
ViennaVM: a Virtual Machine for VDM-SL
development

Tomohiro Oda1, Keijiro Araki2, and Peter Gorm Larsen3

1 Software Research Associates, Inc. (tomohiro@sra.co.jp)
2 National Institute of Technology, Kumamoto College (araki@kyudai.jp)

3 Aarhus University, Department of Engineering, (pgl@eng.au.dk)

Abstract. The executable subset of VDM allows code generators to automati-
cally produce program code. A lot of research have been conducted on automated
code generators. Virtual machines are common platforms of executing program
code. Those virtual machines demand rigorous implementation and in return give
portability among different operating systems and CPUs. This paper introduces a
virtual machine called ViennaVM which is formally defined in VDM-SL and still
under development. The objective of ViennaVM is to serve as a target platform
of code generators from VDM specifications.

1 Introduction

Quality of software systems is important in many cases. Model-based development with
automated code generation techniques is a promising approach to develop software sys-
tems with affordable quality and productivity. Many automated code generators from
different VDM dialects [6] have been studied and developed as strong tools to reduce
cost of the implementation phase [3,1,7,10]. Those automated code generators emit
source code for general programming languages such as C++, C, Java and Smalltalk.
However, there are still challenges with applying code generators. The first challenge
is the availability of compiler and runtime environments for various target hardware.
General programming language systems often provide rich language with build-in func-
tions and libraries. Thus, it is often costly to port the compiler and full set of libraries
to brand-new hardware platforms. The second challenge is the portability of the com-
piler and runtime environment. In some programming languages that provide low-level
programming functionality, such as C and C++, does not provide the source level com-
patibility among different platforms.

This paper proposes and introduces the development of a Virtual Machine (VM)
named ViennaVM that is designed as a common target platform for automated code
generators from VDM dialects. A VM is an abstracted computer platform targeting
efficient execution of code represented in an Intermediate Representation (IR) [9]. IR
code is typically designed specific to a particular guest programming language. For
example, the Java VM executes Java byte-code of which instruction set efficiently im-
plements the language features of Java, such as primitive operations, boxing/unboxing
and method invocations. ViennaVM will have an instruction set suitable to model-based
developments with VDM.



One significant advantage of VMs is portability. For example, the VM for Squeak
Smalltalk is auto-generated from Squeak Smalltalk itself with the exception of several
platform dependent interface to the host operating system. Having a small fraction of
hand-written code, the VM of Squeak Smalltalk was ported to various platforms includ-
ing Windows, Unix and PDAs [2].

Application
VDM spec

Rust platformC platform

C Code Generator Rust Code Generator

C source Rust source

Application
VDM spec

IR Code Generator

C Compiler Rust Compiler
IR code

ViennaVM
C source

ViennaVM
Rust source

ViennaVM for
automotive system

ViennaVM for
note PC

Conventional development
with code generators
for different languages

The proposed development
with virtual machines
as a common target platform

executable for
automotive system

executable for 
note PC

ViennaVM
VDM spec

Rust platform

IR code

ViennaVM for
automotive system

C platform

IR code

ViennaVM for
note PC

C Compiler Rust Compiler

Fig. 1. Code generator-based development and VMs as a common platform

Figure 1 shows how ViennaVM will serve as a common target platform for code
generators. Assuming that platform A provides only a C compiler and platform B of-
fers Rust as its standard programming language, two source code, one for C and another
for Rust would be generated. Each source would need modification to work with exter-
nal libraries, such as networks and user interfaces. Using a VM as a common target
platform, it is possible to implement one ViennaVM in C and another in Rust to run
the same IR code. ViennaVM’s IR code is binary compatible among versions of VMs
in different programming languages on various target platforms. Each instance of Vi-
ennaVM can also be reused in later developments of other applications on the same
device.

The rest of this paper starts of with an overview of the objective of ViennaVM
in Section 2. Afterwards an overview of the formal specification of ViennaVM using
VDM-SL is provided in Section 3. Then the preliminary implementation of a Vien-
naVM as well as initial benchmarks are provided in Section 4. This is followed by
Section 5 about the planned further development. Finally, Section 6 provides a few
concluding remarks about the possibilities for this work.



2 Objectives and Non-functional requirements of ViennaVM

The objective of ViennaVM is to provide a common target platform for software de-
velopment with VDM dialects. To achieve the objective, it is desirable that the VM is
reliable, portable, productive and adaptable to the host platform. This section explains
why these non-functional qualities are required to VMs for smart devices.

In order to make ViennaVM dependable it will itself be developed using VDM-
SL. We split the specification process into two phases: an exploratory specification
phase that we use ViennaTalk [8] as a development platform, and rigorous specifica-
tion phase that we use the Overture tool [4] to gain and ensure the quality of the spec-
ification. ViennaTalk is a Smalltalk-based IDE with live specification animations for
interactive specification authoring in an exploratory manner. ViennaTalk also provides
a pretty printer and automated execution of unit tests to enhance agility-related qual-
ities of specification against frequent modifications. ViennaVM will be tested using a
unit testing framework on ViennaTalk, called ViennaUnit. ViennaUnit is a simple unit
testing framework for VDM-SL that automatically collect test modules whose names
end with Test and automatically run all test operations whose name start with test.
After developing a valid specification of ViennaVM, the Overture tool will be used
as a development platform. The Overture tool is full-fledged IDE based on the Eclipse
platform. The Overture tool’s functionality includes combinatory testing and automated
generation of proof obligations that enhance rigour qualities of specification as the final
product of the specification phase. Combinatory testing will be used to rigorously test
a large number of combinations of IR code [5].

ViennaVM needs to be portable. The term portable has two sides; one is the porta-
bility of ViennaVM, and the second is the portability of IR code. The portability of
the both sides is required to software systems distributed among various platforms. The
term productivity also has two sides; the productivity of ViennaVM and the productivity
of the target software on ViennaVM. For the productivity of the VM, the combined use
of ViennaTalk and Overture as a tool chain will be a significant factor. For the produc-
tivity of the target software, ViennaVM will be ported to Smalltalk so that the target
system can be seamlessly developed on ViennaTalk and ViennaVM as a tool chain.

ViennaVM needs to be adaptable to different host platforms. Considering diverse
constraints on hardware such as user interfaces and computational resources, Vien-
naVM needs to be implemented differently according to those constraints, yet satis-
fying its formal specification. One smart device may be equipped with voice cognition
and speech synthesis while another smart device may have small touch screen in a few
square centimetres and a physical push button. It is desirable that one program in IR
code works on every smart device without having redundant UI code because those
devices typically have limited computational resources. Conventional VMs provides
low-level interface to UI devices and standard libraries written in the IR code of VMs
provide UI frameworks. For example, the Java VM provides the awt and swing frame-
works in Java byte-code. Application developers implements UI code for different UI
devices and choose either to create different deployment file for each host platform or
to provide one deployment file that has all UI code. ViennaVM is planned to provide
an abstraction of interactions with the user to make its applications adaptable to various
smart devices with different physical user interfaces.



3 Specification of ViennaVM

This section explains the specification of ViennaVM. Although the formal definition
is not complete yet, the current snapshot of the formal definition of ViennaVM can
execute a simple numeric computation.

3.1 Definition layers

The current snapshot ViennaVM is specified in a moduled form of VDM-SL. Figure 2
shows modules in layers of definition.

Data

ActivationRecord

MemoryRegister

CodeRecord

Instruction IR code, fetch,
decode, execution

call graphs, dynamic
info of routines

allocation, garbage
collection, slot access

tagged word, int, float,
character, reference,
true, false, nil, bool,...

code, static info of
routines

read/write access to
registers

Fig. 2. Layers of the VDM-SL definition of ViennaVM

The bottom layer is the Data module that defines the data model of ViennaVM
including data type definitions and constant values. Based upon the Data module, the
Register module and the Memory module are defined. The Register module
specifies the internal structure of each register, and the Memory module provides a
memory model including data layout in a heap object and a garbage collector. Vien-
naVM is a register machine, which has large number of registers and passes arguments
and return values via registers, while Java VM is a stack machine which handles tem-
porary values in a data stack and passes arguments and return values via the data stack.
CodeRecord and ActivationRecords are modules that defines heap objects that
represents static and dynamic properties of routines. Then, the Instruction module
defines IR code instructions and its execution mechanisms such as code fetch and a
decoder. The sections below explains each module.

3.2 Data definitions

The Datamodule specifies the data types internally used in ViennaVM and also VDM’s
basic types. ViennaVM uses 64 bits tagged word as an atomic data entity in IR code.
Tagged words are fixed sized data packed with runtime type informations so that the
VM can uniformly handle values of different types. A tagged word can either be an
integer, a floating point number, a character or a pointer with flags that identify its run-
time type. A pointer is not a raw address of a heap object, but it is a reference which



tagged word vector 64 bits unsigned int b63, ..., b4 b3 b2 b1 b0
(b0: int flag, b1: non-heap flag, b2: type flag, b3: option flag)

int 63bit signed int 1
pointer to value 56 bit unsigned int 0 0 0 0 0 0 0 0
float 8 bits dummy IEEE 754 float32 0 0 0 1 0 0 1 0
unicode character 8 bits dummy 32 bits unicode 0 0 0 1 1 0 1 0
nil 56 bits dummy 0 0 1 0 0 0 1 0
true 56 bits dummy 0 0 1 0 1 0 1 0
false 56 bits dummy 0 0 1 1 0 0 1 0
unit type 56 bits dummy 0 0 0 0 0 1 1 0
bool type 56 bits dummy 0 0 0 0 0 1 1 0

: :
pointer to type 56 bit unsigned int 0 0 0 0 0 1 0 0
invalid word 0 0 0 0 1 0 1 0

int 1 bit dummy 63 bit signed int
float 32bit dummy IEEE 754 float32
char 32bit dummy 32bit unsigned int
pointer 8 bits dummy 56 bits unsigned int

Fig. 3. Data format of primitive values inside ViennaVM

consists of the heap page index and offset of the heap object. The basic types and values
of VDM are also defined in the Data module. Figure 3 lists the data definitions.

If the Least Significant Bit (LSB) of a tagged word is 1, the remaining 63 bits
represents a signed integer. The second least significant bit of a tagged word is the non-
heap flag that indicates whether the tagged word carries a pointer or not. If the second
least significant bit is 0, the tagged word has a pointer. The third least significant bit is
the type flag that indicates whether the data is a VDM’s value or a VDM’s type. For
example, the bool type is encoded as 0x06 in the tagged word format, and the true
value is encoded as 0x2a.

The Data module also provides functions that converts values between a tagged
word and a primitive value namely integer, float, character or a pointer. Figure 4 is
an excerpt from the Data module. Because VDM-SL does not have bit manipulation
operators, arithmetic operators on integers are used instead.

3.3 Registers

ViennaVM has 216 data registers. Each data register has five statically typed fields,
namely oid (tagged word), i (integer), f (floating point number), c (character) and p
(pointer). Figure 5 is an excerpt from the definition of ViennaVM’s registers in VDM-
SL. The read int operation accepts a 16 bits register ID and look for a cached value
in the i field of the specified register. If the cache is invalid, it yields a 63 bits signed
integer value. Because fields in a register and tagged words in memory slots are strongly
typed, IR code has strongly typed semantics. Type safety at IR code level will contribute
to reliability of applications.

One major overhead of tagged words is the cost of tagging and untagging. Some
VMs provide explicit tagging and untagging instructions to convert values. The explicit



�
functions

oid2int : OID -> Int
oid2int(oid) ==

if oid mod 2 = 1
then

(if oid <= 0x8000000000000000
then oid div 2
else oid div 2 - 0x8000000000000000)

else
invalidIntValue;

int2oid : Int -> OID
int2oid(i) ==

if i <> invalidIntValue
then

(if i >= 0
then i * 2 + 1
else (0x8000000000000000 + i) * 2 + smallIntegerTag)

else
invalidOidValue;
� �

Fig. 4. Data conversion functions defined in VDM-SL

tagging/untagging naturally requires those tagging and untagging instructions in the IR
code which makes the IR code larger. Also, erroneous IR code may possibly mix up
values of wrong types, e.g. use an integer value as a pointer. Other VMs handles only
first class objects in the form of tagged words. This approach brings an overhead of
massive tagging and untagging operations. For example, when evaluating (1 + 2) *
3, the VM should untag to obtain the values 1 and 2, compute 1 + 2, tag the resulting
value 3 to computer the 1+2 part. Then, the VM untag it, then untag to obtain the value
3, compute 3 * 3 and then tag the resulting value 9. This approach is costly in return
of type safety.

The basic idea of ViennaVM’s five statically typed fields per register is to cache the
tagged and untagged data to avoid unnecessary tagging/untagging operations. When
evaluating (1 + 2) * 3, ViennaVM stores the tagged value of 1 and 2 into the
oid field of each register. Then, ADD instruction will read the integer values from the
registers, which will implicitly untag and cache the integer values into the i fields,
and then stores the resulting value 3 into the i field of another register. Then MUL
instruction will read the integer value, which need untagging operation and stores the
resulting value into the i field of a register. Instructions that read those registers can later
read the integer values cached in the i fields. Wrong conversions, e.g. read a float value
from a register that has integer value, can be detected at runtime. This approach using
statically typed fields in a register can provide reduced cost of tagging and untagging
while keeping type safety of the IR code.



�
types

Reg ::
oid : Data‘OID
i : Data‘Int
f : Data‘Float
c : Data‘Char
p : Data‘Pointer;

Register = nat inv r == r < 65536;
operations

read_int : Register ==> Data‘Int
read_int(r) ==

let reg : Reg = registers(r), i : [Data‘Int] = reg.i
in

if i = Data‘invalidIntValue
then

let i2 : Data‘Int = Data‘oid2int(reg.oid)
in

(if i2 <> Data‘invalidIntValue
then registers(r) .i := i2;
return i2)

else return i;

write_int : Register * Data‘Int ==> ()
write_int(r, i) ==

(let p = registers(r).p
in

if p <> Data‘invalidPointerValue
then Memory‘decrement_reference_count(p);

registers(r)
:= mk_Reg(

Data‘invalidTag,
i,
Data‘invalidFloatValue,
Data‘invalidCharValue,
Data‘invalidPointerValue));
� �

Fig. 5. The definition of ViennaVM’s registers in VDM-SL



Another benefit of this approach is that garbage collectors (GCs) can accurately
count references from registers. Because the pointers in registers are stored in the p
field, a GC can detect whether or not the value in a register is a pointer or not. Runtime
type information at IR code level enables simple and reliable implementation of GC
that does not rely on the correctness of the application code.

3.4 Memory model

The Memory module defines the memory model of ViennaVM. An object allocated in
a heap space has slots that store tagged words and headers for memory management.
Figure 6 shows the format of objects allocated in the heap space. Because all data other
than the object headers are tagged word, a GC can retrieve type information from the
binary data. Unlike most other VMs, ViennaVM’s instructions and immediate values in
the IR code page are also tagged words and thus subject to garbage collection.

offset field name type description
0 SIZE OFFSET 32 bits unsigned int size of this object aligned by 64 bytes
4 FLAGS OFFSET 32 bits unsigned int flags for memory management
8 REFERENCE COUNT 64 bits unsigned int reference count for garbage collection

OFFSET
16 FORWARDER OFFSET 64 bits unsigned int link to the updated object
24 SLOTS SIZE OFFSET 64 bits unsigned int number of slots in this object
32 SLOT1 64 bits tagged word the first element of this object
40 SLOT2 64 bits tagged word the second element of this object

:

Fig. 6. Data format of object in a heap space

The heap allocator gives 64 bytes alignment to the required size of an object. Vi-
ennaVM uses reference counters to collect unreferenced objects in the heap space. Al-
though GCs based on reference counts have difficulty in detecting objects with cyclic
references, ViennaVM assumes tree structured data from specifications in VDM-SL
and therefore there will be no cyclic references. ViennaVM manages reference coun-
ters from tagged pointers not only in heap objects but also in registers. At every write
access to a register or a memory slot, the contents of the old tagged word and the new
tagged word are checked, and if a tagged word has a pointer, the reference counter will
be increased and/or decreased.

3.5 Code Record and Activation Record

In ViennaVM, VDM functions and operations are implemented as routines. A code
record is an object that represents a routine that consist of a series of IR code, type
signature, precondition, postcondition, measure function and declaration of registers
used in the IR code. An activation record, also known as a stack frame, is an object that
represents an execution contexts that holds the caller activation record (the dynamic



link), the caller code record, the caller’s instruction pointer, measure value, old state,
register id to pass a return value and slots to save registers.

Code records and activation records are also stored as objects. Like other heap ob-
jects, code records and activation records are subject to garbage collection.

3.6 Instructions

ViennaVM’s IR instruction set has basic instructions for memory allocation, data trans-
fer, primitive operators, control structures (error, jump, conditional jump, call, recursive
call, return and conditional return). Table 1 lists the basic instructions. Since tagged
words in heap objects and registers have type information, data transfer instructions
and primitive operator instructions perform runtime type checking by default. Vien-
naVM needs to be adaptive to different target platforms, so each implementation of
ViennaVM may or may not perform such runtime checking to manage the balance be-
tween safety and computational costs.

Figure 7 is the definition of the SUB instruction in VDM-SL. The SUB instruction
takes three operands each of which specifies a register ID. This instruction computes the
second operand minus the third operand and stores the result into the first operand. The
VM first checks the operands are specified. If any operand is omitted, the VM issues an
error. The definitions part of the let statement defines data retrieval from the registers.
The VM tries to read an integer value from the register specified by the second operand.
If failed, it tries to read a float value from the same register. The VM does the same to
the third operand. Then, the “in” clause of the let statement defines the computation and
data transfer to the register specified by the first operand. If both values are successfully
retrieved, the VM computes num1 - num2 and stores it to the integer field of the
destination register if the both arguments are integer values. Otherwise, it stores the
resulting value to the float field of the destination register.

4 Example IR code and Preliminary Performance Evaluation

ViennaVM is still under development. We have created a prototypical implementation
from the current snapshot of its specification in VDM-SL for a preliminary performance
check. Although performance is not specifically pointed as a requirement to ViennaVM
in Section 2, we conducted a preliminary performance test to check feasibility of the
design of ViennaVM. The C version for now implements a subset of the full instruction
set of ViennaVM.

4.1 Performance of Fibonacci

Figure 8 shows the specification of the benchmark function fib, the fibonacci sequence
function. One call to the fib function with an argument larger than 1 will make two
recursive calls, and therefore costs exponential time.

The fibonacci series function is implemented by C and also IR code of ViennaVM
along with the executable VDM-SL specification. Figure 9 shows the IR code. Informal



Table 1. Basic instruction set of ViennaVM

opcode operand1 operand2 operand3 description
ERR Triggers error handler
NOP Do nothing
ALLOC r1 Allocate an object with the slot size given by r1
RESET Restart with the latest image file
DUMP Dump an image file
MOVE r1 r2 copy r2 to r1
MOVEI r1 copy the given immediate value to r1
LOAD r1 r2 r3 copy the r3-th slot of the object pointed by r2 to r1
LOAD1 r1 r2 r3 copy the (r3+1)-th slot of the object pointed by r2 to r1

:
LOAD7 r1 r2 r3 copy the (r3+7)-th slot of the object pointed by r2 to r1
STORE r1 r2 r3 copy r3 to the r2-th slot of the object pointed by r1
STORE1 r1 r2 r3 copy r3 to the (r2+1)-th slot of the object pointed by r1

:
STORE7 r1 r2 r3 copy r3 to the (r2+2)-th slot of the object pointed by r1
ADD r1 r2 r3 set r1 to r2 + r3
SUB r1 r2 r3 set r1 to r2 - r3
MUL r1 r2 r3 set r1 to r2 * r3
IDIV r1 r2 r3 set r1 to r2 div r3
IMOD r1 r2 r3 set r1 to r2 mod r3

: ?3
EQUAL r1 r2 r3 set r1 to r2 = r3
NOTEQ r1 r2 r3 set r1 to r2 <> r3
LESSTHAN r1 r2 r3 set r1 to r2 < r3
LESSEQ r1 r2 r3 set r1 to r2 <= r3
GREATER r1 r2 r3 set r1 to r2 > r3
GREATEREQ r1 r2 r3 set r1 to r2 >= r3
NOT r1 r2 set r1 to not r2
JUMP r1 set ip to r1
JUMPTRUE r1 r2 if r1 is true, set ip to r2
JUMPFALSE r1 r2 if r1 is false, set ip to r2
CALL r1 r2 call the code record pointed by r2, save registers and set

the return value to r1
CALLREC r1 call the current, save registers and set the return value to

r1
RET r1 return to the caller, restore registers and pass r1 as the

return value
RETTRUE r1 r2 if r1 is true, return to the caller, restore registers and

pass r2 as the return value
RETFALSE r1 r2 if r1 is false, return to the caller, restore registers and

pass r2 as the return value

?1 other VDM-SL built-in operators on numbers and booleans



�
operations
sub : Register‘Register * Register‘Register

* Register‘Register ==> ()
sub(dst, src1, src2) ==
if (dst > 0 and src1 > 0) and src2 > 0
then

let
int1 = Register‘read_int(src1),
num1 : [real] =
if int1 <> Data‘invalidIntValue
then int1
else
(let float1 = Register‘read_float(src1)
in

(if float1 <> Data‘invalidFloatValue
then Data‘float2real(float1)
else nil)),

int2 = Register‘read_int(src2),
num2 : [real] =
if int2 <> Data‘invalidIntValue
then int2
else
(let float2 = Register‘read_float(src2)
in
(if float2 <> Data‘invalidFloatValue
then Data‘float2real(float2)
else nil))

in
if num1 <> nil and num2 <> nil
then
let num3 : real = num1 - num2
in
if
int1 <> Data‘invalidIntValue and
int2 <> Data‘invalidIntValue

then
Register‘write_int(dst, num3)

else
Register‘write_float(dst, Data‘real2float(num3))

else
err("sub instruction error: operands not integer")

else
err("sub instruction error: operands not specified");
� �

Fig. 7. The formal definition of the SUB instruction



�
functions

fib : nat -> nat
fib(x) == if x < 2 then x else fib(x-1) + fib(x-2);
� �

Fig. 8. The specification of fibonacci sequence function

explanation of each instruction is shown as a comment led by semicolons. As Vien-
naVM is a register machine, arguments passed to a routine is stored in r1, r2 and so on
in order. In this case, the argument x is stored in r1. The first instruction, MOVEI set the
immediate value to the specified register. In this case, this instruction sets the tagged
word of 1 to r2. The LESSTHAN instruction is a three-operanded opcode that com-
pares the second and the third operands and stores the result to the first operand. The
RETFALSE instruction is a conditional return. In this case, if r3 is false, then return
r1. Then, two sets of SUB and CALLREC instructions follows that computes fib(x-1)
and fib(x-2). The ADD instruction will add the two return values from the CALLREC
instruction and stores the result to r1. Finally, the RET instruction returns the r1.

; x is passed to r1
MOVEI 2, int(1) ; r2 <- 1
LESSTHAN 3, 2, 1 ; r3 <- r2 < r3
RETFALSE 3, 1 ; if r3 is false then return r1
SUB 1, 1, 2 ; r1 <- r1 - r2
CALLREC 3 ; r3 <- fib(r1)
SUB 1, 1, 2 ; r1 <- r1 - r2
CALLREC 1 ; r1 <- fib(r1)
ADD 1, 1, 3 ; r1 <- r1 + r3
RET 1 ; return r1

Fig. 9. The IR code for fibonacci series function

Table 2 shows the result of performance test. The IR code shown in Figure 9 was
executed on ViennaVM in C. The fibonacci series function in Figure 8 was imple-
mented in C as an ideal performance target. The fibonacci series function in VDM-SL
was also animated by VDMJ as a baseline performance. VDMJ is a standalone inter-
preter implemented in Java. VDMJ is used as a baseline in this benchmark because its
implementation is mature and has less overhead than GUI-based IDEs.

The ViennaVM was also implemented in Smalltalk using automated code generator
and a hand tuning was done to five methods. The Smalltalk version also executed the
IR code to check the feasibility of ViennaVM used in ViennaTalk for debugging. The
specification of ViennaVM was also animated by VDMJ as a baseline performance
against the Smalltalk version.



Two expressions fib(5) and fib(30) were executed. The prototypical Vien-
naVM in C performed better than VDMJ and slower than the C version. Although the
ViennaVM in C is a naive IR code interpreter without just-in-time or runtime optimisa-
tion, it performed reasonably well. ViennaVM in Smalltalk took almost 50 minutes to
compute fib(30). The result mentions that the use of ViennaVM on Smalltalk will
be limited to debug by step execution. One possible way to debug a computationally
demanding application is to use two versions of ViennaVM, in C and in Smalltalk, and
combine them by image files. The ViennaVM in C will execute the IR code and dump
an image file at a break point. The ViennaVM in Smalltalk will resume the image file
to interactively debug by step execution.

Table 2. Performance comparison by fibonacci numbers

fib(5) (ms) fib(30) (ms)
C 0.0 11.0
ViennaVM (C) 1.8 410.2
VDMJ 1.8 3,335.4 ?2
ViennaVM (Smalltalk ?1) 18.4 2,870,079.0
ViennaVM (VDM-SL) 351.6 NA ?3

?1 automated code generator + hand tuning
?2 measured after 10 warm-up runs
?3 computation did not finish in 4 hours

4.2 Discussions about perspectives

VMs are commonly used architecture of runtime systems of various programming lan-
guages. While most language VMs are designed for programming languages, Vien-
naVM is specially dedicated for VDM languages. To take VDM’s advantage in pro-
ductivity of developing embedded software, ViennaVM should support not only in the
final product, but the prototypical development of smart devices. The most VMs for
high level programming languages can assume that the compiler generates valid IR
code. ViennaVM, on the other hand, should provide rich runtime checking mechanism
for types, states, precondition, postconditions and metrics. Another interesting feature
of ViennaVM is that it is specified in VDM-SL. The development of VMs requires
high skills of system programming and long development time to debug. We expect the
utilisation of formal specification language would improve reliability, productivity and
portability of the VMs.

The preliminary performance evaluation in Section 4 shows that the prototypical C
implementation of ViennaVM can perform better than the VDMJ interpreter. Although
there are still a big performance gap between ViennaVM and native C code, it can be
possibly narrowed down by runtime optimisations and just-in-time compilation.



5 Planned Further Development

5.1 User Interfaces

We are planning to define UI instructions in ViennaVM. Smart devices have various
user interfaces. While many VMs provide low level functions and let user programs to
implement UI frameworks, we will provide high level instructions to absorb the dif-
ference of physical user interfaces. Figure 10 illustrates how ViennaVM will provide
portability of its application code among different smart devices. inform a text mes-
sage to the user instruction that will play a voice on ViennaVM for automotive smart
speakers and display a small notifier on ViennaVM for smartphones. UI instructions
of ViennaVM provide hooks to invoke and accept interactions with the user, and each
implementation of ViennaVM will supply UI functions available in the target platform.

Fig. 10. The same IR code will adapt to different UI devices

5.2 Code Generators and Runtime Support for Formal Methods

We will develop an automated code generator that generates IR code of ViennaVM,
and extend ViennaTalk to run an external ViennaVM implemented in C and also an
internal ViennaVM implemented in Smalltalk. The internal ViennaVM will be better
integrated with ViennaTalk and gives more flexible debugging feature while the external
ViennaVM will execute the specification in closer environment to the target platform.

We also plan for extending ViennaVM by instructions that support assertions. A
state invariant will be checked at every update to the state variable by setting it as a
watch variable. Precondition and postcondition of a function or an operation will be
held in a code record, and measure function of a recursive function will be also stored.

6 Conclusions

The development of ViennaVM is still at an early stage. Its objective is to provide a
common target platform of automated code generators from VDM. It can also be seen



as a case project of VDM in VM developments. We will investigate how VDM can
improve the development of language VMs as well as how a dedicated VM may change
the process of the model-based development using VDM.

Acknowledgments

The authors would thank Christoph Reichenbach, Kumiyo Nakakoji and Yasuhiro Ya-
mamoto for their inspiring comments on the initial idea of this research. A part of this
research was supported by JSPS KAKENHI Grant Number JP 18K18033. We would
also like to pay special thanks to the anonymous reviewers who have helped improving
the quality of the paper.

References

1. Diswal, S.P., Tran-Jørgensen, P.W., Larsen, P.G.: Automated Generation of C# and .NET
Code Contracts from VDM-SL Models. In: Larsen, P.G., Plat, N., Battle, N. (eds.) The 14th
Overture Workshop: Towards Analytical Tool Chains. pp. 32–47. Aarhus University, Depart-
ment of Engineering, Cyprus (November 2016), ECE-TR-28

2. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future - the story
of squeak, a practical smalltalk written in itself. ACM SIGPLAN Notices 32(10), 318–326
(1997)

3. Jørgensen, P.W.V., Larsen, M., Couto, L.D.: A Code Generation Platform for VDM. In: Bat-
tle, N., Fitzgerald, J. (eds.) Proceedings of the 12th Overture Workshop. School of Comput-
ing Science, Newcastle University, UK, Technical Report CS-TR-1446 (January 2015)

4. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (January
2010), http://doi.acm.org/10.1145/1668862.1668864

5. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial Testing for VDM. In: Proceedings of
the 2010 8th IEEE International Conference on Software Engineering and Formal Methods.
pp. 278–285. SEFM ’10, IEEE Computer Society, Washington, DC, USA (September 2010),
http://dx.doi.org/10.1109/SEFM.2010.32, ISBN 978-0-7695-4153-2

6. Larsen, P.G., Lausdahl, K., Battle, N., Fitzgerald, J., Wolff, S., Sahara, S., Verhoef, M., Tran-
Jørgensen, P.W.V., Oda, T.: VDM-10 Language Manual. Tech. Rep. TR-001, The Overture
Initiative, www.overturetool.org (April 2013)

7. Oda, T., Araki, K., Larsen, P.G.: Automated VDM-SL to Smalltalk Code Generators for Ex-
ploratory Modeling. In: Larsen, P.G., Plat, N., Battle, N. (eds.) The 14th Overture Workshop:
Towards Analytical Tool Chains. pp. 48–62. Aarhus University, Department of Engineering,
Aarhus University, Department of Engineering, Cyprus (November 2016), ECE-TR-28

8. Oda, T., Araki, K., Larsen, P.G.: ViennaTalk and Assertch: Building Lightweight For-
mal Methods Environments on Pharo 4. In: Proceedings of the International Workshop on
Smalltalk Technologies. pp. 4:1–4:7. Prague, Czech Republic (Aug 2016)

9. Smith, J.E., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38 (May
2005)

10. Tran-Jørgensen, P.W.V., Larsen, P.G., Leavens, G.T.: Automated translation of VDM to JML-
annotated Java. International Journal on Software Tools for Technology Transfer pp. 1–25
(2017), http://dx.doi.org/10.1007/s10009-017-0448-3

http://doi.acm.org/10.1145/1668862.1668864
http://dx.doi.org/10.1109/SEFM.2010.32
http://dx.doi.org/10.1007/s10009-017-0448-3

	ViennaVM: a Virtual Machine for VDM-SL development

