Transforming an industrial case study from VDM++ to
VDM-SL

René S. Nilsson'2, Kenneth Lausdahl®, Hugo D. Macedo', and Peter G. Larsen'

! Department of Engineering, Aarhus University, 8200 Aarhus N, Denmark
2 AGCO A/S, Dronningborg Allé 2, 8930 Randers N@, Denmark
3 Mjglner Informatics A/S, Finlandsgade 10, 8200 Aarhus N, Denmark

Abstract. Normally transitions between different VDM dialects go from VDM-
SL towards VDM++ or VDM-RT. In this paper we would like to demonstrate
that it actually can make sense to move in the opposite direction. We present a
case study where a requirement change late in the project deemed the need for
distribution and concurrency aspects unnecessary. Consequently, the developed
VDM-RT model was transformed to VDM++ and later to VDM-SL. The advan-
tage of this transformation is to reduce complexity and prepare the model for a
combined commercial and research setting.

Keywords: VDM, industrial application, model transformations

1 Introduction

The Vienna Development Method (VDM) is one of the most mature formal methods [2].
The method have been extended with multiple dialects over time, including the ISO
standardised VDM Specification Language (VDM-SL) [3], VDM for object-oriented
modelling (VDM++) [4] and VDM Real Time (VDM-RT) [12]. The choice of dialect
highly depends upon the type of system or behaviour that must be modelled.

In this paper we present an industrial project involving optimization of the logis-
tics in harvest operations. Such an operation is inherently distributed, as it involves
a number of independent vehicles that need to coordinate and interact. Development
guidelines for distributed real-time systems [7] were initially followed, resulting in a
rather complex VDM-RT model [1].

A significant requirement change was introduced late in the project. Concretely, a
specific communication protocol between vehicles as well as a specific hardware plat-
form on each vehicle were imposed. Consequently the system architecture was changed
to comprise a single centralised control algorithm and thin data-acquisition applications
on each vehicle. The change of architecture diminished the need for distribution in the
model, as the core functionality now only consisted of a single control algorithm and
not a distributed control. In order to keep the model consistent with the modelled system
and to reduce model complexity, distribution was removed from the model and thereby
transformed to VDM++.

In this paper we will focus on a further transformation to VDM-SL, which was con-
ducted to reduce model complexity and prepare the model for a combined commercial
and research setting.



René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

The evolution of the project is further described in Section 2. Afterwards Sec-
tion 3 continues with concrete transformation examples and guidelines on transforming
a VDM++ model to VDM-SL. Next, Section 4 presents an overview of the structural
changes between the VDM++ and the VDM-SL models from the case study, while Sec-
tion 5 provides an evaluation on the results obtained herein. Finally, Section 6 concludes
on the findings of this work.

2 Case Study Project Evolution

The industrial case study presented in this paper originates from a research project
named Off-line and on-line logistics planning of harvesting processes, involving Aarhus
University and AGCO A/S.* Logistics optimisation in this setting includes both static
and dynamic route planning of all involved vehicles. Specifically two tools were de-
veloped, 1) an off-line simulation tool, where a harvest operation can be optimized and
simulated under the assumptions that no deviations occur, and 2) a real-time guidance
system, that provides guidance to all drivers in the different vehicles involved and con-
tinuously monitors and reacts to possible deviations.

A common workflow in a harvest starts with a combine harvester harvesting the
crop. The collected yield is unloaded into an in-field grain cart, which again unloads
to an on-road truck, which delivers the yield to a drying or storage facility. This is
illustrated in Figure 1, where parts of the optimized routes for each vehicle are shown.

TECHNOLOGIES

Fig. 1: Harvest logistics illustration.

*https://goo.gl/6tT8LK


https://goo.gl/6tT8tK

Transforming an industrial case study from VDM++ to VDM-SL

During the four year span of the research project, the underlying VDM model has
evolved and changed dialect a number of times, as depicted in Figure 2. The arrows
and numbering illustrate how the model evolved over time. The arrows 2 and 4 high-
lights that substantial modifications were made to the VDM++ and VDM-RT model
during the research project. These modifications are one of the main reason why the fi-
nal VDM-SL model is different from the initial SL model. Note that the initial SL model
was not kept up to date with the changes introduced into the VDM++ nor the VDM-RT
model. Additionally, change in personnel had the side effect that knowledge of the ini-
tial SL model was lost. The following subsections further describe the motivation and
reasoning behind each change of dialect.

2 4
Initial 1
VDM-SL Model \ 3
VDM++ model 5 VDM-RT model
6
Final < |
VDM-SL Model

Fig. 2: Model evolution over time

2.1 Initial VDM modelling

The initial requirements for the project were defined based on the domain knowledge
about the problem at hand. The system was considered a complex distributed system
with embedded devices deployed in each vehicle. Therefore the development guideline
for distributed real-time systems proposed by [7] was mostly followed. It involves a
step-wise transition starting with a VDM-SL model, which is transformed to VDM++
and finally to VDM-RT, where more details of the system is included in each transition.
The initial VDM-SL model captures the specification or the core functionality of the
system. The transition to VDM++ adds concurrency and object-orientation, and the
final transition to VDM-RT adds real time and deployment aspects.

For performance reasons, the Java bridge technology, offered by the Overture Tool,
was leveraged [9]. This allowed the VDM model to invoke external Java components,
such as existing Java graph libraries and proprietary performance optimized Java code [10,
section 3.4]. Code-generation of the VDM model to Java further improved the perfor-
mance [6], while easing the deployment process. Figure 3 shows how the VDM model
and tests were connected to external components through a Bridge and how the same
external components were integrated with the code-generated system through a corre-
sponding Delegate class.



René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

Overture/VDM

Code Generate Code Generate | External Component |
f— e 2
| |
: | System Tests | > Code Generated System < > Delegate :

System realisation

Fig. 3: Code generation and external components integration from [1].

2.2 Requirement changes

Late in the project a major requirement change was introduced. Initially the communi-
cation between vehicles had not been restricted in any way, and the hardware platforms
were not constrained either. This allowed for an easy implementation of a distributed
control algorithm. The requirement change meant that the system should work with ex-
isting hardware platforms and backend systems. All communication should now use a
Publish/Subscribe (P/S) service, and the possibility to deploy software to the vehicles
were highly constrained, as it should fit within an existing platform. As a consequence,
it was decided to implement a centralized control algorithm in the cloud, and each vehi-
cle should now only be responsible for real-time data acquisition and providing a user
interface to the driver. This change towards centralized control diminished the purpose
of including distribution in the model. Therefore, distribution was removed and replaced
with a P/S interface and thereby transforming the VDM-RT model to a VDM++ model
again.

2.3 Generalisation and commercialisation

At the end of the research project the model architecture was revised with the purpose of
preparing the model for commercialisation. Additionally, a generalisation of the system
towards other farming operations was envisioned. During the revision, focus was on the
core functionality. One conclusion was that communication should be separated from
the core model, hence removing the need for concurrency. This is enabled by the use of
the Java bridge as described above.

Ideally the core optimisation and control algorithm could be achieved in a purely
functional manner, taking the current state and incoming P/S events as input, and out-
putting a new state, including route plans for all vehicles.

In order to reduce complexity and best model the system, VDM-SL was chosen as
the most appropriate dialect. From a research standpoint, the use of VDM-SL and a
functional style should also allow new students to easily work on delimited parts of the



Transforming an industrial case study from VDM++ to VDM-SL

model. Additionally it should enable formal proofs of certain model properties, which is
not easily done in a VDM++ model. This led to the final transformation from VDM++
to VDM-SL, which is further described in the following sections.

3 Transformation guidelines

Transformation of a VDM-RT model to VDM++ is relatively simple since both dialects
are object-oriented and we had limited use of VDM-RT specific constructs. However,
transformation from VDM++ to VDM-SL is not straight forward, because the two lan-
guages does not share the same feature set, nor semantics [8]. Some of the main trans-
formation challenges include concurrency, objects, hierarchy, operation overloading,
and visibility.

In an attempt to create a systematic approach to transforming VDM++ models to
VDM-SL a number of guidelines and concrete transformation rules are defined as de-
scribed below.

3.1 Guideline 1: Concurrency

The VDM-SL dialect is a single threaded model and thus does not have any support
for multiple threads nor coordination thereof. Therefore models cannot in general be
converted into the VDM-SL dialect unless the nature of the problem is such that the
multi-threaded behaviour can be moved out into an external Java component. This is in
particular the case if the multi-threaded behaviour is present in order to facilitate com-
munication where the data stream instead can be converted into a sequence of events,
which can be consumed by the VDM-SL model sequentially.

3.2 Guideline 2: Visibility

In VDM++ the visibility of operations is declared using the access modifiers public,
private, protected and static. In VDM-SL all definitions are static and the
visibility is declared using the export and import constructs. Hence, if an operation
should be visible in another module, the declaring module should export the operation
including any internal referenced types, and the other module should import it.

State in VDM-SL is only visible within the module it is declared in. If the visibility
needs to be extended, getters and setters can be implemented, which follows best OO
practices.

3.3 Guideline 3: Operation overloading

Operation overloading is not supported in VDM-SL. All operations must be unique
based on their name and any calls that relied on the overload behaviour must be guarded
by an if statement to determine which operation to call.

3.4 Guideline 4: Objects and state

All object instances must be transformed into state components. This is described in
the following transformation rule, and the accompanying example in Figure 3.



René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

class A class B
types instance variables
Data seq of char; objA A;
data real;
instance variables
data Data; operations
opY 0 => 0
operations opY () == (
opX : () ==> () objA.opX () ;
opX () == data := "ok"; ) ;
\S S
(a) VDM++ classes
module A module B
types types
ID = token; ID = token;
S = seq of char; S
InstanceMap = map ID to S; objA [AYID]
data real;
state AST of InstanceMap = map ID to S;

a_m InstanceMap
init s == s = mk_AST({|->})
end
operations
opX ID ==> ()
opX (id) == a_m(id) := "ok";

(r .

S

state BST of

b_m InstanceMap

init s mk_BST ({|->1})
end

== s =

operations
opY ID ==>
opY (id) == (

AtopX(b_m(id) .objA);
)i

0

(b) VDM-SL modules

Fig. 4: Transformation example: VDM++ classes translated to VDM-SL using guideline

4: Objects and state.




Transforming an industrial case study from VDM++ to VDM-SL

Transformation rule 1: Object instances map to state A class is transformed into a
module that exports all functions and operations according to guideline 2. The class
instance variables are translated into a module state. This is done by first defining
a type that encapsulates all class instance variables e.g. S, where all objects are repre-
sented with an object id rather than an object reference. Secondly, a type ID for the
object instances of the class itself is defined. The module state shall then comprise a
mapping from instance id to state: map ID to S, where S could be a record. Finally,
define an operation newId : () ==> ID, which creates a unique id and a new in-
stance record of type S and add it to the instance map, while returning the id. In this
way, duplication of IDs is avoided.

Once the transformation is completed, all modules now reference state "objects" by
an ID, rather than having a direct object reference, which is the case in an OO setting.
Rather than invoking operations directly on the object, modules now need to invoke
operations on the "objects" module, passing the ID along.

3.5 Guideline 5: Inheritance

Inheritance in a VDM++ setting includes a number of features, such as inheriting in-
stance variables and operations, overriding operations, and extending a class with new
instance variables and operations. All of which are features that are not directly sup-
ported in VDM-SL. Possibly, a complex transformation might be able to support all
inheritance features, but the resulting VDM-SL model will be very complex and not
easily understood or maintained. Our general guideline is therefore to avoid constructs
that mimic inheritance in VDM-SL if possible. However, if only a few features are used
for a specific purpose, simpler transformations can be used, with reasonable results.
Specifically, we present two transformations related to inheritance, which have been
used in the case study.

Strategy design pattern: A strategy design pattern consist of two types of classes, a
strategy interface class and concrete strategy classes [5]. In an OO setting, a strategy
pattern will be used, by having an object reference defined by the interface class and
invoking operations on the object. The strategy can be changed easily, by replacing the
object reference with another object reference that implements the same interface. In
VDM-++ the strategy interface class would be implemented as a base class, and the
concrete strategies would be subclasses hereof. This is not possible in VDM-SL, but
a strategy design pattern can be transformed to VDM-SL using union types and cases
expressions, as described in Transformation rule 2 and the accompanying example in
Figure 5.

Transformation rule 2: Strategy patterns map to a union type and cases expressions
Each concrete strategy class is transformed to VDM-SL, following all necessary pre-
viously defined guidelines. The strategy interface class must define a union type Type
with a type for each concrete strategy module. A parameter of type Type must be added
to each operation defined in the interface class. Additionally, a cases expression on
the type parameter must be added, with an entry for each concrete strategy type, which
delegates the call to the concrete strategy module.



René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

(class X class A is subclass of X
operations operations
opX : nat ==> nat opX : nat ==> nat
opX (x) == opX (x) == return x + 1;
is subclass responsibility; Ce
end X end A
\S Y,
(a) VDM++ classes
module X module A
types operations
Type = <A> | <B>; opX : nat ==> nat
opX (x) == return x + 1;
operations end A
opX : Type x nat ==> nat
opX (t, x) ==
cases t:
<A> -> return A‘opX(x), module B
<B> —-> return B‘opX(x),
S operations
others -> exit "Unknown Type"||opX : nat ==> nat
end; opX (x) == return x * 2;
end X end B
S S J

(b) VDM-SL modules

Fig. 5: Transformation example: VDM-++ classes translated to VDM-SL using guideline

5: Inheritance and strategy pattern.




Transforming an industrial case study from VDM++ to VDM-SL

Basic inheritance: Transformation rule 3 along with the example in Figure 6 describes
how some of the basic inheritance features can be transformed in a simple manner, if
type information is available whenever operations are invoked on the instances. In an
OO setting this information is known through the object reference, but in VDM-SL it
must be handled explicitly. Embedding this information in the inheritance modules in
VDM-SL greatly complicates the model, which is not desirable. Therefore, we suggest
this reduced transformation, which can be used to extend a module with a relatively
small effort. Specifically, this reduced transformation will mimic the following inheri-
tance features: Extending a class with more instance variable and operations, operation
overriding, and allow calls to a super class.

Transformation rule 3: Basic inheritance used for extendibility/reusability In each
module define a type S that encapsulates all the instance variables of that class and
its superclass. Additionally, in the base module, add a union type S_UNION that holds
the S type from all the modules and add an instance map from a type ID to S_UNION,
similar to Guideline 4. Note that all "object instances" of all the subclasses will be kept
as state in the base module. Next, add getters and setters for state in the base module,
such that all sub-modules can access the necessary state. Finally, add a newId opera-
tion as described in Guideline 4.

4 Structural changes to the VDM models

4.1 Existing VDM++ model

The VDM-++ model supports both off-line simulation and real-time guidance of harvest
operations, but the model presented here is simplified to ease the understanding and
only includes the core functionality. As VDM++ is an OO language, the model contains
common OO constructs, such as design patterns including the strategy and the template
pattern [5]. This also means that many of the individual instances of classes have state
information about themselves so references to these are frequently passed around. Fig-
ure 7 shows a simplified class diagram of the model, where Harv1i is the top-level class
of the control algorithm. The strategy pattern is used both for UnloadStrategy and
TrackSegStrategy, whereas the template pattern is used for the Resource class
and its subclasses.

The core of the model is single-threaded, but the integration with the P/S framework
introduces more threads and asynchronous callbacks. In the presence of concurrency
this means that permission predicates on certain instance variables and operations are
included in the model, and it seems that this can have a negative impact on the per-
formance, since every time an operation is called the permission predicates must be
analysed.

4.2 VDM-SL model

Given the transformations defined in Section 3, the VDM++ model was transformed to
VDM-SL. In addition, the VDM-SL model was made more general in the sense that



René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

class A class B is subclass of A
instance variables instance variables

X : nat; y : real;

operations operations

opX : () ==> nat opY : () ==> real

opX () == return x + 1; opY () == return y + 1.5;
end A end B
- X J

(a) VDM++ classes

module A module B

types types

ID = token; S :: X : nat

S :: x : nat; y : real;

S_UNION = S | B'S;

InstanceMap = map ID to S_UNION//| operations

state AST of
a_m : InstanceMap

init s == s = mk_AST({|->})
end
operations
opX : ID ==> nat
opX (id) ==

return a_m(id) .x + 1;

getState : ID ==> S_UNION
getState (id) ==
return a_m(id);
end A
S

opY : A‘ID ==> real
opY (id) ==

return A‘getState(id).y + 1.5;
end B

(b) VDM-SL modules

Fig. 6: Transformation example: VDM-++ classes translated to VDM-SL using guideline

5: Basic inheritance.




Transforming an industrial case study from VDM++ to VDM-SL

\Lo. n \Lz. n \‘/1 \‘/1 1 1
‘ UnloadCoordinator 24> Resource ‘ ‘ L ateg’ ‘ ‘Tr alegy‘
T \t Q/
Storage SinglePoint
Vehicle 9 ‘ Graph ‘ ‘bndgeiFle\dGraph‘
N Headland ‘ A
| 1
|
e S
arvester
«ExternalComponents

Edge Vertex FieldGraph

Fig. 7: Simplified class diagram of VDM++ model.

the VDM-++ model was only able to cope with one plan, whereas the VDM-SL model
has been prepared to be able co cope with multiple plans. A simplified overview of the
most important modules in the VDM-SL model can be found at Figure 8. Note how the
level of plans simply is added as a layer above the other modules. The GrainHarvest
module is similar to the Harvi class from the VDM++ model. The four modules below
that, all include state information organised as mappings from identifiers to data about
them. In this way the state information is centered at specific places and the MQTT
module represent all the P/S communication with the centralised cloud service. This is
realised in Java using the bridge technology explained in Section 2. This has its own
thread of control but since this is outside the actual VDM model the model complexity
is significantly reduced.

UnloadStrategy

TrackSegStrategy

GrainHarvest

| Field | | Vehicle | | Storage | | Log |

Fig. 8: Simplified overview of the VDM-SL modules.

5 Evaluation

Although most of the listings presented above indicate that the VDM-SL version is
larger than the corresponsing VDM++ model, the transformation from VDM-RT to
VDM-SL resulted in a new smaller model as shown in Table 1. However, the trans-
formation process led to the discovery of cases where the responsibilities of modules
were mixed. This discovery was made because of the explicit imports added in the pro-
cess. The many dependencies between the modules is likely an artefact of the initial



René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

distributed system where each vehicle had more control over its own behaviour oppose
to the current approach where a more “functional” approach is taken. The new model
aims to provide an operation which can perform all required computation to consume
events received from the vehicles and in turn produce new or updated routes. All com-
munication have been removed from inside the planning operation and converted into
a sequence of events that is then consumed as part of the plan generation. The ideal
function would have looked like illustrated in Listing 1.1, but due to the caching of the
large graphs, used to represent the field, it had to be modelled as an operation and thus
keeping state in many modules.

VDM++ | VDM-SL
Lines Of Model | 3701 3041
Table 1: Lines of model in VDM++ and VDM-SL implementations, excluding libraries
and tests.

planRoutes : FieldPartition =
seq of Route =
FieldProgress
seq of Event -> seq of Route

Listing 1.1: Ideal route planning function.

The model transformation was carried out manually partly using the transformation
principles from Section 3 that in itself can be quite error prone due to human factors. To
make this even worse the testing framework VDM Unit only provided support for OO
based models and thus could not be used for the new SL model. To overcome this issue
and provide some validation against the source model a new extension to VDM Unit was
developed to mimic the unit test behaviour for SL. models as described in [11]. The test
validation did provide the required basis for comparison with the source model but also
showed a limitation of a VDM module based approach where all modules have mutable
state. The primary issue is that all operations are directly imported and since VDM does
not have operation values there is no way to provide true module based testing of each
module in isolation using stubs that respect the pre-, post-conditions of the imported
operations.

To assess if the newly created VDM-SL model performs similarly to the VDM-RT
model the execution time of the full test suite for both models are compared in Table 3
and for one of the test scenarios in Table 2°. It shows that some of the improvements
done during the transformations likely had a positive impact on the performance. Dur-
ing the transformation multiple places in the model were identified that constructed

5 All experiments were performed on a server hosting a 64 bit VM configured with 6 x Intel
Core Processor @ 2.0 GHz and 15 GB RAM.



Transforming an industrial case study from VDM++ to VDM-SL

route sequences in a way that grew exponentially in time in relation to the route length.
One example was looping over a route to check relevant sequence elements, by using
hd and t1 expressions, rather than an index. By using the t1 expression, the route
was internally cloned for every loop iteration, causing poor performance both in the
interpreter and in the generated code.

The comparison in Table 2 clearly shows that the original model had scalability
issues.® As a result it was not possible to determine the full execution time of the full
test suite for the interpreted model as shown in Table 3, where the experiment was
turned off after 7 days execution running at 100% CPU load.

VDM++ | VDM-SL | Difference
Interpreted 2246.65s | 358.16s -84%
Code generated | 40.36 s 19.46 s -52%
Table 2: Performance comparison between VDM++ and VDM-SL implementations for
one big scenario test.

VDM++ | VDM-SL | Difference
Interpreted >7days | 150 min | >-98%
Code generated | 91 min 7 min -92%
Table 3: Performance comparison between VDM++ and VDM-SL implementations for
all tests.

It should be noted that the generated code does not perform any pre-, post-condition,
or invariant checks. This is one of the primary reasons to why the test framework was
upgraded to support VDM-SL. The usage of the VDM Unit for the OO model have re-
vealed especially pre-condition errors that were not revealed by the tests at the generated
code level.

6 Concluding remarks

In the new VDM-SL model the main focus is on the calculation of routes for the differ-
ent vehicles. Compared to the VDM++ model there is also a cleaner separation between
the planning aspects and the event-based communication carried out via the Publish/-
Subscribe server connection to the cloud. Actually it was a positive surprise for us that
transforming the model from an imperative style to a more functional style had the
side effect of increasing the performance. However, it also turned out that the transition

% The difference is calculated as: Difference = “T_b x 100%, where a = VDM-SL performance
and b = VDM++ performance



René S. Nilsson, Kenneth Lausdahl, Hugo D. Macedo, and Peter G. Larsen

rules suggested were not sufficient to take care of all refactorings. In particular in re-
lation to inheritance there is a tendency that there is an overhead of what needs to be
written in a VDM-SL setting. Therefore, we do not see a possibility for automating the
transformation from a VDM++ model to VDM-SL.

Initial work targeting the use of this VDM-SL model in a combined commercial and
research context have started and this looks promising, but no conclusion can be drawn
from this yet. Finally, it is worth noting that it is possible to use traditional unit testing
in a VDM-SL model with the use of a newly extended VDMUnit testing framework.

Future Plans Transitions from VDM++ to VDM-SL are not something one would
embed in a methodology like the one proposed by [7], as it is not a desired transition.
Ideally one would not end up in a situation where such a transformation is necessary.
However, requirement changes are a common phenomena and might lead one into such
a situation. We see the transformation guidelines proposed in this papers as a help or
inspiration for others who might face the same needs as we did.

Theoretically it might be possible to include all features of VDM++ into similar
guidelines, but it is our belief that this would be at the expense of model complexity
and readability. Therefore we do not propose to go this way, and we do not suggest au-
tomating the transformation either, as especially the inheritance transformations might
be somewhat use case specific.

Acknowledgments We would like to thank the Danish Innovation Foundation for fund-
ing this project and to our colleagues that have worked with us in this project. We would
also like to pay special thanks to the anonymous reviewers who have helped improving
the quality of the paper.

References

1. Couto, L.D., Tran-Jgrgensen, P.W.V., Larsen, P.G.: Enabling continuous integration in a for-
mal methods setting. In: Submitted for publication (2018)

2. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008), edited by Benjamin Wah, John Wiley &
Sons, Inc.

3. Fitzgerald, J., Larsen, P.G.: Modelling Systems — Practical Tools and Techniques in Software
Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU,
UK, Second edn. (2009), ISBN 0-521-62348-0

4. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object—oriented Systems. Springer, New York (2005), http://overturetool.org/
publications/books/vdoos/

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1995)

6. Jgrgensen, P.W.V., Larsen, M., Couto, L.D.: A Code Generation Platform for VDM. In: Bat-
tle, N., Fitzgerald, J. (eds.) Proceedings of the 12th Overture Workshop. School of Comput-
ing Science, Newcastle University, UK, Technical Report CS-TR-1446 (January 2015)


http://overturetool.org/publications/books/vdoos/
http://overturetool.org/publications/books/vdoos/

10.

11.

12.

Transforming an industrial case study from VDM++ to VDM-SL

. Larsen, P.G., Fitzgerald, J., Wolff, S.: Methods for the Development of Distributed Real-

Time Embedded Systems using VDM. Intl. Journal of Software and Informatics 3(2-3) (Oc-
tober 2009)

. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wolff, S., Sahara, S., Verhoef, M., Tran-

Jgrgensen, PW.V., Oda, T.: The VDM-10 Language Manual. Tech. Rep. TR-2010-06, The
Overture Open Source Initiative (April 2010)

. Nielsen, C.B., Lausdahl, K., Larsen, P.G.: Combining VDM with Executable Code. In: Der-

rick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.)
Abstract State Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science, vol.
7316, pp. 266-279. Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.org/
10.1007/978-3-642-30885-7_19, ISBN 978-3-642-30884-0

Tran-Jgrgensen, P.W.V.: Enhancing System Realisation in Formal Model Development.
Ph.D. thesis, Aarhus University (Sep 2016)

Tran-Jgrgensen, P.W.V., Nilsson, R.S., Lausdahl, K.: Enhancing Testing of VDM-SL models.
In: Proceedings of the 16th Overture Workshop (July 2018)

Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal
Methods. pp. 147-162. Lecture Notes in Computer Science 4085, Springer-Verlag (2006)


http://dx.doi.org/10.1007/978-3-642-30885-7_19
http://dx.doi.org/10.1007/978-3-642-30885-7_19

