
Proving physical proximity using symbolic models

Alexandre Debant
Univ Rennes, CNRS, IRISA, France

Email: Alexandre.Debant@irisa.fr

Stéphanie Delaune
Univ Rennes, CNRS, IRISA, France
Email: Stephanie.Delaune@irisa.fr

Cyrille Wiedling
Univ Rennes, CNRS, IRISA, France

Email: Cyrille.Wiedling@inria.fr

Abstract—For many modern applications like e.g. contactless
payment, and keyless systems, ensuring physical proximity is
a security goal of paramount importance. Formal methods
have proved their usefulness when analysing standard security
protocols. However, existing results and tools do not apply to
e.g. distance bounding that aims to ensure physical proximity
between two entities. This is due in particular to the fact that
existing models do not represent in a faithful way the locations
of the participants, and the fact that transmission of messages
takes time.

In this paper, we propose several reduction results: when
looking for an attack, it is actually sufficient to consider a simple
scenario involving at most four participants located at some
specific locations. An interesting consequence of our reduction
results is that it allows one to reuse ProVerif, an automated
tool developed for analysing standard security protocols. As an
application, we analyse several distance bounding protocols, as
well as a contactless payment protocol, and our experimental
results confirm existing results on these protocols.

Index Terms—Formal verification, security protocols, symbolic
models, distance bounding protocols

I. INTRODUCTION

The shrinking size of microprocessors as well as the ubiq-
uity of wireless communication have led to the proliferation of
portable computing devices with novel security requirements.
Whereas traditional security protocols achieve their security
goals relying solely on cryptographic primitives like encryp-
tions and hash functions, this is not the case anymore for many
modern applications like e.g. contactless payment. Actually,
a typical attack against these devices is the so-called relay
attack, as demonstrated for EMV in [1]. Such an attack allows
a malicious participant to relay communications between a
victim’s card (possibly inside a wallet) and a genuine terminal
so that the victim’s card, even if it is far away from the
terminal, will pay the transaction. Due to the contactless nature
of most of our communication, obtaining reliable information
regarding physical proximity is of paramount importance and
specific protocols, namely distance bounding protocols, were
proposed to achieve this specific goal [2], [3]. They typically
take into account the round trip time of messages and the
transmission velocity to infer an upper bound of the distance
between two participants.

This work has been partially supported by the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation
program (grant agreement No 714955-POPSTAR).

In the context of standard security protocols, such as key
establishment protocols, formal methods have proved their
usefulness for providing security guarantees or detecting at-
tacks. The purpose of formal verification is to provide rigorous
frameworks and techniques to analyse protocols and find their
flaws. For example, a flaw has been discovered in the Single-
Sign-On protocol used e.g. by Google Apps [4]. This flaw has
been found when analysing the protocol using formal symbolic
methods, abstracting messages by a term algebra and using
the Avantssar validation platform [5]. The techniques used in
symbolic models have become mature and several verification
tools are nowadays available [5]–[7].

However, protocols whose security relies on constraints
from the physical world fall outside the scope of traditional
symbolic models that are based on the omniscient attacker
who controls the entire network, and who can for instance
relay messages without introducing any delay. Due to the
lack of formal symbolic models, distance bounding protocols
are only analysed so far with respect to some specific attack
types known as e.g. mafia fraud, and terrorist fraud. Recently,
another type of attack, namely distance hijacking [8], has
been discovered, and many protocols have been shown to
be vulnerable to this new type of attacks. Following [9],
[10], and more recently [11], our aim is to bridge the gap
between informal approaches currently used to analyse these
protocols and the formal approaches already used for analysing
traditional security protocols.

Our contributions. To model timed protocols as well as the no-
tion of physical proximity, we first propose a calculus in which
communications are subject to physical restriction applying to
honest agents and attackers. An attacker can only intercept
messages at his location, and attackers can not instantaneously
exchange their knowledge: transmitting messages takes time.
This models reality, where the attackers’ ability to observe
and communicate messages depends on their locations. Then,
our main contribution is to provide reduction results in the
spirit of the one obtained in [12] for traditional protocols:
if there is an attack, then there is one considering only few
participants at some specific locations. The results slightly
differ depending on the type of attacks we consider (mafia
fraud or hijacking attack). Each result allows one to reduce the
number of topologies to be considered from infinitely many
to only one (involving at most 4 participants including the
malicious ones). Our results hold in a rather general setting:
we consider arbitrary cryptographic primitives that can be
expressed using rewriting rules modulo an equational theory.

An interesting consequence of our reduction results is that
it allows one to reuse techniques and tools developed for
standard security protocols. Actually, we show how to encode
these simple topologies, as well as the timing constraints,
relying on the phase mechanism available in ProVerif. As an
application, we analyse several distance bounding protocols,
and a contactless payment protocol [1].

All files related to our case studies are available at [13],
while omitted proofs are available in the full version of this
paper [14].

Related work. Until recently, most distance bounding protocols
have been analysed without a formal approach. Recent efforts
have been made on proving security of distance bounding
protocols. For instance, in 2001, Avoine et al. [15] proposed a
framework in which many protocols have been analysed and
compared in a unified manner [16]. A rather general model has
been proposed by Boureanu et al. in [17]. This computational
model captures all the classical types of attacks and generalises
them enabling attackers to interact with many provers and
verifiers. These models are very different from ours. Indeed,
we consider here a formal symbolic model in which messages
are no longer bitstrings but are abstracted away by terms. Some
recent attempts have been made to design formal symbolic
model suitable to analyse distance bounding protocols: e.g.
a model based on multiset rewriting rules has been proposed
in [9] and [11], another one based on strand spaces is available
in [18]. Even if our model shares some similarities with those
mentioned above, we design a new one based on the applied
pi calculus [19] in order to connect our theoretical results with
the ProVerif verification tool that we ultimately use to analyse
protocols.

Our main reduction result follows the spirit of [20] where it
is shown that it is sufficient to consider five specific topologies
when analysing routing protocols. To our knowledge, the
only work proposing a reduction result suitable for distance
bounding protocols is [18]: the authors show that n attackers
are sufficient when analysing a configuration involving at
most n honest participants. However, we still need to consider
an arbitrary number of participants when looking for an attack.
Moreover, due to the way attackers are located (close to
each honest participant), such a result can not be applied to
analyse hijacking attacks that typically disallow the presence
of an attacker in the neighbourhood of honest participants. In
contrast, our result reduces to only one topology, even when
considering an arbitrary number of honest participants, and it
applies to the scenario mentioned above. A consequence of
this result is that we can leverage the ProVerif tool to analyse
such protocols. To do that we get some inspiration from [1].
Our contributions improve upon their work by providing a
strong theoretical foundation to their idea. Moreover, in order
to consider scenario in which attackers are far away, and thus
unable to produce an answer within the delay, we slightly
modify the tool to discard some attacker behaviours. This was
mandatory to analyse distance hijacking scenarios relying on
the ProVerif tool.

Recently, a methodology to analyse distance bounding
protocols within the Tamarin verification tool has been pro-
posed [11]. Their model does not allow one to consider the
different class of attacks, e.g. they cannot prove that a protocol
is mafia fraud resistant but vulnerable to a distance hijacking
attack. All the case studies reported in [11] have been analysed
in our framework, and a brief comparison is provided in
Section VI.

II. MESSAGES

As usual in the symbolic setting, we model messages
through a term algebra. We consider both equational theories
and reduction relations to represent the properties of the
cryptographic primitives.

A. Term algebra

We consider two infinite and disjoint sets of names: N is
the set of basic names, which are used to represent keys,
nonces, whereas A is the set of agent names, i.e. names
which represent the agents identities. We consider an infinite
set Σ0 of constant symbols that are used for instance to
represent nonces drawn by the attacker. We also consider
two infinite and disjoint sets of variables, denoted X and W .
Variables in X refer to unknown parts of messages expected by
participants while variables in W are used to store messages
learnt by the attacker.

We assume a signature Σ, i.e. a set of function symbols
together with their arity. The elements of Σ are split into
constructor and destructor symbols, i.e. Σ = Σc] Σd. We
denote Σ+ = Σ∪Σ0, and Σ+

c = Σc∪Σ0. Given a signature F ,
and a set of atomic data A, we denote by T (F ,A) the set of
terms built from atomic data A by applying function symbols
in F . A constructor term is a term in T (Σ+

c ,N ∪A∪X). We
denote vars(u) the set of variables that occur in a term u. A
message is a constructor term u that is ground, i.e. such that
vars(u) = ∅. The application of a substitution σ to a term u
is written uσ. We denote dom(σ) its domain, and img(σ) its
image. The positions of a term are defined as usual.

Example 1. We consider the following signature
Σex = Σc] Σd:
• Σc = {commit, sign, sk, vk, ok, 〈〉,⊕, 0}
• Σd = {open, getmsg, check, proj1, proj2, eq}.
The symbols open and commit (arity 2) represent a com-

mitment scheme, whereas the symbols sign, check (arity 2),
getmsg, sk, and vk (arity 1) are used to model signature.
Pairing and projections are modelled using 〈 〉 (arity 2), and
proji with i ∈ {1, 2} (arity 1). The symbols ⊕ (arity 2) and
the constant 0 model the exclusive-or operator. We consider
the symbol eq to model equality test.

B. Equational theory

Following the approach developed in [21], constructor terms
are subject to an equational theory. This allows one to model
the algebraic properties of the primitives. It consists of a finite
set of equations of the form u = v where u, v ∈ T (Σc,X),

2

and induces an equivalence relation =E over constructor
terms. Formally, =E is the smallest congruence on constructor
terms, which contains u = v in E, and that is closed under
substitutions of terms for variables.

Example 2. To reflect the algebraic properties of the
exclusive-or operator, we consider the equational theory Exor

generated by the following equations:
(x⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x

x⊕ 0 = x x⊕ x = 0

C. Rewriting rules

As in [21], we also give a meaning to destructor symbols.
This is done through a set of rewriting rules of the form
g(t1, . . . , tn) → t where g ∈ Σd, and t, t1, . . . , tn ∈
T (Σc,X). A term u can be rewritten in v if there is a
position p in u, and a rewriting rule g(t1, . . . , tn) → t such
that u|p = g(t1, . . . , tn)θ for some substitution θ. Moreover,
we assume that t1θ, . . . , tnθ as well as tθ are messages. We
only consider sets of rewriting rules that yield a convergent
rewriting system, and we denote u↓ the normal form of a
term u.

For modelling purposes, we split the signature Σ into two
parts, Σpub and Σpriv, and we denote Σ+

pub = Σpub ∪ Σ0.
An attacker builds messages by applying public symbols to
terms he knows and that are available through variables inW .
Formally, a computation done by the attacker is a recipe, i.e.
a term in T (Σ+

pub,W).

Example 3. Among symbols in Σex, only sk is in Σpriv. The
properties of the symbols in Σd are reflected through the
following rewriting rules:
check(sign(x, sk(y)), vk(y))→ ok eq(x, x)→ ok
getmsg(sign(x, sk(y)))→ x proj1(〈x1, x2〉)→ x1
open(commit(x, y), y)→ x proj2(〈x1, x2〉)→ x2.

III. TIMED SECURITY PROTOCOLS

We now present our model which incorporates a notion of
location, and time.

A. Process algebra

Protocols are modelled through processes using the follow-
ing grammar:

P,Q := 0
| new n.P
| let x = v in P
| out(u).P
| in(x).P
| in<t(x).P
| reset.P

where x ∈ X , n ∈ N , u ∈ T (Σ+
c ,X]N]A), v ∈ T (Σ+,X]

N]A) and t ∈ R+.

Most of these constructions are rather standard. As usual,
0 denotes the empty process that does nothing, and the new

instruction is used to model fresh name generation. Then, we
have standard constructions to model inputs and outputs. We

may note the special construction in<t(x) that combines an
input with a constraint on the local clock of the agent executing
this action. This construction is in contrast with the approach
proposed in e.g. [11] where input actions are not subject to any
timing constraint, and are therefore always possible provided
that enough time has elapsed. From this point of view, our
model represents the reality more faithfully since an agent will
not proceed an input arriving later than expected. The reset

instruction will reset the local clock of the agent. Finally, the
process let x = v in P tries to evaluate v, the process P
is executed in case of success, and the process is blocked
otherwise. Note that the usual conditional operator can be
modelled as follows: let x = eq(u, v) in P .

We write fv(P) (resp. fn(P)) for the set of free variables
(resp. names) occurring in P , i.e. the set of variables (resp.
names) that are not in the scope of an in or a let (resp. a new).
We consider parametrised processes, denoted P (z0, . . . , zn),
where z0, . . . , zn are variables from a special set Z (disjoint
from X andW). Intuitively, these variables will be instantiated
by agent names, and z0 corresponds to the name of the agent
that executes the process. A role R = P (z0, . . . , zn) is a
parametrised process that does not contain any agent name,
and such that fv(R) ⊆ {z0, . . . , zn}. A protocol is a set of
roles.

Example 4. As a running example, we consider the signature-
based Brands and Chaum distance bounding protocol [2] that
is informally described below:

1. P → V : commit(m, k)
2. V → P : n
3. P → V : n⊕m
4. P → V : k
5. P → V : sign(〈n, n⊕m〉, sk(P)).

The prover P generates a nonce m and a key k, and sends
a commitment to the verifier V . The verifier V generates his
own nonce n and initiates the time measurement phase, also
called the rapid phase. P has to provide an answer as quickly
as possible since V will reject any answer arriving too late (a
long response time does not give him any guarantee regarding
its proximity with the prover). After this phase, P sends a
means to open the commitment, as well as a signature on
the values exchanged during the rapid phase. When a verifier
ends the protocol, the prover with whom he is communicating
should be located in his neighbourhood. In our setting, we
consider the following parametrised processes:

P (zP) :=
new m.new k.
out(commit(m, k)).
in(xn).
out(xn ⊕m).
out(k).
out(sign(〈xn, xn ⊕m〉, sk(zP))).0

3

V (z′V , z
′
P) :=

in(yc).new n.
reset.out(n).in<2×t0(y0).
in(yk).in(ysign).
let ym = open(yc, yk) in
let ycheck = check(ysign, vk(z′P)) in
let yeq = eq(〈n, n⊕ ym〉, getmsg(ysign)) in 0.

B. Configuration and topology

Each process has a location. As in the classical Dolev-
Yao model [22], the attackers control the entire network
but interacting with agents who are far away takes time.
To formalise this, our execution model is parametrised by a
topology.

Definition 1. A topology is a tuple T0 =
(A0,M0,Loc0, v0, p0) where:

• A0 ⊆ A is the finite set of agents composing the system;
• M0 ⊆ A0 is the subset of agents that are dishonest;
• Loc0 : A0 → R3 is a mapping defining the position of

each agent in space.
• p0 and v0 are two agents in A0 that represent respectively

the prover and the verifier for which we analyse the
security of the protocol.

In our model, the distance between two agents is expressed
by the time it takes for a message to travel from one to another.
Therefore, we consider DistT0 : A0×A0 → R, based on Loc0
that will provide the time a message takes to travel between
two agents. It is defined as follows:

DistT0(a, b) = ‖Loc0(a)−Loc0(b)‖
c0

for any a, b ∈ A0

with ‖·‖ : R3 → R the euclidian norm and c0 the transmission
speed. We suppose, from now on, that c0 is a constant for all
agents, and thus an agent a can recover, at time t, any message
emitted by any other agent b before t− DistT0(a, b).

Note that our model is not restricted to a single dishonest
node. In particular, our results apply to the case of several com-
promised nodes that communicate (and therefore share their
knowledge). However, communication is subject to physical
constraints: message transmission takes time determined by
the distance between nodes. All agents, including attackers,
are subject to these constraints. This results in a distributed
attacker with restricted, but more realistic, communication
capabilities than those of the traditional Dolev-Yao attacker.

Our semantics is given by a transition system over
configurations that manipulates extended processes, i.e.
expressions of the form bPac taa with a ∈ A, Pa a process
such that fv(Pa) = ∅, and ta ∈ R+. Intuitively, Pa describes
the actions of agent a, and ta his local clock. In order to
store the messages that have been outputted so far, we extend
the notion of frame (introduced in [19]) to keep track of the
time at which the message has been outputted and by whom.

v0

p

p0
t0

Fig. 1: Example of a topology

Definition 2. Given a topology T0 = (A0,M0,Loc0, v0, p0),
a configuration K over T0 is a tuple (P; Φ; t), where:
• P is a multiset of extended process bP c taa with a ∈ A0;
• Φ = {w1

a1,t1−−−→ u1, . . . ,wn
an,tn−−−→ un} is an extended

frame, i.e. a substitution such that wi ∈ W , ui ∈
T (Σ+

c ,N]A), ai ∈ A0 and ti ∈ R+ for 1 ≤ i ≤ n;
• t ∈ R+ is the global time of the system.

We write bΦc ta for the restriction of Φ to the agent a at
time t, i.e. :

bΦc ta =

{
wi

ai,ti−−−→ ui

∣∣∣∣∣ (wi
ai,ti−−−→ ui) ∈ Φ and

ai = a and ti ≤ t

}
Example 5. Continuing Example 4, a topology T0 =
(A0,M0,Loc0, v0, p0) is depicted in Figure 1 where A0 =
{p0, v0, p}, and M0 = {p0}. The precise location of each
agent is not relevant, only the distance between them mat-
ters. Here, we assume that DistT0(p, v0) < t0 whereas
DistT0(p0, v0) ≥ t0.

A typical configuration is:

K0 = (bP (p)c 0p] bV (v0, p0)c 0v0 ; {w1
p0,0−−→ sk(p0)}; 0)

where p is playing the role of the prover and v0 the role of
the verifier with a dishonest agent p0. The extended frame only
contains the signature key of the dishonest agent, i.e. sk(p0). A
more realistic configuration would include other instances of
these two roles and will give more knowledge to the attacker,
but we will see that this configuration is already sufficient to
present an attack.

C. Semantics

Given a topology T0 = (A0,M0,Loc0, v0, p0), the
semantics of processes is formally defined by the rules given
in Figure 2. The TIM rule allows time to elapse, meaning that
the global clock as well as the local clocks will be shifted by δ:

Shift(P, δ) =
⊎
P∈P Shift(P, δ) and

Shift(bP c taa , δ) = bP c ta+δa .

The RST rule allows an agent to reset his local clock. The
other rules are rather standard. The IN rule allows an agent a
to evolve when receiving a message: the received message has
necessarily been forged and sent at time tb by some agent b
who was in possession of all the necessary information at that
time.

4

TIM (P; Φ; t) −→T0 (Shift(P, δ); Φ; t+ δ) with δ ≥ 0

OUT (bout(u).P c taa)] P; Φ; t)
a,out(u)−−−−−→T0 (bP c taa] P; Φ] {w a,t−−→ u}; t)

with w ∈ W fresh

LET (blet x = u in P c taa] P; Φ; t)
a,τ−−→T0 (bP{x 7→ u↓}c taa] P; Φ; t)

when u↓ ∈ T (Σ+
c ,N]A)

NEW (bnew n.P c taa] P; Φ; t)
a,τ−−→T0 (bP{n 7→ n′}c taa] P; Φ; t) with n′ ∈ N fresh

RST (breset.P c taa] P; Φ; t)
a,τ−−→T0 (bP c 0a] P; Φ; t)

IN (bin?(x).P c taa] P; Φ; t)
a,in?(u)−−−−−→T0 (bP{x 7→ u}c taa] P; Φ; t)

when there exist b ∈ A0 and tb ∈ R+ such that tb ≤ t− DistT0(b, a) and:
• if b ∈ A0 rM0 then u ∈ img(bΦc tbb);
• if b ∈M0 then u = RΦ↓ for some recipe R such that for all w ∈ vars(R)

there exists c ∈ A0 such that w ∈ dom(bΦc tb−DistT (c,b)
c).

Moreover, in case ? is < tg for some tg , we assume in addition that ta < tg .

Fig. 2: Semantics of our calculus

We sometimes simply write −→T0 instead of
a,α−−→T0 . The

relation→∗T0 is the reflexive and transitive closure of→T0 , and
we often write tr−→T0 to emphasise the sequence of labels tr
that has been used during this execution.

Example 6. Continuing Example 5, we may consider the
following execution:

K0
p,τ−−→T0

p,τ−−→T0
p,out(commit(m′,k′))−−−−−−−−−−−−−→T0

−→T0
v0,in(commit(m′,k′))−−−−−−−−−−−−−→T0

v0,τ−−−→T0
v0,τ−−−→T0 K1

where K1 = (P1; Φ1; δ0) where:

• P1 = bP1c δ0p] bV1c
0
v0

with P1 and V1 representing the
evolution of the processes located in p and v0.
More precisely we have:
- P1 = in(xn).out(xn⊕m′).out(k′).out(sign(〈xn, xn⊕
m′〉, sk(p)))
- V1 = out(n′).in<2×t0(y0).in(yk).in(ysign).let ym =
open(yc, yk) in . . .

• Φ1 = {w1
p0,0−−→ sk(p0), w2

p,0−−→ commit(m′, k′)}
This models the beginning of a normal execution between p

and v0. The message outputted at location p is received at
location v0. The instance of the rule TIM in between (here with
δ0 = DistT0(p, v0)) allows the message to reach location v0.

IV. SECURITY PROPERTIES

A distance bounding protocol is a protocol in which a party
(the verifier) is assured of the identity of another party (the
prover), as well as the fact that this prover is located in
his neighbourhood. Several frauds are usually considered. We
introduce in Section IV-B the ones that will be studied in this
paper, and we explain how they will be formalised. Before
to do that, we introduce the notion of t0-proximity and the
notion of valid initial configuration that aims to represent all
the scenarios that have to be analysed once the topology has
been fixed.

v0 p
(neighbourhood of v0)

p0
(far away)

new m′, k′

commit(m′, k′)

new n′ n′

n′ ⊕m′

k′

sign(〈n′, n′ ⊕m′〉, sk(p0))

Fig. 3: Distance hijacking attack on the Brands and Chaum’s
protocol

A. Physical proximity on a given topology

For the sake of simplicity, we assume that configurations
representing instances of distance bounding protocols contain
a process (typically a session of the verifier) that ends with
a special action of the form end(v, p) claiming that agents v
and p are close (typically v is the verifier and p the prover).
Checking whether a protocol ensures physical proximity w.r.t.
a given configuration K0 is defined as follows.

Definition 3. Let T0 be a topology and K0 be a configuration
over T0. We say that K0 admits an attack w.r.t. t0-proximity
in T0 if

K0 →∗T0 (bend(a1, a2)c taa]P; Φ; t) with DistT0(a1, a2) ≥ t0.

Example 7. Continuing Example 5, we consider the configu-
ration K ′0 below:

K ′0 = (bP (p)c 0p] bV ′(v0, p0)c 0v0 ; {w1
p0,0−−→ sk(p0)}; 0)

where V ′(z′V , z
′
P) is V (z′V , z

′
P) in which the null process has

been replaced by end(z′V , z
′
P). The configuration K ′0 can still

follow the execution of Example 6:

K ′1 = (bP1c δ0p] bV ′1c
0
v0

; Φ1; δ0)

5

where V ′1 is V1 in which the occurrence of the null process
has been replaced by end(v0, p0). Now, we can pursue this
execution in T0 as follows:

K ′1
v0,out(n

′)−−−−−−→−→ p,in(n′)−−−−−→
p,out(n′⊕m′)−−−−−−−−→ p,out(k′)−−−−−→−→ v0,in

<2×t0 (n′⊕m′)−−−−−−−−−−−−→ v0,in(k
′)−−−−−→

−→ v0,in(sign(〈n′,n′⊕m′〉,sk(p0)))−−−−−−−−−−−−−−−−−−−→ K ′2
with:
K ′2 = (bP2c 3δ0+2δ′0

p] bend(v0, p0)c 2δ0+2δ′0
v0

; Φ; 3δ0 + 2δ′0).

The two first lines correspond to a normal execution of the
protocol between v0 and p. Note that, on each line, we need
an instance of the TIM rule with δ0 = DistT0(v0, p) =
DistT0(p, v0) to allow the sent message to reach its destination.
The last transition does not follow the normal execution of the
protocol. Actually, the dishonest agent p0 is responsible of this
input. He built this message from the messages n′ and n′⊕m′
that have been sent on the network, and the key sk(p0) that
is part of his initial knowledge. Note that he has to wait the
necessary amount of time to allow these messages to reach
him (e.g. δ′0 = DistT0(v0, p0)), and some time is needed for
the forged message to reach v0 (actually δ′0 = DistT0(v0, p0)).
Therefore, the first rule of the last line is an instance of the
TIM rule during which a delay of 2δ′0 has elapsed.

Note that, according to Definition 3, this corresponds to
an attack w.r.t. t0-proximity on configuration K ′0. Actually,
this is the hijacking attack that has been reported in [8] and
described in Figure 3. Here, a dishonest prover p0 exploits
an honest prover p (located in the neighbourhood of v0)
to provide the verifier v0 with false information about the
distance between p0 and v0.

When analysing a distance bounding protocol, not all the
configurations are interesting. Therefore, we first fix a topol-
ogy T0 = (A0,M0,Loc0, v0, p0), and we consider any config-
uration that is valid w.r.t. this topology. Actually, we consider
a protocol Pprox, and we assume that the initial knowledge of
dishonest participants is given through a template I0, i.e. a set
of terms in T (Σ+

c ,Z). Using this template I0, and considering
a set of agents A0, we derive the initial knowledge of agent
a ∈ A0 as follows:

Knows(I0, a,A0) =

(u0{z0 7→ a})σ

∣∣∣∣∣∣
u0 ∈ I0
vars(u0σ) = ∅
img(σ) ⊆ A0


Definition 4. Let Pprox be a protocol, V0(z0, z1) be a
parametrised role containing the special action end(z0, z1), I0
be a template, and T0 = (A0,M0,Loc0, v0, p0) be a topology.
A configuration K = (P; Φ; t) is a valid initial configuration
for the protocol Pprox and V0 w.r.t. T0 and I0 if:

1) P = bV0(v0, p0)c t
′

v0
] P ′ for some t′ and for each

bP ′c t
′

a′ ∈ P ′ there exists P (z0, . . . , zk) ∈ Pprox, and
a1, . . . , ak ∈ A0 such that P ′ = P (a′, a1, . . . , ak).

2) img(bΦc ta) = Knows(I0, a,A0) when a ∈ M0, and
img(bΦc ta) = ∅ otherwise.

The first condition says that we consider initial configura-
tions made up of instances of the roles of the protocols, and
we only consider roles executed by agents located at the right
place. We may note that an agent can execute at the same
time the role of a verifier and the role of a prover. The second
condition allows one to give some initial knowledge to each
malicious node. Finally we do not give so much constraints
regarding time to be able to consider all the possible initial
configurations before declaring a protocol secure.

Example 8. Going back to Example 7 and considering the
template I0 = {sk(z0)}, we have that K ′0 is a valid initial
configuration w.r.t. T0 and I0.

Definition 5. Let Pprox be a protocol, V0(z0, z1) be a
parametrised role containing the special action end(z0, z1),
I0 be a template, and T0 be a topology. We say that Pprox

admits an attack w.r.t. t0-proximity in T0 if there exists a valid
initial configuration K for Pprox and V0 w.r.t. T0 and I0 such
that K admits an attack w.r.t. t0-proximity in T0.

B. Classification of attacks

We consider two types of attacks, namely mafia and distance
hijacking frauds. We do not consider the notion of terrorist
fraud. This does not fit in our model since here we assume
colluding attackers who share their knowledge (provided that
enough time has elapsed). Our notion of distance hijacking
subsumes the usual notion of distance fraud, and therefore,
due to space constraints, we choose to not detail this type of
attack (results about distance fraud are given in [14]).

Mafia fraud: A mafia fraud is an attack in which
generally three agents are involved: a verifier, an honest prover
located outside the neighbourhood of the verifier, and an exter-
nal attacker. However, we consider here its general version in
which an arbitrary number of participants may be involved in
the attack. The aim of the attacker is to convince the verifier
that the honest prover is actually close to it. Therefore, we
consider any topology T = (A0,M0,Loc0, v0, p0) such that
both v0 and p0 are honest, i.e. v0, p0 ∈ A0 rM0. We denote
CMF the set of topologies that satisfy these requirements.

Distance hijacking fraud: A distance hijacking fraud
is an attack in which a dishonest prover located far away
succeeds in convincing an honest verifier that he is actually
close to him. The dishonest prover may exploit honest entities
located in the neighbourhood of the verifier. Therefore, we
consider any topology T = (A0,M0,Loc0, v0, p0) such that
p0 ∈ M0, v0 ∈ A0 rM0, and DistT0(v0, a) ≥ t0 for any
a ∈ M0. We denote CDH the set of topologies that satisfy
these requirements.

Definition 6. Let Pprox be a protocol, V0(z0, z1) be a
parametrised role containing the special event end(z0, z1), and
I0 be a template. We say that Pprox admits a mafia fraud attack
(resp. distance hijacking attack) w.r.t. t0-proximity if there exist
T ∈ CMF (resp. CDH), a valid initial configuration K for Pprox

and V0 w.r.t. T and I0 such that K admits an attack w.r.t.
t0-proximity in T .

6

v0 p0
a1 a2

t0

T t0MF

v0
e0

p0
t0

T t0DH

malicious node
honest node

Fig. 4: Topologies T t0MF (mafia fraud), and T t0DH (distance
hijacking fraud)

Our main contribution is to provide reduction results that
allow one to analyse the security of a protocol w.r.t. the frauds
mentioned above considering only a specific topology. Then,
we will show how to leverage an existing tool ProVerif to
automatically analyse this notion of physical proximity.

V. REDUCING THE TOPOLOGY

Our reduction results allow one to analyse the security of a
protocol (w.r.t. t0-proximity) considering only a specific and
rather simple topology.

Before presenting them we want to highlight that these
results can be easily adapted if we assume that an agent cannot
execute at the same time the role of a verifier and a role of a
prover. Indeed it is sufficient to duplicate each honest identities
in the reduced topologies: one playing all the verifier roles and
the other one playing all the prover roles.

A. Mafia fraud

Regarding mafia fraud, the unique resulting topology
is T t0MF = (AMF,MMF,LocMF, v0, p0) with AMF =
{p0, v0, a1, a2}, MMF = {a1, a2}, LocMF(v0) = LocMF(a1),
LocMF(p0) = LocMF(a2), and DistT t0

MF
(p0, v0) = t0 as pic-

tured in Figure 4.
A simple idea to reduce towards such a topology could

be to move each node n in the neighbourhood of v0 at the
same location as v0, and to keep the other ones at distance
(i.e. location of p0). However, such a reduction will lengthen
the distance between n and p0, and the resulting execution
could not be feasible anymore. Since dishonest participants are
allowed in the neighbourhood of v0, getting some inspiration
from [18], we consider a dishonest participant right next to
each honest participant. Such a dishonest participant is ideally
located to forge and send messages that will be received by
honest agents close to him.

However, contrary to the result provided in [18], our goal is
not only to reduce the number of dishonest agents but also the
number of honest agents that are involved in an attack trace. In
order to ensure that moving (and reducing) the honest agents
will not cause any trouble, we need an extra assumption. We
require that each role of the protocol is executable. This is a
reasonable assumption that will allow one to discard any role
executed by agents other than v0 and p0. Intuitively, these
operations will be done directly by the attackers.

Definition 7. Given a template I0 = {u1, . . . , uk}, we say that
a parametrised role P (z0, ..., zn) is I0-executable if fv(P) ⊆
{z0, ..., zn}, fn(P) = ∅ and for any term u (resp. v) occurring
in an out or a let construction, there exists a recipe R ∈
T (Σ+

pub, {w1, . . . ,wk}] N] X) such that u = Rσ↓ (resp.
v↓ = Rσ↓) where σ = {w1 7→ u1, . . . ,wk 7→ uk}.

A protocol P is I0-executable if each role of P is I0-
executable.

Example 9. Going back to our running example given in Ex-
ample 4. We have that P (z0) is {sk(z0)}-executable whereas
V (z0, z1) is {z1}-executable. Therefore, we have that the
protocol made of these two roles is {sk(z0), z1}-executable.

Theorem 1. Let I0 be a template, Pprox be a protocol I0-
executable, and V0(z0, z1) be a parametrised role containing
the special event end(z0, z1). We have that Pprox admits a
mafia fraud attack w.r.t. t0-proximity, if and only if, there is
an attack against t0-proximity in the topology T t0MF.

B. Distance hijacking attack

First, we may note that the reduction we did in case
of mafia fraud is not possible anymore. Clearly, we need
to consider honest participants in the neighbourhood of the
verifier and moving them on the same location as v0 will
lengthen the distance with p0. Moreover, there is no hope to
reduce the number of attackers by placing them close to each
honest participant since the addition of a malicious node in
the neighbourhood of v0 is not authorised when considering
distance hijacking. Actually, adding such a dishonest node
in the neighbourhood of v0 will always introduce a false
attack since in our model dishonest participants share their
knowledge. Therefore, this dishonest participant would be able
to impersonate the dishonest prover p0 (who is actually far
away).

Nevertheless, we will show that under reasonable
conditions, we can reduce towards the topology
T t0DH = (ADH,MDH,LocDH, v0, p0) with ADH = {p0, v0, e0},
MDH = {p0}, LocDH(p0) = LocDH(e0), and
DistT t0

DH
(p0, v0) = t0 (see Figure 4).

The idea behind this reduced topology is the following: the
agent v0 plays the role V0 and represents all the honest
agents who would be in its proximity (provers and verifiers),
p0 represents all the possible malicious participants and e0
represents all the honest participants who are far from v0.

Given a process P , we denote P the process obtained
from P by removing reset instructions, and replacing all the
occurrences of in<t(x) by in(x). This transformation will be
applied on the protocol but not on the role V0 for which these
instructions play a crucial role. Our reduction result ensures
that no distance hijacking attack will be missed if we just
analyse the transformed protocol in topology T t0DH.

7

Theorem 2. Let I0 be a template, Pprox be a protocol, t0 ∈
R+, and V0(z0, z1) be a parametrised role obtained using the
following grammar:

P,Q := end(z0, z1)
| new n.P
| let x = v in P
| in(x).P
| out(u).P
| reset.out(u′).in<t(x).P

where x ∈ X , n ∈ N , u, u′ ∈ T (Σ+
c ,X ∪ N ∪ {z0, z1}),

v ∈ T (Σ+,X ∪N ∪ {z0, z1}) and t ≤ 2× t0.
If Pprox admits a distance hijacking attack w.r.t. t0-proximity,
then Pprox admits an attack against t0-proximity in the topol-
ogy T t0DH.

Example 10. Let us explain how this reduced topology catches
the distance hijacking attack presented in Example 7. As briefly
explained above, the role the honest agent p in T0 will be
played by v0. Hence, in T t0DH, we consider the following initial
configuration:

K ′′0 = (bP (v0)c
0

v0
] bV ′(v0, p0)c 0v0 ; {w1

p0,0−−→ sk(p0)}; 0)

Starting with this configuration, we can follow the execution
of Example 7 which is also a witness of the hijacking attack
against t0-proximity in the topology T t0DH.

VI. CASE STUDIES USING PROVERIF

We have reduced the topology but we have still to take
into account it when analysing the protocol preventing us to
use automatic verification tool dedicated to traditional security
protocol such as ProVerif [6]. In this section, we will explain
how to get rid of the resulting topology and obtain interesting
results on timed protocols relying on the notion of phases that
is available in ProVerif.

A. ProVerif in a nutshell

We consider a subset of the ProVerif calculus defined as
follows:
P := 0 | new n.P | let x = v in P
| out(u).P | in(x).P
| i : P | !P

where x ∈ X , n ∈ N , u ∈ T (Σ+
c ,X∪N∪A), v ∈ T (Σ+,X∪

N ∪A) and i ∈ N.
The semantics is similar to the one introduced earlier,

and formally defined through a relation, denoted =⇒, over
configurations (partially given in Figure 5). A configuration is
a tuple (P;φ; i) where P is a multiset of processes (as given by
the grammar), φ is a frame as usual (with no decoration on the
arrow), and i ∈ N is an integer that indicates the current phase.
Intuitively, the process !P executes P an arbitrary number of
times (in parallel), and only processes in the current phase are
allowed to evolve. We often write P instead of 0 : P .

B. Our transformation

Given a topology T (typically one in Figure 4), a protocol
Pprox, a role V0, and a template I0, we build a configuration
(P;φ; 0) on which the security analysis could be done using
ProVerif. From now on, we assume that V0(v0, p0) only
contains one block of the form reset.out(m).in<t(x), i.e. it
is of the form:
block1 . reset . out(m) . in<t(x) . block2 . end(v0, p0)

where blocki is a sequence of actions (only simple inputs,
outputs, let, and new instructions are allowed). The main
idea is to use phase 1 to represent the rapid phase. Such
a phase starts when V0 performs its reset instruction, and
ends when V0 performs its in<t(x) instruction. During this
rapid phase, only participants that are close enough to V0 can
manipulate messages outputted in this rapid phase. The other
ones are intuitively too far. Therefore, we mainly consider two
transformations, namely F< and F≥, whose purposes are to
transform a parametrised role of our process algebra given
in Section III-A (with no reset instruction and no guarded
input) into a process in the ProVerif calculus.
• Transformation F<: this transformation introduces the

phase instructions with i = 0, 1 and 2 considering all the
possible ways of splitting the role into three phases (0,
1, and 2). Each phase instruction is placed before an in

instruction. Such a slicing is actually sufficient for our
purposes.

• Transformation F≥: this transformation does the same
but we forbid the use of the instruction phase 1, jumping
directly from phase 0 to phase 2.

The configuration, denoted F(T ,Pprox, V0, I0, t0), is
the tuple (P;φ; 0) where φ is such that img(φ) =⋃
a∈M0

Knows(I0, a,A0), and P is the multiset that contains
the following processes:
• block1 . 1 : out(m) . in<t(x) . 2 : block2 . end(v0, p0);
• !R(a0, .., an) when R(z0, .., zn) ∈ F<(Pprox), a0, .., an ∈
A0, DistT (v0, a0) < t0;

• !R(a0, .., an) when R(z0, .., zn) ∈ F≥(Pprox), a0, .., an ∈
A0, DistT (v0, a0) ≥ t0.
We are then able to establish the following result that

justifies the transformation presented above.

Proposition 1. Let T = (A0,M0,Loc0, v0, p0) be a topology,
Pprox a protocol, t0 ∈ R+, I0 a template, and V0(z0, z1) a
parametrised process of the form:

block1 . reset . out(m) . in<t(x) . block2 . end(z0, z1)
with t ≤ 2× t0

Let K0 be a valid initial configuration for the protocol
Pprox and V0 w.r.t. T and I0. If K0 admits an attack w.r.t.
t0-proximity in T , then we have that:

F(T0,Pprox, V0, I0, t0)
tr

=⇒ ({2 : end(v0, p0)}] P;φ; 2).

Moreover, in case there is no a ∈ M0 such that
DistT0(a, v0) < t0, we have that for any in(u) occurring
in tr during phase 1, the underlying recipe R is either of the
form w, or only uses handles ouputted in phase 0.

8

(i : in(x).P] P;φ; i)
in(Rφ↓)
=====⇒ (i : P{x 7→ Rφ↓}] P;φ; i) for some recipe R

(i : !P] P;φ; i)
τ
=⇒ (i : P] (i : !P)] P;φ; i)

(P;φ; i)
phase i′

====⇒ (P;φ; i′) with i′ > i.

Fig. 5: Semantics for processes with phases (some rules only)

This result allows us to turn any attack corresponding
to a mafia fraud into a reachability property, namely the
reachability of the event end. Regarding distance hijacking,
in order to avoid false attacks, we will exploit the additional
condition stated at the end of Proposition 1.

C. Case studies

Regardless of the type of the considered attack, thanks
to our reduction results (Section V), when analysing the
protocol Pprox w.r.t. t0-proximity, we only need to consider
a single topology (depicted in Figure 4). Once down to this
single topology, we can apply Proposition 1, and analyse in
ProVerif the reachability of the event end(v0, p0) starting with
the configuration (P;φ; 0) = F(T t0XX,Pprox, V0, I0, t0) where
XX ∈ {MF,DH}. If the protocol is proved secure, then Pprox is
resistant to the class of attacks we have considered. Otherwise,
the trace returned by ProVerif can be analysed to see if it is
executable in our timed semantics, and thus corresponds to a
real attack.

Actually, to obtain meaningful results regarding scenarios
that only involved honest participants in the neighbourhood of
v0, we have to go one step further. Indeed, the attacker model
behind ProVerif allows him to interact with any participant
(even those that are far away) with no delay. To avoid
these behaviours that are not possible in the rapid phase, we
slightly modify the ProVerif code taking advantage of the extra
condition stated in Proposition 1. During phase 1, we consider
an attacker who is only able to forward messages previously
sent, and forged new messages using his knowledge obtained
in phase 0.

Distance bounding protocols: We apply our methodol-
ogy to a number of well-known distance bounding protocols.
In symbolic models, it is not possible to reason at the bit-
level, and therefore we replace the bit-sized exchanges by a
single challenge-response exchange using a fresh nonce (as
done in Example 4). Sometimes, we also abstract the answer
from the prover relying on an uninterpreted function symbol
with relevant arguments. Finally, in order to rely on ProVerif,
the xor operator has been abstracted (even if our theoretical
development is generic enough to deal with such an operator).
In constrast with [11] in which the xor operator is fully
abstracted relying on a non interpreted function symbol, we
model it as follows:

(x⊕ y)⊕ x → y (x⊕ y)⊕ y → x
x⊕ (x⊕ y) → y y ⊕ (x⊕ y) → x.

A brief description of some of the protocols is given in
Appendices, and all the results are presented in Table I. For
instance, we succeed in proving resistance against mafia fraud

Protocols MF DH
Brands and Chaum [2] X ×
Meadows et al. (nV ⊕ nP , P) [23] X X
Meadows et al. (nV , nP ⊕ P) [23] X ×
TREAD-Asymmetric [24] × ×
TREAD-Symmetric [24] X ×
MAD (One-Way) [25] X ×
Swiss-Knife [3] X X
Munilla et al. [26] X X
CRCS [27] X ×
Hancke and Kuhn ? [28] X X

? the protocols Tree-based, Poulidor, and Uniform are actully equivalent to
this one.

TABLE I: Results on our case studies and obtained in less
than one second.
(×: attack found, X: proved secure)

for the first version of the Meadows et al. protocol which
could not be proved using the framework proposed in [23].
The results are consistent with the ones obtained in [8], [11].
Moreover, our method enables us to retrieve automatically the
distance hijacking attacks already known on the Meadows et
al. protocol.

Paysafe protocol: We studied the Paysafe payment pro-
tocol [1] designed to be resistant against mafia fraud attacks.
More generally, contactless payment protocols need to prevent
relay attacks where malicious agents would abuse from an
honest agent to perform a payment, which corresponds to the
mafia fraud scenario.

The Paysafe protocol is schematised in Figure 6 where
plain arrows represents the rapid exchange phase. During
the initialisation phase, the reader and the card exchange
some identifiers, while during the authentication exchange,
the reader ensures that the card is legitimate using signatures
and certificates verifications. The main idea is to send nonces
and constants during the rapid phase and to perform all the
necessary checks later on. The aim is to increase the accuracy
on the proximity property needed to ensure the security of the
protocol. We also considered two other versions of PaySafe,
also described in [1], where nonces from the Reader and the
Card are removed.

Our results confirmed those presented in [1]. One would
note that their methodology and ours, especially when it comes
down to the use of ProVerif, are quite similar but we would like
to emphasise the fact that our use of ProVerif is a consequence
of our formal development. The authors of [11] reported a
distance fraud attack which is not relevant in this context.
Their methodology does not enable to restrict the analysis to
mafia fraud scenarios. In contrast, our methodology is flexible
enough and more suitable in this context.

9

Card

ATC,PAN

Terminal

amount,GPO

Initialisation

new
nR

GPO, amount, nR

new
nC

ATC,PAN, nC

Authentication

Fig. 6: PaySafe (simplified)

VII. CONCLUSION

Regarding physical proximity, we have shown two main
reduction results: if there is an attack on an arbitrary topology
then there is an attack on a simple one having at most four
nodes. Relying on these reduction results, we have shown how
to use ProVerif to analyse several protocols provided they
make use of primitives supported by the tool. Our method-
ology is flexible enough to draw meaningful conclusions on
each class of attacks: hijacking attack, and mafia fraud.

As future work, we would like to extend our result to
consider the notion of terrorist fraud. This would require to
consider dishonest participants who only share a part of their
knowledge. Another possible extension would be to take also
into account the fact that computing messages takes time as it
was done e.g. in [29], or to consider different channels speeds.

REFERENCES

[1] T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thomp-
son, “Relay cost bounding for contactless EMV payments,” in Proc. 19th
International Conference on Financial Cryptography and Data Security
(FC’15), ser. Lecture Notes in Computer Science, vol. 8975. Springer,
2015, pp. 189–206.

[2] S. Brands and D. Chaum, “Distance-bounding protocols,” in Work-
shop on the Theory and Application of of Cryptographic Techniques.
Springer, 1993, pp. 344–359.

[3] C. H. Kim, G. Avoine, F. Koeune, F.-X. Standaert, and O. Pereira,
“The swiss-knife RFID distance bounding protocol,” in International
Conference on Information Security and Cryptology. Springer, 2008,
pp. 98–115.

[4] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra,
“Formal analysis of SAML 2.0 web browser single sign-on: breaking
the SAML-based single sign-on for Google apps,” in Proc. 6th ACM
Workshop on Formal Methods in Security Engineering (FMSE’08).
ACM, 2008, pp. 1–10.

[5] A. Armando et al., “The AVANTSSAR platform for the automated
validation of trust and security of service-oriented architectures,” in
Proc. 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’12), vol. 7214. Springer,
2012, pp. 267–282.

[6] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules,” in Proc. 14th Computer Security Foundations Workshop
(CSFW’01). IEEE Computer Society Press, 2001, pp. 82–96.

[7] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The Tamarin Prover
for the Symbolic Analysis of Security Protocols,” in Proc. 25th Interna-
tional Conference on Computer Aided Verification (CAV’13), ser. LNCS,
vol. 8044. Springer, 2013, pp. 696–701.

[8] C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun, “Distance
hijacking attacks on distance bounding protocols,” in Proc. IEEE Sym-
posium on Security and Privacy (S&P’12). IEEE, 2012, pp. 113–127.

[9] D. Basin, S. Capkun, P. Schaller, and B. Schmidt, “Formal reasoning
about physical properties of security protocols,” ACM Transactions on
Information and System Security (TISSEC), vol. 14, no. 2, p. 16, 2011.

[10] M. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. Talcott,
“Towards timed models for cyber-physical security protocols,” in Joint
Workshop on Foundations of Computer Security and Formal and Com-
putational Cryptography, 2014.

[11] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua, “Distance-
bounding protocols: Verification without time and location,” in 2018
IEEE Symposium on Security and Privacy (S&P), vol. 00, pp.
152–169. [Online]. Available: doi.ieeecomputersociety.org/10.1109/SP.
2018.00001

[12] H. Comon-Lundh and V. Cortier, “Security properties: two agents are
sufficient,” Programming Languages and Systems, pp. 99–113, 2003.

[13] A. Debant, S. Delaune, and C. Wiedling,
“http://people.irisa.fr/alexandre.debant/proving-physical-proximity-
using-symbolic-methods.html.”

[14] ——, “Proving physical proximity using symbolic models,” Univ
Rennes, CNRS, IRISA, France, Research Report, Feb. 2018. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01708336

[15] G. Avoine, M. A. Bingöl, S. Kardaş, C. Lauradoux, and B. Martin, “A
framework for analyzing RFID distance bounding protocols,” Journal of
Computer Security, vol. 19, no. 2, pp. 289–317, 2011.

[16] G. Avoine, M. Bingol, I. Boureanu, S. Capkun, G. Hancke, S. Kardas,
C. Kim, C. Lauradoux, B. Martin, J. Munilla et al., “Security of distance-
bounding: A survey,” ACM Computing Surveys, 2017.

[17] I. Boureanu, A. Mitrokotsa, and S. Vaudenay, “Practical and provably
secure distance-bounding,” Journal of Computer Security, vol. 23, no. 2,
pp. 229–257, 2015.

[18] V. Nigam, C. Talcott, and A. A. Urquiza, “Towards the automated
verification of cyber-physical security protocols: Bounding the number
of timed intruders,” in Proc. 21st European Symposium on Research in
Computer Security (ESORICS’16). Springer, 2016, pp. 450–470.

[19] M. Abadi and C. Fournet, “Mobile values, new names, and secure com-
munication,” in Proc. 28th Symposium on Principles of Programming
Languages (POPL’01). ACM Press, 2001, pp. 104–115.

[20] V. Cortier, J. Degrieck, and S. Delaune, “Analysing routing protocols:
four nodes topologies are sufficient,” in International Conference on
Principles of Security and Trust. Springer, 2012, pp. 30–50.

[21] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and proverif,” Foundations and Trends in Privacy
and Security, vol. 1, no. 1-2, pp. 1–135, 2016. [Online]. Available:
https://doi.org/10.1561/3300000004

[22] D. Dolev and A. C. Yao, “On the security of public key protocols,” in
Proc. 22nd Symposium on Foundations of Computer Science (FCS’81).
IEEE Computer Society Press, 1981, pp. 350–357.

[23] C. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and P. Syver-
son, “Distance bounding protocols: Authentication logic analysis and
collusion attacks,” in Secure localization and time synchronization for
wireless sensor and ad hoc networks. Springer, 2007, pp. 279–298.

[24] G. Avoine, X. Bultel, S. Gambs, D. Gerault, P. Lafourcade, C. Onete, and
J.-M. Robert, “A terrorist-fraud resistant and extractor-free anonymous
distance-bounding protocol,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ACM, 2017,
pp. 800–814.

[25] S. Čapkun, L. Buttyán, and J.-P. Hubaux, “Sector: secure tracking of
node encounters in multi-hop wireless networks,” in Proc. 1st ACM
workshop on Security of ad hoc and sensor networks. ACM, 2003, pp.
21–32.

[26] J. Munilla and A. Peinado, “Distance bounding protocols for rfid
enhanced by using void-challenges and analysis in noisy channels,”
Wireless communications and mobile computing, vol. 8, no. 9, pp. 1227–
1232, 2008.

[27] K. B. Rasmussen and S. Capkun, “Realization of rf distance bounding.”
in USENIX Security Symposium, 2010, pp. 389–402.

[28] G. P. Hancke and M. G. Kuhn, “An RFID distance bounding protocol,” in
Proc. 1st International Conference on Security and Privacy for Emerging
Areas in Communications Networks (SECURECOMM’05). IEEE, 2005,
pp. 67–73.

[29] V. Cheval and V. Cortier, “Timing attacks in security protocols: symbolic
framework and proof techniques,” in Proc. 4th Conference on Principles
of Security and Trust (POST’15), ser. LNCS, vol. 9036. Springer, Apr.
2015, pp. 280–299.

10

APPENDIX A
SKETCHES OF PROOF OF OUR MAIN RESULTS

Theorem 1. Let I0 be a template, Pprox be a protocol I0-
executable, and V0(z0, z1) be a parametrised role containing
the special event end(z0, z1). We have that Pprox admits a
mafia fraud attack w.r.t. t0-proximity, if and only if, there is
an attack against t0-proximity in the topology T t0MF.

Proof. (Sketch) We consider an attack trace in T =
(A0,M0,Loc0, v0, p0) ∈ CMF.

K0 −→∗T (bend(v0, p0)c tvv0] P; Φ; t) with DistT (v0, p0) ≥ t0.
We proceed in three main steps:

1) We reduce the number of active agents (those that are
actually executing a process) - we do this for honest
and malicious agents. We transform honest agent (but
v0 and p0) into malicious ones. This intuitively gives
more power to the attacker, and malicious agents in the
neighborhood of v0 are allowed in a mafia fraud scenario.
Then, relying on our executability condition, we discard
processes executed by malicious agents. These actions
can actually be mimicked by an attacker located at the
same place.

2) We reduce the number of attackers by placing them
ideally (one close to each honest agent). Since we have
removed all honest agents but two, we obtain a topology
with only two dishonest agents.

3) To conclude, we reduce the knowledge showing that we
can project all the dishonest agents that are located in p0
on a2 and all the dishonest agents that are located in v0
on a1.

Theorem 2. Let I0 be a template, Pprox be a protocol, t0 ∈
R+, and V0(z0, z1) be a parametrised role obtained using the
following grammar:

P,Q := end(z0, z1)
| new n.P
| let x = v in P
| in(x).P
| out(u).P
| reset.out(u′).in<t(x).P

where x ∈ X , n ∈ N , u, u′ ∈ T (Σ+
c ,X ∪ N ∪ {z0, z1}),

v ∈ T (Σ+,X ∪N ∪ {z0, z1}) and t ≤ 2× t0.
If Pprox admits a distance hijacking attack w.r.t. t0-proximity,
then Pprox admits an attack against t0-proximity in the topol-
ogy T t0DH.

In order to establish this result, we will first transform
the initial attack trace into an “attack” trace in an untimed
model. This model (with no timing constraints to fullfill) is
more suitable to reorder some actions in the trace. We will
show in a second step how to come back in the original
timed model. We consider the untimed configuration asso-
ciated to a configuration K = (P; Φ; t). Formally, we have
untimed(K) = (P ′; Φ′) with:

P ′ = {bP ca | bP c
t
a ∈ P}, and

Φ′ = {w a−→ u|w a,t−−→ u ∈ Φ}.

Then, we consider a relaxed semantics over untimed con-
figurations: K

a,α
T K

′ if there exist K0 and K ′0 such that
K0

a,α−−→T K ′0 (for some rule other than the TIM rule), and
for which K = untimed(K0) (resp. K ′ = untimed(K ′0)).

Under the same hypotheses as those stated in Theorem 2,
we establish a result that allows one to “clean” an attack trace
by pushing instructions (before or after) outside the rapid
phase delimited by a reset and its following guarded input
in. In the resulting trace, the only remaining actions in the
rapid phase are those performed by agents who are close to v0.

Proposition 2. Let K0 be a valid initial configuration for
Pprox and V0 w.r.t. a topology T = (A0,M0,Loc, v0, p0) and

I0. If K0
tr−→T K1 then there exists an execution K ′0

tr′
K ′1

such that K ′i = untimed(Ki) for i ∈ {0, 1}.
Moreover, for any sub-execution of K ′0

tr′
K ′1 of the form

(breset.P c v0] P; Φreset)
v0,τ

(bP c v0] P; Φreset)
tr′0

K−in
v0,in

<t(u)
K ′in

where tr′0 only contains actions (a, α) with α ∈
{τ, out(u), in(u)}, we have that:
• 2× DistT (v0, a) < t for any (a, α) ∈ tr′0;
• for any (a, in?(v)) occurring in tr′0.(v0, in

<t(u)), the
agent b responsible of the output and the recipe R (as
defined in Figure 2) are such that either 2DistT (v0, b) <
t, or vars(R) ⊆ dom(Φreset).

Relying on Proposition 2, we are then able to prove Theo-
rem 2.

1) We start by removing reset instructions and by trans-
forming any guarded input in (but those in V0) into
simple inputs. The resulting trace is still an attack trace
w.r.t. Pprox.

2) Then, we apply Proposition 2 in order to obtain an attack
trace in the relaxed semantics. We will exploit the extra
conditions given by Proposition 2 in order to lift the trace
in the timed model at step 4.

3) We now consider another topology T ′ with two locations
(as T t0DH) and such that agents close to v0 are now located
with v0, and those that are far away from v0 in T are
now located with p0. This execution is still a valid trace
in T ′ since we consider the relaxed semantics.

4) Then, to lift this execution trace into our timed model,
the basic idea is to wait enough time before a reset

instruction to allow messages to be received by all the
participants before starting the rapid phase.

5) To conclude, as in the previous attack scenarios, we
reduce the initial knowledge and the number of agents
by applying a renaming on agent names.

11

APPENDIX B
BRIEF DESCRIPTION OF OUR CASE STUDIES

V(k) P(k)

new
nV

new
nP

nV

F (nV , nP , P)

P, nP , nV
Mack(P, nP , nV)

Meadows et al.

V(k) P(k)

new
nV

new
nP

nP

nV

new b

h(b, nP , nV , k)

Hancke and Kuhn

V(k) P(k)

new
nV

new
nP

nV

nP

new
b

b Z0 = h0(nP , k)
Z1 = Z0 ⊕ k

f(b, Z0, Z1)

h1(c, nV , nP , k), b

Swiss-Knife

V(k) P(k)

new
nV

new
nP

nP

nV

D = h0(nV , nP , k) w = h1(nV , nP , k)
new
b

S = h2(b,D)

f(S,w)

h3(w, k),

Munilla et al.

V(k) P(k)

new
s, s′

commit(s, s′)

new
b

b

b⊕ s

s′,Mack(b, s)

MAD (One-Way)

V(pkP) P(skP)

new
s, s′

commit(s, s′)

new
b

b
f(b, s)

SignskP (V, nV , s)

CRCS

V(k−1, pkP) P(k, skP)

new
na, nb
s = SignskP (na, nb)

new
m

{na, nb, s}k

m

new b b

f(b,m, na, nb)

TREAD

12

