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Abstract. A major challenge in multi-modelling and co-simulation of cyber-
physical systems (CPSs) using distributed control, such as swarms of autonomous
Unmanned Aerial Vehicles (UAVs), is the need to model distributed controller-
hardware pairs where communication between controllers using complex types
is required. Co-simulation standards such as the Functional Mock-up Interface
(FMI) only supports simple scalar types. This makes the protocol easy to adopt for
new tools, but is limiting where a richer form of data exchange is required, such
as distributed controllers. This paper applies previous work on adding an explicit
network VDM model, called an ether, to a multi-model by deploying it to a more
complex multi-model, specifically swarm of UAVs.
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1 Introduction

The design of cyber-physical systems (CPSs) requires engineers from across disciplines
to collaborate in order build the collections of physical, control and network systems
from which they are built. Swarms of Unmanned Aerial Vehicles (UAVs) represent
CPSs; they require their hardware, software and elements to be closely integrated if
they are to function properly. While model-based engineering approaches for CPSs are
desirable, the distinct modelling formalisms used by different disciplines is a barrier to
collaborative design. A promising approach to overcome this is multi-modelling, where
individual models of the components, retained in their appropriate tools and formalisms,
are combined into system-level models that can be analysed through co-simulation.

Multi-modelling of distributed CPSs such as UAV swarms presents a challenge to
current approaches. Such swarms form sets of controller-hardware pairs within the multi-
model, which must also communicate between pairs in order to model distributed control
(c.f. Figure 2a). Co-simulation standards such as the Functional Mock-up Interface
(FMI)3 support simple scalar types and strings, and not the rich set of data abstractions
familiar to engineers modelling software components in formalisms such as Vienna
Development Method (VDM) [11]. Also as the number of units in the swarm increases,
direct connection between all controller models becomes unwieldy.

3 http://fmi-standard.org/



In previous work [5], introduction of an explicit network model to a multi-model
was demonstrated and applied to a building case study. This approach overcomes both
the limited number of types available and the increasing number of connections required
as swarms increase inside. In this paper we present the multi-modelling of a swarm
of UAVs using the INTO-CPS technologies4. The multi-model comprises the simple
network model and a scalable set of controller-hardware model pairs, modelled in VDM
and 20-sim, respectively (see Section 2). We demonstrate the potential of this approach
and consider weaknesses and future directions based on experiences.

The remainder of the paper is structured as follows. Section 2 describes the modelling
technologies used in the paper. Section 3 introduces the case study, namely a swarm of
UAVs. Section 4 describes the modelling of the case study, focusing on the controller
and network model. Section 5 shows results of co-simulation of the multi-model. Finally,
Section 6 draws conclusions and presents future work.

2 Background

In this section we briefly describe the modelling tools used for the multi-modelling
covered in Section 4: the INTO-CPS technologies, VDM-RT and 20-sim.

2.1 INTO-CPS Technologies

The INTO-CPS technology allows the user to build and analyse multi-models comprising
multiple constituent models [9], using both discrete-event (DE) and continuous-time (CT)
formalisms. INTO-CPS adopts the Functional Mock-up Interface (FMI) standard, where
constituent models are packaged as Functional Mockup Units (FMUs). Over 30 different
tools can produce FMUs, with partial or upcoming support bringing the total to over 1005.
INTO-CPS provides a co-simulation engine, Maestro, which acts as a co-simulation
master algorithm, offering both fixed step size and variable step size co-simulation.
The INTO-CPS technologies are supported by the INTO-CPS Association, a group of
organisations working on the technologies, based around a community of industrial users.
As their organisations are part of the Association, INTO-CPS has guaranteed support for
FMUs produced by Overture and 20-sim, described below.

2.2 VDM-RT

The Vienna Development Method (VDM) [11] is a well-established formal method for
systematic analysis of system specifications. VDM++ is an object-oriented extension
of the original VDM Specification Language (VDM-SL) used for the development of
computer-based systems and software. VDM-RT is an extension of VDM++, intended
for the specification of real-time embedded and distributed systems [16]; it includes
features required for description of real-time controllers, in particular native support for
a computational time model and distribution of functionality between compute units,
interconnected by a communications network.

4 http://into-cps.org/
5 http://fmi-standard.org/tools/



2.3 20-sim

20-sim6 represents continuous-time (CT) models using graphs of connected blocks or
icons [8]. Blocks and icons contain differential equations or code that represent physical
phenomena, while the connections denote channels over which the phenomena interact.
These channels may be one-way (signals) or two-way (bonds). The bi-directional bonds
carry the domain-independent values of effort and flow— these map to familiar physical
concepts, e.g. voltage and current. Bonds offer a powerful, compositional and domain-
independent way to model physical phenomena. These CT models are solved numerically
to yield high-fidelity simulations of physical components.

3 Case Study

Swarms of relatively inexpensive UAVs have the potential to save time and money and
even lives across a variety of applications, including border patrol [12], monitoring
of nuclear power plants, monitoring of forest fires [4] and search missions for finding
missing persons [2]. Using automated guidance and autonomous decision making,
UAVs have the potential to operate for extended periods of time without significant
human supervision [6]. Consequently, they can be used for wilderness search and rescue
operations that may require hundreds of hours of search at low altitude, and using flight
profiles close to objects where piloted systems cannot be flown [1, 14]. Even with only
simple algorithms for generating search paths, a team of UAVs is more efficient than a
single UAV [15], therefore the development of robust, cooperative UAV systems will
lead to improved outcomes in operations such as search and rescue.

(a) (b)

Fig. 1. Quadcopter airframe and camera view

6 http://www.20sim.com/

http://www.20sim.com/


In this paper we consider a case study of a UAV swarm searching a geographical
location. The INTO-CPS technology was applied in the design of a UAV swarm for
searching and surveillance. Specifically, the swarm was tasked with collaboratively and
autonomously searching for human bodies within a specified area. Each UAV in the
swarm is a quadcopter, as shown in Figure 1a, a compact drone with four fixed-pitch
propeller blades and requiring a low-level loop controller for aerial stability. Searching
is carried by two downward-facing cameras (not modelled), covering the visual and
infrared spectrum [14]. This gives a rectangular footprint (the minimum of the two
cameras) as shown in Figure 1b. To search an individual area, a UAV must visit a number
of locations to guarantee visual coverage of its assigned area. As a swarm, the UAVs
must divide up larger search areas to be searched by individual UAVs.

4 Multi-Modelling of the UAV Swarm

4.1 Multi-model Composition

The UAV swarm is realised as a set of FMUs connected together as a multi-model. The
logical connections between the DE, CT and network models are shown in Figure 2a.
Each UAV is represented by a DE-CT model pair, representing the controller and
hardware respectively. The DE model passes control outputs (for the motors) to the CT
model, which in turn passes back positional information, i.e. x-, y- and z-coordinates.
Each DE model is also connected to the network model, so that the controllers can pass
messages for coordination. Figure 2b shows how these logical connections are actually
realised in the FMI protocol, via the co-simulation engine (Maestro).

4.2 CT Model

The CT model for a single UAV is shown in Figure 3. Each block is an element of the
physical system (motors, rotors, frame, battery). The arrows in the top left are inputs to
the model (throttle, pitch, yaw, and roll) which allows the DE model to move the UAV.
The arrows on the lower half are outputs (sensor readings of position and orientation).
Together these form the interface of the FMU. The physics and battery model allows the
controller to be tuned accurately for minimal-energy path planning and return-to-base
recharging. This model is derived from the high-fidelity model presented in [10], but
incorporates loop-level control. This presents a higher-level interface to the controller
and speeds up simulations as fewer synchronisation steps are needed per co-simulation.

4.3 DE Model

The DE model provides the supervisory control of the UAVs, specifically movement
and distributed coordination for searching. The modes of the controller are shown in
Figure 4. Each UAV searches a specific area using waypoints and visiting these in turn.
The waypoints cover the entire assigned search area, including along straight line paths
(see Section 5, as the UAV must pause briefly to take a clear image at each waypoint.
The controller also monitors its battery usage and returns to base to recharge, resuming



(a) Logical connections between constituent models in the multi-model

(b) Connections between FMUs and the co-simulation engine

Fig. 2. Diagrams showing logical and actual multi-model compositions

Fig. 3. Physical model of a quadcopter in 20-sim



its visiting of the waypoints until its search is complete. The costliest maneuver for a
quadcopter is a U-turn [13], which the path planner takes into account by minimising
U-turns when dividing and generating the assigned waypoints in the search space.

Fig. 4. Modes of the controller model

The UAV has four modes: INITIALIZATION, RETURN_TO_BASE, TAKE_OFF,
and FLY. The first mode that the UAV enters is the INITIALIZATION mode, which
the UAV will enter only once to generate waypoints for a specific area, and plan its
trajectory, as well as to store its initial coordinates. Since the UAV starts from a base,
it is essential to store those coordinates to return when it has finished its task, or when
there is a need for recharging.

When the UAV has generated waypoints and trajectory and has sufficient energy, it
enters the TAKE_OFF mode to carry out the mission. As we model a quadcopter able to
take-off and land vertically, the TAKE_OFF mode is used to launch the UAV vertically.
When the UAV reaches a desired altitude that is considered safe to start its mission, it
enters the FLY mode to visit the waypoints. These can be seen in Section 5.

In FLY mode, the UAV continually determines its target position, which is the next
waypoint that exists in the sequence. It is also responsible for updating the sequence with
the remaining waypoints, erasing the visited waypoints. A waypoint is considered visited
only if the UAV has reached approximately the position of that waypoint (in order to
take an accurate photo and ensure coverage). In this model, a waypoint was considered
visited if the UAV inclines less than 0.3 distance units (metres) per each coordinate.

The RETURN_TO_BASE mode forces the UAV to return to its base. The UAV
enters that mode for two reasons. Firstly, the UAV enters that mode when it finishes
its mission in order to return back to its base. Secondly, it enters that mode if there
is insufficient energy to carry on the mission. Note the UAV does not attempt to visit
extra waypoints on the way back to recharge, but this could be implemented as an



efficiency saving. In each iteration, the UAV calculates its average consumption based
on the distance travelled and the battery consumption. Afterwards, it checks whether
the distance from its base is greater than the distance that can be travelled, taking into
account the remaining energy. A safety buffer is included, so that a UAV will return to
base before its energy is exhausted, ensuring there is sufficient energy to return to base.

The actual flight controller model for each UAV is split across both the DE and CT
models. The DE model for each UAV is responsible for determining the difference be-
tween the current position of the UAV and its next waypoint. This difference, along with
the current velocity in the X,Y, and Z axes, become the input for three PID controllers,
one each for the UAVs X axis and Y axis, that output pitch and roll angles for the drone
to adopt and a third for the Z axis that outputs a throttle setting to maintain the target
altitude. These pitch, roll and throttle values are sent from the DE controller to the CT
model of the UAV (Figure 2a), this is consistent with an ‘attitude mode’ of flight control
that is found on many multi-rotor UAVs. The CT model receives the pitch and roll and
uses a PID controller in the ‘Rotation Response’ block (Figure 3) to determine the actual
orientation of the UAV at any point in time. The orientation is combined with the throttle
value in the ‘Linear Response’ block to compute the velocity of the UAV relative to its
own axis, which is translated into a global velocity in the ‘Translation to XYZ’ block.
All sensing of the UAVs orientation, position and velocity is performed in the CT model
(taken directly from the computed values), with the X,Y,Z position and speeds sent back
to the DE controller in the ’poisitions’ message (Figure 2a).

4.4 Network Model

The network model is a single FMU that represents an abstract communications medium,
called the ether [7]. We adopt this approach because connecting each controller model
directly to every other controller is unwieldy, and FMI currently lacks native support
for such network connections. The ether is aware of all controllers connected to it, and
passes all messages received to all other UAVs. By encoding messages as strings, we
can also overcome the limited types supported by FMI connections. In this multi-model,
identifiers and message recipients are handled by the VDM model directly, because
this would form part of the software as deployed on the real UAVs, however message
handling could be added to the ether model if this was appropriate.

The network FMU used in this case study is an initial, abstract network model built
in VDM as a proof of concept for modelling communications within the limitations of
FMI. The model does not currently cover advanced features such as specific protocols,
error handling, or data rates. The network model is also unaware of the physical world
meaning that communications are not affected by distance, orientation or obstruction and
so, without explicit modelling of faults elsewhere in the multi-model, the communication
network is fully connected at all times.

4.5 Distributed Coordination with Communication

During INITIALIZATION, each UAV announces itself and a LEADER is selected, with
the others becoming WORKER UAVs. In the current model, the selection is deterministic
(the UAV with the lowest id becomes leader), however Bryans et al. [3] demonstrate a



robust, distributed election scheme that could be implemented in the final system. The
LEADER then divides the search space between the available UAVs and assigns them a
sub-area. Each UAV then searches its sub-area, managing waypoints and battery levels.

Using the ether FMU, each UAV is able to broadcast its id number, position, battery
life, a tag id, four real numbers, an acknowledgment, a map consisting of the id numbers
of the UAVs undertaking a task and the coordinates of their task, and a map consisting
of the UAVs that have finished their tasks and the coordinates of their tasks. The tag id
indicates which UAV should undertake a task; the four (real) numbers form two pairs of
coordinates indicating the sub-area that the worker UAV should cover. The worker UAV
knows when a task is intended for itself when the tag id is equal to its id number.

The acknowledgment is used from the worker UAVs to send an acknowledgment
to the LEADER that they received their task. After the completion of their task, the
workers send the LEADER another acknowledgment indicating that they finished it. If
the LEADER receives such an acknowledgment, it erases the worker UAV from the list
of the UAVs undertaking a task, and stores the UAV and its task in the map of UAVs that
have finished their tasks. The LEADER does the same when it finishes its task.

The two maps are being sent from the LEADER UAV to the other members of the
team, allowing them to know which UAVs have been assigned a task, and which UAVs
have finished their tasks and the areas covered so far. At this stage, these maps are
not used for anything, but have potential for future work to incorporate more dynamic
cooperation, such as in-flight reassignment or responses to potential results.

After INITIALIZATION and TAKE_OFF, the UAV goes into FLY mode. During
FLY mode, each UAV transmits its id number and position, allowing every member of
the swarm to determine the other UAVs that are taking part in the mission and their
position. Processing of these messages is shown in the extract in Listing 1.1. In the
message tuple, the first (natural) number is the tag id, the next three (real) numbers are
the x-, y-, and z-positions of the UAV, and the final (real) number is the battery level.

If a UAV is not heard from in a certain amount of time, its sub-area is reassigned to
the first available UAV to finish its initial sub-area. If communication with the LEADER
is lost, a new leader is selected (the UAV with the next lowest id). In this way, the swarm
is resilient to lost UAVs.

5 Results

The multi-model was successfully able to simulate a range of scenarios and demonstrate
the possibility of studying distributed communications and swarm behaviours with
multi-modelling techniques. In these results the swarm is homogeneous, with all UAVs
beginning at the same time, from the same spot, and with the same initial fuel.

A live plot of a single UAV searching an area is shown in Figure 5. Here the vertical
take-off is shown as {uav}.uav.posZ (green), with a zig-zag searching pattern
shown by {uav}.uav.posX and {uav}.uav.posY (blue and orange respectively).
At 400 seconds the UAV returns to base for recharging before completing its search.

Such visualisations give intuitive feedback to software engineers about the effects
of their design choices, however to better demonstrate the behaviour of the swarms, the
co-simulation outputs (in CSV format) were post-processed in Matlab. A plan view of



�
public uavPosition :: x : real

y : real
z : real

bat : real;
...

Step() == cycles(2)
(
-- broadcast own position
etherOut.setValue(

VDMUtil‘val2seq_of_char[nat*real*real*real*real](
mk_(id, posX.GetValue(), posY.GetValue(),

posZ.GetValue(), battery.GetValue())
)

);

-- receive messages
if len etherIn.getValue() >= 2 then (

let mk_(list,l) =
VDMUtilDebug‘seq_of_char2val[
seq of(nat*real*real*real*real)](etherIn.getValue())
in if list then (

for all z in set inds l do (
let x = l(z) in (uavPositions:= uavPositions ++
{x.#1 |-> mk_uavPosition(x.#2,x.#3,x.#4,x.#5)};

)
)

)
)

)
� �
Listing 1.1. Message processing in the UAV controller VDM model

the data shown in Figure 5 is given in Figure 6a. Here the waypoints are marked as
triangles, with the path of the UAV as a black line, including its return to base to recharge.
The UAV controller divided the space along the long axis to minimise U-turns.

Figure 6c shows a UAV swarm dividing and searching an area cooperatively. As in
Figure 6a this is a plan view of the x- and y-position of the UAVs. In this co-simulation,
there are three UAVs that can potentially join the swarm, however as the area is smaller
than in Figure 6a, negotiations result in two of the three UAVs take a divide-and-conquer
approach to perform the search cooperatively (represented by the black and green lines).
Note that they fly in a latitude-first direction to minimise U-turns. Figure 6b shows how
the camera footprint captures the searched area.

Figure 6d shows the same three-UAV swarm searching another area. A communica-
tion fault is included in the UAV controller FMU and when triggered, by a combination
of time and UAV id, it blocks that UAV from communicating with the remainder of the



Fig. 5. Live plot of the position of a single UAV during a search

(a) (b)

(c) (d)

Fig. 6. Plan view of UAV searches



swarm. The second UAV (green line) is then ‘lost’ from the swarm, as can be seen by
the line ending at around point (17,28). After a timeout, the leader decides that this UAV
is missing as no further communications were received. The leader then reassigns this
area to another UAV (specifically itself, in this scenario), which completes searching this
area after completing its own sub-area.

6 Conclusions and Future Work

In this paper we applied a multi-modelling approach to a swarm of UAVs. The multi-
model uses a simple network model [5] to allow a set of UAV controllers to communicate
using complex data types in order to model realistic communication protocols. Each
controller model is paired with a high-fidelity physics model. The results presented
demonstrate the potential of this paradigm for multi-modelling of swarms and other
CPSs with distributed control within the constraints of the FMI standard.

The network FMU used in this case study is an initial, abstract network model built in
VDM as a proof of concept for modelling communications within the limitations of FMI.
As highlighted in previous work [5], there are some drawbacks to that specific network
FMU approach. Firstly, messages require a number of co-simulation cycles to reach
recipients, so careful consideration of co-simulation synchronisation timing is required7.
Secondly, the model does not currently cover advanced features such as specific protocols,
error handling, or data rates. The openness of FMI means that network models can be
swapped, either with an improved version of the existing FMU or replacing it with a
dedicated network model such as OpNet or NS2, which in combination with an increase
in multi-model synchronisation rate to some multiple of the controller frequency, could
improve network modelling fidelity.

However, increasing the synchronisation rate of whole multi-model is undesirable
since synchronisation additional synchronisation steps above the frequency of a DE
controller have no effect on behaviour but will increase the time to complete a simulation.
The multi-model could be altered to make use of the hierarchical co-simulation feature
of Maestro to target increasing the frequency of the controller-ether synchronisations
while leaving the controller-uav physics synchronisations at their current rate.

Improvement of the network model is a key next step. One such improvement would
be the addition of fault behaviour to better support the behaviour that is demonstrated
in Figure 6d. The goal here would be to move the fault triggering from its current hard
coded state to something that may be altered more easily, such as either parameters of
the FMU or perhaps a script that could be read in at the beginning of a simulation.

Another intriguing next step forward is to observe in Figure 2a the potential for an
analogue of the network model to link together CT models on the bottom of the diagram.
This would suggest an “environmental ether” model representing physical interactions
between components. This could include, for example, physical obstacles, occlusion
of line-of-site for communications, and even collisions. Physical interactions such as
contact and collision models are particularly challenging as they require tightly-coupled
interactions.

7 The Maestro co-simulation engine supports minimum frequency constraints which could
alleviate this problem somewhat
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