we only need to
prove one simulation instead of two to prove that a program is
constant-time. Furthermore, assuming that the program given
to the compiler is safe is a reasonable assumption that is also
made when proving the correctness of the compiler.

We have shown that constant-time security implies existence
of leak-preserving lockstep simulations, while safety and
lockstep simulations are needed to prove constant-time security.
Therefore, one possible way to prove the preservation of
constant-time security through compilation is to 1. prove that
safety is preserved through compilation, 2. the leak-preserving
lockstep simulations are preserved through compilation and 3.
assume that the initial program is safe. Preservation of safety
is already a consequence of the correctness of the compiler.

We now have to solve the issue of how to preserve leak-
preserving lockstep simulations. Compiler correctness can be
stated as trace preservation and is proven through the usage of
events-preserving simulations. There are several kinds of such
simulations, from the most constrained to the most general,
they are the lockstep, plus and star simulations illustrated
in Figure 2. We remind the definition of the star simulation as
it is the most general one.

Definition 3 (Event preserving star simulation). An event
preserving star simulation between a program p and a program
p′ is defined by a relation · ∼ · between states of p and states
of p′ such that:
• If si is the initial state of p and s′i is the initial state of
p′, then si ∼ s′i;



s1 s2

s′1 s′2

∼

e e

∼

(a) Lockstep diagram
s1 s2

s′1 s′2

∼

e +e

∼

(b) Plus diagram

s1 s′1

s2

∼

∼

m
(s1

)>
m
(s2

) or

s1 s′1

s2 s′2

∼

e +e

∼

(c) Star diagram

Figure 2: Trace preserving simulations
(Hypotheses in plain lines, conclusion in dashed lines)

• There exists a measure function m : S→ N where S is
the type of states of p;

• For every step s1
e−→ s2 producing event e of program p

and state s′1 of p′ such that s1 ∼ s′1, either there exists a
state s′2 such that s′1

e−→+ s′2 and s2 ∼ s′2, or e is a silent
event (i.e., the step produces no event) and m(s′1) <
m(s1);

• For every state s and s′ such that s ∼ s′, if s is a final
state, then so is s′.

The measure function used in the star simulation is to prevent
p′ from stuttering. Otherwise, a non-terminating program can
be compiled into a terminating program and thus violates
observable behavior preservation. For instance, suppose the
source program is an infinite loop that does nothing, and it is
compiled into a single instruction skip. Without the measure,
the star simulation could be proven, even though behavior has
not been preserved, since the source program is non-terminating
while the compiled program is terminating.

Intuitively, we can see that the lockstep simulation used for
constant-time security and the simulations used for compiler
correctness can be composed. Suppose that we have two source
programs p and p′ such that p is φ-constant-time and φ(p, p′).
The leak-preserving lockstep simulation ∼S (S as in Source)
tells us that if s1 is a state of p and s′1 is a state of p′ such
that s1 ∼S s′1 and s1 advances to some state s2 while leaking
l, i.e., s1

l−→ s2, then there exists a state s′2 such that s′1
l−→ s′2

and s′1 ∼S s′2. As we assume the compiler is correct, we know
that there is some simulation ∼C (C as in Compile) to prove
that p is correctly compiled, and similarly a simulation ∼′C for
p′. The first simulation tells us that since s1

l−→ s2, for all σ1
such that s1 ∼C σ1, there exists a leak λ and a state σ2 such
that σ1

λ−→n σ2 where n is some unknown integer. Similarly
for the second simulation, it tells us that since s′1

l−→ s′2, for

s1 s2 s′1 s′2

σ1 σ2 σ′1 σ′2

l

∼C

∼S

∼C

∼S

l

∼C ∼C

λ n

∼pre
T ∼pre

T

λ′ n

Figure 3: 2-simulation diagram
(Hypotheses in plain lines, conclusion in dashed lines)

all σ′1 such that s′1 ∼′C σ′1, there exists a leak λ′ and a state

σ′2 such that σ′1
λ′

−→n′
σ′2 where n′ is some unknown integer.

This feels like the beginning of a simulation diagram, but
still requires proving that λ = λ′ and n = n′. We do not
need to prove that λ = l as leaks are generally not preserved
by compilation. For instance, some optimization may remove
memory accesses if it deems them unnecessary, the leak due
to the memory accesses at the source level is thus removed
when compiled. What’s important is that the compiled leaks
stay the same, i.e., λ = λ′.

We define this as a 2-simulation diagram that is characterized
by three relations (∼S ,∼preT ,∼C) and detailed below. The
last relation ∼C corresponds to the relation used in proving
that the source program is correctly compiled into the target
program. There should be two such relations since there are two
programs p and p′, however, these two relations are morally
the same as both programs have been compiled with the same
transformation. We thus use only one relation ∼C for the sake
of readability.

Definition 4 (2-simulation diagram). (∼S ,∼preT ,∼C) is a 2-
simulation diagram for programs p, p′, ρ, ρ′ if
• ∼S is a leak-preserving lockstep simulation at source level

between p and p′,
• ∼C is an event preserving star simulation between p and
ρ that proves the correctness of compiling p into ρ,

• ∼C is an event preserving star simulation between p′ and
ρ′ that proves the correctness of compiling p′ into ρ′,

and ∼preT is a target level relation between states of ρ and ρ′

such that
• if σ0 and σ′0 are respectively the initial states of ρ and ρ′,

then σ0 ∼preT σ′0,
• for all states s1, s′1, s2, s′2, σ1, σ′1 and leak l such that
s1 ∼S s′1, s1 ∼C σ1, s′1 ∼C σ′1, σ1 ∼preT σ′1, s1

l−→ s2,
s′1

l−→ s′2, then there exists an integer n, a leak λ and
states σ2, σ′2 such that σ1

λ−→n σ2, σ′1
λ−→n σ′2, s2 ∼C σ2,

s′2 ∼C σ′2 and σ2 ∼preT σ′2, this is illustrated in Figure 3
• for all states σ and σ′, if σ ∼preT σ′ and σ is a final state,

then so is σ′.

Informally, the relation ∼preT defined in the 2-simulation
diagram represents the fact that the two programs are at the
exact same program point. How to define this is however



dependent on the language, which is why we cannot abstract
it away in the definition. Furthermore, the relation may not be
a leak-preserving lockstep simulation relation as the diagram
only tells us that there is some number of steps n between
states that are related by ∼preT , we are missing the lockstep
part of the definition. We can however use it to build such a
relation as proven by the following theorem, hence the pre in
the symbol, as it can be seen as a pre-lockstep simulation.

We only consider program transformations that do not depend
on the secrets. For instance, a transformation that would add
n skip instructions at the beginning of the program is not
allowed if n is secret. This is necessary in order to have
transformations that verify the property that if p is compiled
into ρ and ρ and ρ′ are φ-similar, then there exists p′ such that
p and p′ are φ-similar.

Theorem 3 (Preservation of constant-time security). If compile
does not depend on secrets and program p is φ-constant-time,
safe and there is a (∼S ,∼preT ,∼C) 2-simulation diagram for
all p′ such that φ(p, p′), then compile(p) is φ-constant-time.

Proof. Let ρ′ be a program such that φ(compile(p), ρ′), there
exists a p′ such that ρ′ = compile(p′) by hypothesis as
explained just before the theorem. We first define the relation
· ∼nT · between states of compile(p) and compile(p′) as
follows:

σ ∼nT σ′ , ∃λ,∃σ1,∃σ′1,∃s1,∃s′1, σ
λ−→ n σ1 ∧ σ′

λ−→
n σ′1 ∧ σ1 ∼

pre
T σ′1 ∧ s1 ∼C σ1 ∧ s′1 ∼C σ′1 ∧ s1 ∼S s′1.

We now define the lockstep simulation relation · ∼T ·
between states of compile(p) and compile(p′) as σ ∼T σ′ ,
∃n, σ ∼nT σ′.

Informally, this means that σ ∼T σ′ if there exists some
states σ1 and σ′1 such that σ and σ′ can both respectively reach
σ1 and σ′1 in the same number of steps while leaking the same
information. Furthermore, there must exist some states s1 and
s′1 in the source programs such that s1 ∼C σ1 and s′1 ∼C σ′1
and s1 ∼S s′1.

We first show a lemma that for all n, σ1 and σ′1, if n > 0

and σ1 ∼nT σ′1, there exists λ, σ2 and σ′2 such that σ1
λ−→ σ2,

σ′1
λ−→ σ′2 and σ2 ∼n−1T σ′2.

By definition of ∼nT , there exists λ, σ3, σ′3, s3, s′3 such
that σ1

λ−→n σ3, σ′1
λ−→n σ′3, σ3 ∼preT σ′3, s3 ∼c σ3, s′3 ∼C σ′3

and s3 ∼S s′3. Thus, there exists σ2, σ′2, λ1 and λ2 such that
σ1

λ1−→ σ2
λ2−→n−1 σ3, σ′1

λ1−→ σ′2
λ2−→n−1 σ′3 and λ = λ1 · λ2.

Hence, we can conclude that σ2 ∼n−1T σ′2 by definition.
We now show that · ∼T · is indeed a lockstep simulation:
• If σi is an initial state of compile(p) and σ′i is the initial

state of compile(p′), by safety of p and p′, there exists si
and s′i respectively initial states of p and p′. By definition
of ∼C , we have si ∼C σi and s′i ∼C σ′i, thus σi ∼T σ′i
with n = 0.

• If σf is a final state and σf ∼T σ′f , by definition of
∼T , there exists some states s and s′ such that s ∼C σf ,
s′ ∼C σ′f and s ∼S s′.

By definition of a star simulation and since σf is a final
state, there exists a state s1 such that s→ s1, s1 ∼C σf
and m(s1) < m(s). By iterating this process, we build
a finite maximal sequence s1, . . . , sk of states such that
s → s1 → . . . → sk and sk ∼C σf . The sequence is
finite because we have m(s1) > . . . > m(sk) and this
cannot infinitely decrease as N is well-founded. sf = sk

is a final state, since otherwise there would be a state
sk+1 such that sk → sk+1 and the sequence wouldn’t be
maximal.
And by exploiting the lockstep simulation ∼S , we can
build a sequence of states s′1, . . . , s′k such that s′ →
s′1 . . . → s′k, s1 ∼S s′1, . . . , sk ∼S s′k. Since sf = sk

is a final state, then so is s′f = s′k thanks to the lockstep
simulation ∼S .
By definition of the 2-simulation diagram, s′f ∼C σ′f ,
thus σ′f is also a final state.

• If σ1 ∼T σ′1 and σ1
λ−→ σ2, by definition of ∼T , there

exists n, σ3, σ′3, λ′ such that σ1
λ′

−→n σ3 and σ′1
λ′

−→n σ′3
and there exists s, s′ such that s ∼C σ3, s′ ∼C σ′3 and
s ∼S s′. We need to prove there exists σ′2 such that
σ′1

λ−→ σ′2 and σ2 ∼T σ′2.
– If n > 0, we use the lemma, and therefore there exists
λbis, σ2bis, σ′2 such that σ1

λbis−−→ σ2bis, σ′1
λbis−−→ σ′2

and σ2bis ∼T σ′2. By determinism of the semantics,
we have that σ2 = σ2bis and λ = λbis. Thus we have
σ′1

λ−→ σ′2 and σ2 ∼T σ′2.
– However, if n = 0, we have σ3 = σ1 and σ′3 = σ′1.

Thus, we obtain s ∼C σ1 and s′ ∼C σ′1. s cannot be
a final state, because σ1 would be a final state due to
∼C which is impossible since σ1

λ−→ σ2. Hence, by
safety of p, there exists a state s2 such that s l−→ s2.
By the definition of lockstep simulation with ∼S ,
there exists some s′2 such that s′ l−→ s′2 and s2 ∼S s′2.
By using the 2-simulation diagram, there exists k ∈ N,

σ4, σ′4 and λ1 such that σ1
λ1

−→k σ4 and σ′1
λ1

−→k σ′4
with s2 ∼C σ4, s′2 ∼C σ′4 and σ4 ∼preT σ′4. Therefore,
by definition, σ1 ∼kT σ′1.
If k > 0, we use again the previous lemma to
conclude.
Otherwise k = 0, and we know that m(s2) < m(s)
by definition of ∼C . Thus, we can reiterate the
previous process until we obtain a new “k” that
is strictly positive. This iteration process is finite
because the measure strictly decrease until we obtain
such a new k and it cannot decrease infinitely. The
conclusion is hence the same as before.

We proved that ∼T is a lockstep simulation, thus compile(p)
is φ-constant-time thanks to Lemma 1 and the theorem is
proven.

We proved that if the 2-simulation diagram is satisfied, then
constant-time security is preserved. However, it is still left
to prove that the simulation diagram can be satisfied by a



compiler. Intuitively, we only know that given a star simulation
∼C , when the states of the two high level programs advance,
the lower level states will advance some number of steps n and
n′ which are not necessarily equal. However, the high level
programs are in a lockstep simulation and thus follow a fortiori
the same control flow, it makes sense that the lower level states
advance similarly. We now illustrate how to instantiate the
framework in CompCert.

IV. APPLICATION TO COMPCERT

We study in this section how the method presented previously
can be adapted to CompCert. We first need to define our models
by first defining what it means for programs to be similar, then
what are the leaks we consider and finally how to augment
each semantics with leaks. We will then review the different
compilation passes of CompCert.

A. Adapting the framework

In CompCert, a program is represented by the identifier of its
main and a list of declarations which are global variables and
function definitions. Thus, we can define similarity of programs
p1 and p2 with regard to a set of identifiers that represent secret
variables as p1 and p2 have the same main identifiers and
the same function definitions, global variables are only allowed
to differ if their identifiers are in the set of secret variables
and are otherwise equal. This can be defined as follows in
Coq where match_except secret is a predicate that says
that the program definitions are similar except for variables
in secret and list_forall2 p l1 l2 means that for
every element a1, a2, . . . of l1 and b1, b2, . . . of l2, p ai bi
holds.

Definition similar_programs
(secret: list ident)
(p1 p2: program): Prop :=
p1.(prog_main) = p2.(prog_main) /\
list_forall2 (match_except secret)

p1.(prog_defs)
p2.(prog_defs)

We then need to instantiate our model of leaks. For constant-
time security, the leaks are either Guard b where b is
a boolean due to the evaluation of the guard clause in a
conditional, a memory access MemAccess block ptrofs
or the leak is Silent.

Finally, in order for leaks to appear in semantics, we can
rewrite each semantics to incorporate them but this would
require extensive changes at all levels of the compiler. A more
modular way is to define an observation predicate observe
for each semantics and define a “leaky” step as

Definition lstep (sem: semantics)
(observe: state sem ->

leak -> Prop)
(s1: state sem) (l: leak)
(s2: state sem) :=

exists e, step sem s1 e s2 /\
observe s1 l.

observe s1 l means that when advancing from state
s1, l will be leaked. s2 is not needed as the leak is entirely
determined by what’s executed which is contained in s1. We
can now state constant-time security.

Definition secure (secret: list ident)
(p: program): Prop :=

forall (p': program),
similar_programs secret p p' ->
forall s0 s0',
initial_state (sem p) s0 ->
initial_state (sem p') s0' ->
forall n s1 s1' t t',
StarN (semantics p) n s0 t s1 ->
StarN (semantics p') n s0' t' s1' ->
(exists l s2 s2',
lstep (sem p) observe s1 l s2 /\
lstep (sem p') observe s1' l s2') \/
(~ exists e s2,

step (semantics p) s1 e s2 /\
~ exists e' s2',
step (semantics p') s1' e' s2').

This is exactly Definition 1 written in Coq, a program p
is secure if for all programs p’ that are similar with p with
regards to secret, then if s0 and s0’ are respectively their
initial states, then for all states s1 and s1’ such that s0→n

s1 and s0’→n s1’, either both states s1 and s1’ can take
a leaky step with same leak l, or both executions are stuck.

A leak-preserving lockstep simulation is defined as a record
in Coq.

Record lp_sim_properties
(match_states: state -> state -> Prop)
: Prop :=
Build_lp_sim_properties {

lp_match_initial_states:
forall s1,
initial_state sem1 s1 ->
exists s2, initial_state sem2 s2

/\ match_states s1 s2;
lp_match_final_states:
forall s1 s2 r,
match_states s1 s2 ->
final_state sem1 s1 r ->
final_state sem2 s2 r;

lp_simulation: forall s1 l s1',
lstep sem1 s1 l s1' ->
forall s2,

match_states s1 s2 ->
exists s2',
lstep sem2 s2 l s2' /\
match_states s1' s2' }.



The definition in Coq follows exactly Definition 2 but
renames the ∼ relation into match_states.

The next step is to define the framework for 2-simulations.
However, its definition relies on stating that the two executions
at the target level (bottom part of Figure 3) advance the same
number of steps. This number of steps is not random but is the
number of steps prescribed by the event preserving simulation
used for proving the correctness of the compiler. Yet, this
number of steps does not appear explicitly in the theorem
statement in CompCert as shown below.

fsim_simulation:
forall s1 t s1', Step L1 s1 t s1' ->
forall i s2, match_states i s1 s2 ->
exists i', exists s2',

(Plus L2 s2 t s2' \/
(Star L2 s2 t s2' /\ order i' i))

/\ match_states i' s1' s2'.

This proposition states that if a state s1 of semantics L1
advances to s1’ while producing event t and it is related with
state s2 such that match_states i s1 s2, then there
exists an index i’ and a state s2’ such that s2 advances to
s2’ while producing event t and s1’ and s2’ are related, if
the number of steps is not strictly positive (Star case), then
i’ must be less than i (i.e., order i’ i); the indexes i
and i’ represent the decreasing measure that we used in the
previous section.

The number of steps does not appear at all, but it is a crucial
part of our framework. Furthermore, we cannot only just state
that there exists some number of steps as it would then be
impossible to relate it to the number of steps taken by the
“second” execution and make it impossible to reason with. One
observation that can be made is that this number of steps already
appears in the proof of the statement as the steps taken by s2
are described inside of the proof. Moreover, as this number
of steps only depends on how are s1 and s2 related, i.e.,
match_states i s1 s2, the simulation statement can be
amended this way into a “counting” simulation.

counting_fsim_simulation:
forall s1 t s1', Step L1 s1 t s1' ->
forall n i s2,

match_states n i s1 s2 ->
exists s2', exists i', exists n',

(StarN L2 n s2 t s2' /\
(n = 0 -> order i i'))
/\ match_states n' i' s1' s2'.

The match_states relation is modified in order to take
an additional parameter n which is a natural number that
represents the number of steps taken by s2 to reach s2’, if
n is zero then the index must decrease. From our experiments
on a few passes in CompCert, the necessary modifications to
the proofs seem fairly minor.

Finally, we can state the 2-simulation diagram in Coq.

simulation_diagram:
forall s1 s2 s1' s2' l,
lstep sem1 obs s1 l s2 ->
lstep sem2 obs s1' l s2' ->
match_statesS s1 s1' ->
match_statesS s2 s2' ->
forall n i i' sigma1 sigma1',
match_statesC n i s1 sigma1 ->
match_statesC n i' s1' sigma1' ->
match_statesPreT sigma1 sigma1' ->
exists n' i2 i2' l2 sigma2 sigma2',
Nlstep sem1' obs' n sigma1 l2 sigma2 /\
Nlstep sem2' obs' n sigma1' l2 sigma2' /\
match_statesC n' i2 s2 sigma2 /\
match_statesC n' i2' s2' sigma2' /\
match_statesPreT sigma2 sigma2'.

This is the Coq definition of the property illustrated in
Figure 3 with a minor change in that we assume that the two
target executions will both advance the same number of steps
n provided by the counting simulation, instead of proving there
exists such a n. This does not modify the property conceptually.

We now give a quick review of the different compilation
passes of CompCert.

B. Analysis of the Compilation Passes

We now review the different transformation passes in
CompCert and try to explain what issue each one could bring
or give insights on why they preserve constant-time security.

The first compilation pass of CompCert is named
SimplExpr, its purpose is to pull side-effects out of ex-
pressions, for instance x = 2 + y++ can be transformed
into tmp = y; y = y + 1; x = 2 + tmp where tmp
is a new variable that is introduced by the transformation. This
pass preserves constant-time security as nothing is changed
during compilation except for making explicit the order of
evaluation.

The second pass is named SimplLocals, its purpose is
to pull scalar local variables out of memory. In CompCert
C, all variables live in memory, however, starting from the
second intermediate language, Clight, some variables can live
in registers. Clight is the language on which SimplLocals
operates. The meaning of scalar local variables is those
variables local to a function that the compiler can statically
determinates that their addresses are never used, and can thus
decide to safely put them into registers. Consequently, this pass
may remove memory accesses. However, given two similar
source programs, the same variables in both programs will be
moved into registers, thus constant-time security is preserved.

The next pass Cshmgen replaces the overloaded operators
of Clight with explicitly typed operators. This has no impact
on memory accesses nor on the control-flow of programs, and
the pass thus trivially preserves security.



The Cminorgen pass does the stack allocation, i.e., func-
tions do not allocate memory for each of its local variables,
but instead allocate a single stack that can hold all of its local
variables. For instance, if a function f has a local variable
x, then every occurence of &x is replaced with stack_f +
ofsx where stack_f is a pointer to the stack of f and ofsx
is an integer offset decided during compilation. The offset is
constant and thus does depend on secret information, security
is hence preserved.

The following pass is named Selection, its purpose is to
recognize patterns and to replace them with selected operators
specific to the target architecture. Some of these transformations
involve changing 64-bits operations into calls to runtime library
functions similarly to the issue described in [8]. It is thus
necessary to verify that these runtime library functions are
not variable-time, which seems to be the case after a cursory
manual analysis.

The next pass is RTLgen which does not modify the
programs, but only rewrite them in a new intermediate language
more prone for optimizations named RTL. Among the optimiza-
tion passes, Renumber, Deadcode and Unusedglob are
different forms of dead code elimination. These passes preserve
constant-time security. Indeed, they only remove code that are
never executed, hence nothing changes between the execution
of the source program and the target program’s. Inlining is
another optimization pass in which designated callee functions
are inlined into the caller functions. In order to do that, the
stack of the callee function is merged with the stack of the
call function. Consequently, leaks due to memory accesses to
global variables or local variables of non-inlined functions are
unchanged, but those to the local variables of inlined functions
are shifted to the stack of the host function at a constant offset,
and there is thus not more leaks than before inlining.

The other optimizations are CSE and Constprop which
we will detail later.

The next pass is register allocation Allocation. This
transformation can introduce “spilling”, i.e., variables that
should live in registers are put into memory due to lack
of registers. They are put on the stack, hence the stack of
each function can become bigger. Consequently, this pass may
add leaks that correspond to these new memory accesses to
spilled variables. However, each spilled variable is put at a
constant offset on the stack, hence the memory addresses
that are leaked do not depend on secret information. Register
allocation preserves security.

We have not yet analyzed the last passes, namely
Tunneling, Linearize, CleanupLabels, Debugvar,
Stacking and Asmgen but expect them to also preserve
security as these passes form the backend of the compiler and
should not modify greatly the code.

We now review the Constprop (Constant Propagation)
pass in details, the CSE (Common Subexpression Elimination)
pass is similar. These passes are different in that they may
remove memory accesses instead of only modifying them. For
instance, constant propagation can remove a memory load if
the analysis manages to prove that it is redundant, x = *p;

y = *p can be rewritten into x = *p; y = x.
In order to prove that this pass preserves constant-time

security, we need to define the · ∼preT · relation presented in
the previous section. As explained earlier, σ ∼preT σ′ intuitively
tells that both states σ and σ′ are at the exact same program
point. We define this in Coq as an “indistinguishability” relation.
We first recall the RTL intermediate language that is used for
most optimizations in CompCert such as Constprop.

An execution state in RTL is either a Callstate, a
Returnstate or a regular State. They all record a
list of stackframes Stackframe res f sp pc rs which
contains a caller function f, its corresponding stack pointer
sp and the program point where it was left at pc, its register
state rs and the register res where the return value must be
stored.

A Callstate stk f args m represents a state with
the list of stackframes stk and memory m about to call the
function f with arguments args. A Returnstate stk v
m represents a state with list of stackframes stk and memory
m that returns the value v. A State stk f sp pc rs m
represents a state with list of stackframes stk, register state rs,
memory m, current function f, stack pointer sp and program
counter pc.

We define the indistinguishability ' for stackframes and
states in Figure 4. Two stackframes are indistinguishable if
they are equal except for their register states that are allowed
to differ. Two states are indistinguishable if their stackframes
are indistinguishable and they are at the same program point.

The first property to prove for our 2-simulation is the
following one: given programs p, p′, ρ and ρ′ such that p and p′

are respectively transformed into ρ and ρ′ after Constprop,
the initial states of ρ and ρ′ must be indistinguishable. The
initial state of a program is Callstate nil f nil m
where f is the function corresponding to the main function
of the program, the memory m is just initialized with the
global variables. Thus, proving that two initial states are
indistinguishable comes down to proving that the two main
functions are equal as we do not need to prove anything on
the memory part. This is trivial as by definition of program
similarity, the functions of both ρ and ρ′ are pairwise equal,
hence their main are equal.

The next step is to fulfill the diagram, part of what needs to
be proven is that if two indistinguishable states in the target
programs advance the same number of steps, then they both
arrive at indistinguishable states. Let’s have a closer look to
function calls. The semantics for calls at RTL level is defined
as follows in CompCert.

exec_Icall:
forall s f sp pc rs m sig ros args res

pc' fd,
(fn_code f)!pc =
Some(Icall sig ros args res pc') ->
find_function ros rs = Some fd ->
funsig fd = sig ->
step (State s f sp pc rs m) E0



Stackframe res f sp pc rs ' Stackframe res f sp pc rs’

stk ' stk’
State stk f sp pc rs m ' State stk’ f sp pc rs’ m’

stk ' stk’
Callstate stk f args m ' Callstate stk’ f args’ m’

stk ' stk’
Returnstate stk v m ' Returnstate stk’ v’ m’

Figure 4: Indistinguishability definition

(Callstate
(Stackframe res f sp pc' rs :: s)
fd rs##args m)

The rule says that if the instruction to be executed at program
point pc is a call instruction Icall sig ros args res
pc’ and that given the register state rs and the register or
symbol ros, the function called is fd, then the next state is
a Callstate about to enter fd.

Now, suppose that both indistinguishable states of our target
programs are at Icall instructions. They thus both arrive at
Callstates. In order to prove them indistinguishable, we
need to prove that the functions that are called are equal. There
are two cases, either they are both called by name, i.e. ros is
a symbol, or by pointer, i.e. ros is a register that contains the
pointer value. In the first case, it is easy as both programs are
similar, thus the symbol is associated to the same function in
both programs. In the second case, it is not that simple. Indeed,
we do not know the contents of the register states nor the
memory, and cannot thus conclude that both function calls use
the same pointer value, and even then we do not know whether
the memory layout is different between the two programs.

The first idea one would have is to make use of the fact
that in the diagram, there are source states s and s′ such that
s ∼C σ and s′ ∼C σ′ in order to exploit the correctness
proof of compilation. The proof tells us that the function
call in the transformed program corresponds to a call to the
transformed form of the function called in the source program.
By hypothesis, we know that the two function calls in the
source program are equal. We need to be able to deduce from
it that the functions called at the target level are equal. This
reasoning would work for most passes, but unfortunately not for
Constprop as it is one of the few program transformations
that relies on an external analysis, i.e., the transformation
depends on the results of the analysis.

This might not seem a difficult issue, as we could just think
that since both programs are similar, then their analyses must
be the same. This is true, but it is not that easy in presence of
separate compilation which is supported by CompCert. Indeed,
a user could compile multiple compilation units separately
using CompCert and then link them together afterwards. Thus,
the transformation of a function does not depend on the analysis
of the whole program, but only on the compilation unit that it

is in. This is where the issue lies as illustrated below.

Lemma functions_translated:
forall (v: val) (f: fundef),
Genv.find_funct ge v = Some f ->
exists cunit,
Genv.find_funct tge v =
Some (transf_fundef (romem_for cunit) f)
/\ linkorder cunit prog.

The lemma states that for each function f in the
initial program (represented by its global environment
ge), the corresponding function in the transformed
program is transf_fundef (romem_for cunit) f
where cunit is a compilation unit contained in the whole
program prog. This is problematic as the lemma states only
that there exists a compilation unit but does not give enough
constraint on it in order to relate the two compilation units we
obtain from our two target states.

A possible solution is to not use the high-level lemmas
provided by CompCert, but use a lower-level reasoning. The
solution relies on the way global definitions are allocated during
the initialization process. In CompCert, each global variable
and function definition is associated a pointer, and this process
is determined entirely by the order of the definitions. As we
consider our two target programs to be similar, the order of
definitions is the same. The global environment (the association
table between definitions and pointers in CompCert parlance)
is thus the same. Next, the correctness proof tells us that the
target program uses the same pointer as in the source program.
We thus only have to prove that the two pointers at the source
level are the same to prove that they are also the same at the
target level. The same pointers are used at the source level
because we know that both programs called the same function
and thus necessarily used the same pointer.

This shows some of the difficulties besides those inherent to
our framework, but are due to the characteristics of adapting
to a realistic compiler such as CompCert. Only the definitions
given in this section have been formalized in Coq, the proofs
presented in III have not been mechanized yet and are left
as future work. Furthermore, we presented the troubles we
encountered while trying to prove that the constant propagation



pass preserves security, the proof has not been finished yet
however.

V. RELATED WORK

A. Verifying constant-time

High assurance cryptography is a flourishing area of research
that has spawned many recent projects. Many of them tackle
the question of verifying constant-time implementations at
either source level [5], assembly [4], or in an intermediate
representation [1]. Some propose tools to help write verified
implementations of cryptography code. For instance, Vale [6]
which proposes a tool to produce verified assembly code that
can then be verified for constant-timeness. FaCT [7] proposes a
domain-specific language similar to C but with builtin tools that
would make it difficult to write non secure code. Jasmin [2] is
a formally-verified compiler from the Jasmin language down to
assembly. The Jasmin language is a small low-level language
similar to Bernstein’s qhasm that also supports function calls
and high-level control-flow constructs such as loops, thus
allowing programmers to easily write correct cryptography
code. They also provide tools to verify memory safety and
constant-timeness through a sound embedding into Dafny [9].
HACL* [14] is a formally verified C cryptography library
derived from code and specifications written in F* [13]. Each
implementation is manually verified for functional correctness
and constant-timeness.

B. Preservation of constant-time security

Few work formally address the challenge of preserving
constant-time security. KreMLin [11] is a compiler from Low*
to C that is used to produce HACL*, the authors claim that
their compilation preserves constant-time, but we have not
managed to understand their proof. Jasmin [2] gives an informal
discussion of how their compiler could be proven to preserve
constant-time, but leaves it as future work.

In a concurrent work to ours, the approach presented in
[3] is in essence very similar to ours. Their paper presents
their approach on a While language with a toy compiler
built from scratch. This allows them to avoid pitfalls due
to design choices of a preexisting compiler such as CompCert.
Furthermore, they aim to apply their methodology on the Jasmin
compiler [2] which uses a language close to Bernstein’s qhasm.
This language is already close to assembly, which means that
their compiler does not need as many compilation passes as
CompCert. Moreover, the compiler being younger may also
not have as much technical debt as CompCert, making their
endeavor easier.

One notable difference in our methodology is that they
require that when match_states s1 s2 and s1 advances
one step, the number of steps advanced by s2 must be
computable by a function num_steps such that the number
is num_steps(s1, s2). For their example on the constant
propagation pass, this necessitated to enrich the syntax of
programs with annotations and thus modify the compilation
pass to properly produce these annotations. For instance,
in order to define their num_steps function, they need

s′1 s′2

s1 s2

σ′1 σ′2

σ1 σ2

l

≈

≡S

≈

≡S

l

≈
≈

λ′ n′

≡C ≡C
λ n

Figure 5: 2-simulation diagram from [3]
(Hypotheses in plain lines, conclusion in dashed lines)

to statically know whether a branch is removed, they have
to produce an annotated version of the source program
with boolean flags telling whether the branch is removed to
accomplish this. Thus, applying their method on CompCert
would require to modify the syntax of the language and its
semantics, which impacts all compilation passes that uses this
language. It is preferable to avoid modifications if possible.

A second difference is that their diagram (illustrated in Fig-
ure 5 using their notations) is slightly different from ours
(in Figure 3). They directly assume for instance that there
exists λ, n and σ2 such that σ1

λ−→n σ2 and s2 ≈ σ2 where ≈
is the relation used in the simulation for proving correctness of
the compiler pass, while we ask to prove that such objects exist.
They only ask to prove that λ = λ′, n = n′ and the dashed
lines in the diagram. They are thus asking less things to prove
than us. However, it seems intuitive that in order to prove that
λ = λ′ in the diagram, it is necessary to be able relate λ and
λ′ with l. We conjecture that they use the fact that s1 ≈ σ1
and determinacy of the semantics in order to relate l and λ
for instance. This is similar to unfolding the correctness proof
of the transformation in order to relate the source and target
leaks which is what our methodology imposes. Thus, in our
opinion, the amount of work needed by both methodologies is
similar.

VI. CONCLUSION

In this paper, we showed how to derive a framework for
proving preservation of constant-time security from simulation-
based compiler correctness proofs. The approach is based
on “simulating” 2 executions at once, hence the name of
2-simulations. We presented how this framework could be
adapted to the formally verified CompCert C compiler and
reviewed its compilation passes to understand which passes
may be problematic. We also presented some challenges that
occur when trying to prove that the constant propagation pass
preserves constant-time security. As the proofs presented in
Section III have not been mechanized yet for CompCert, this
is the main direction for future work, while finishing the proof
of preservation for constant propagation and the other passes
are a second direction.



REFERENCES

[1] José Bacelar Almeida et al. “Verifying Constant-Time
Implementations”. In: 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12,
2016. 2016, pp. 53–70.

[2] José Almeida et al. “Jasmin: High-Assurance and High-
Speed Cryptography”. In: CCS 2017-Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017.

[3] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte.
Provably secure compilation of side-channel counter-
measures. Cryptology ePrint Archive, Report 2017/1233.
https://eprint.iacr.org/2017/1233. 2017.

[4] Gilles Barthe et al. “System-level Non-interference
for Constant-time Cryptography”. In: ACM SIGSAC
Conference on Computer and Communications Security.
2014, pp. 1267–1279.

[5] Sandrine Blazy, David Pichardie, and Alix Trieu. “Veri-
fying constant-time implementations by abstract inter-
pretation”. In: European Symposium on Research in
Computer Security. Springer. 2017, pp. 260–277.

[6] Barry Bond et al. “Vale: Verifying high-performance
cryptographic assembly code”. In: Proceedings of the
USENIX Security Symposium. 2017.

[7] Sunjay Cauligi et al. “FaCT: A Flexible, Constant-Time
Programming Language”. In: Cybersecurity Develop-
ment (SecDev), 2017 IEEE. IEEE. 2017, pp. 69–76.

[8] Thierry Kaufmann et al. “When Constant-Time Source
Yields Variable-Time Binary: Exploiting Curve25519-
donna Built with MSVC 2015”. In: Cryptology and
Network Security. Ed. by Sara Foresti and Giuseppe
Persiano. Cham: Springer International Publishing, 2016,
pp. 573–582. ISBN: 978-3-319-48965-0.

[9] K Rustan M Leino. “Dafny: An automatic program
verifier for functional correctness”. In: International Con-
ference on Logic for Programming Artificial Intelligence
and Reasoning. Springer. 2010, pp. 348–370.

[10] Xavier Leroy. “A formally verified compiler back-
end”. In: Journal of Automated Reasoning 43.4 (2009),
pp. 363–446. URL: http://gallium.inria.fr/~xleroy/publi/
compcert-backend.pdf.

[11] Jonathan Protzenko et al. “Verified Low-Level Pro-
gramming Embedded in F*”. In: Proceedings of the
ACM on Programming Languages 1.ICFP (Sept. 2017),
17:1–17:29. DOI: 10.1145/3110261. URL: https://hal.
archives-ouvertes.fr/hal-01672706.

[12] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede.
“Dude, is my code constant time”. In: Proc. of DATE
2017. 2017.

[13] Nikhil Swamy et al. “Secure distributed programming
with value-dependent types”. In: Proceeding of the 16th
ACM SIGPLAN international conference on Functional
Programming. Ed. by Manuel M. T. Chakravarty, Zhen-
jiang Hu, and Olivier Danvy. ACM, 2011, pp. 266–278.
ISBN: 978-1-4503-0865-6. DOI: 10 . 1145 / 2034773 .

2034811. URL: https : / / www. microsoft . com / en - us /
research/publication/secure-distributed-programming-
with-value-dependent-types/.

[14] Jean-Karim Zinzindohoué et al. “HACL*: A Verified
Modern Cryptographic Library”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. Dallas, Texas, USA:
ACM, 2017, pp. 1789–1806. ISBN: 978-1-4503-4946-8.
DOI: 10.1145/3133956.3134043. URL: http://doi.acm.
org/10.1145/3133956.3134043.

https://eprint.iacr.org/2017/1233
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
https://doi.org/10.1145/3110261
https://hal.archives-ouvertes.fr/hal-01672706
https://hal.archives-ouvertes.fr/hal-01672706
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2034773.2034811
https://www.microsoft.com/en-us/research/publication/secure-distributed-programming-with-value-dependent-types/
https://www.microsoft.com/en-us/research/publication/secure-distributed-programming-with-value-dependent-types/
https://www.microsoft.com/en-us/research/publication/secure-distributed-programming-with-value-dependent-types/
https://doi.org/10.1145/3133956.3134043
http://doi.acm.org/10.1145/3133956.3134043
http://doi.acm.org/10.1145/3133956.3134043

	Introduction
	CompCert
	Framework
	Application to CompCert
	Adapting the framework
	Analysis of the Compilation Passes

	Related Work
	Verifying constant-time
	Preservation of constant-time security

	Conclusion

