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Abstract. The Functional Mock-up Interface is a standard for co-simulation,
which both defines and describes a set of C interfaces that a simulation unit, a
Functional Mock-up Unit (FMU), must adhere to in order to participate in such a
co-simulation. To avoid the effort of implementing the low level details of the C
interface when developing an FMU, one can use the Overture tool and the language
VDM-RT. VDM-RT is a VDM dialect used for modelling real-time and potentially
distributed systems. By using the Overture extension, called Overture FMU, the
VDM-RT dialect can be used to develop FMUs. This raises the abstraction level
of the implementation language and avoids implementation details of the FMI-
interface thereby supporting rapid prototyping of FMUs. Furthermore, it enables
precise time detection of changes in outputs, as every expression and statement in
VDM-RT is associated with a “timing cost”. The Overture FMU has been used
in several industrial case studies, and this paper describes how the Overture tool-
wrapper FMU engages in a co-simulation in terms of architecture, synchronisation
and execution. Furthermore, a small example is presented.

Keywords: Overture, Functional Mock-up Interface, VDM-RT, Co-Simulation, Real-
time, Discrete-Event

1 Introduction

In general, co-simulation enables different constituent models, which form a coupled
system, to be modelled in a distributed manner and then simulated in collaboration [5,6].
Hence, the modelling is carried out at the constituent model level without a detailed
understanding of the other constituent models. A challenge in co-simulation is to syn-
chronise the different simulating units ensuring that the timing of the overall simulation
is sufficiently close to how this would work in reality. In such co-simulations it is often
convenient to combine Discrete Event (DE) formalisms (typically describing cyber
control aspects) with Continuous-Time (CT) formalisms (usually describing physical
phenomena being controlled). Enabling such hybrid combinations generally require
some kind of coordination and in this paper the focus is on the Functional Mock-up
Interface (FMI) standard.
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The contribution of this paper is to enable VDM-RT models to be exported as FMUs
such that these models can be incorporated in a setting where some of the constituent
models are made using Overture while others are made other other tools supporting FMI
version 2.0. In this way the extension described here extend the places where Overture
can be used in a CPS context for DE models. This provides a more abstract language for
modelling and developing FMUs as opposed to implementing them in a native language,
which can be beneficial in the systems engineering process [8].

In Sect. 2 we provide a short introduction to the background of this work. Next,
Sect. 3 demonstrates how Overture can be used to produce FMUs by means of a small
case study. Section 4 presents an overview of the architecture of this capability. Finally,
Sect. 5 gives a few concluding remarks.

2 Background

The VDM-RT dialect historically started off as a notation called “VDM In Constrained
Environments” (VICE) [18]. However, VICE performed poorly in the analysis of dis-
tributed systems [22]. Thus the notation was rethought, and extended with support for
distribution and called VDM-RT [24]. Initial work with co-simulation using VDM-RT
and 20-sim was carried out in Marcel Verhoef’s PhD thesis [23]. VDM-RT was then
further developed in a co-simulation context inside the DESTECS project [2]. The main
result here was the Crescendo tool [14] combining DE formalism VDM-RT [10] with
the CT formalism bond graphs using the 20-sim tool [9]. The co-simulation carried out
here was bespoke and worked in general between these two tools. However, it was also
demonstrated in DESTECS that it was possible to use Matlab/Simulink instead of 20-sim
via an XML-RPC interface (revisited in Sect. 4).

Subsequently the INTO-CPS project [4] took this further using the FMI standard to
achieve an open tool chain enabling any modelling and simulation tool able to produce
Functional Mock-up Units using version 2.0 of the standard to be co-simulated [12].
The coordination of this co-simulation is performed by the INTO-CPS Co-simulation
Orchestration Engine called Maestro [21]. FMI is a result of the MODELISAR project [7]
and it is a tool independent standard for model exchange and co-simulation, where we
only concern ourselves with the co-simulation part in this article. FMI defines a C
interface that simulation units must implement in order to participate in a co-simulation.
A simulation unit implementing the FMI interface is called a Functional Mock-up Unit
(FMU). Such an FMU is packaged as a Zip archive, which contains libraries for the
platforms that the executable part of the FMU has been compiled for, a model description
file describing the scalar variables and their causality (input, output, parameter etc.) of
the FMU, and a resources folder containing elements used internally by the libraries. The
iteration carried out by a co-simulation master is roughly equivalent to getting inputs,
setting outputs, and invoking the FMUs to progress for a determined step size. The
process is repeated until a predetermined end time is reached.

An extension to FMI that adds an additional function to the interface called GetMax-
StepSize has been proposed [3]. The purpose is that each FMU can be queried for the
maximum step it can perform, and then the chosen step size is the minimum of all the
reported step sizes, as an FMU always must be able to perform a smaller step than the
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reported maximum step. This makes it possible to avoid rolling back FMUs by setting
a previous retrieved state, a feature not supported by VDM-RT FMUs. Furthermore,
it makes it possible to synchronise at the specific point in time where an output is
changed by a DE FMU. Besides detecting the point in time to synchronise it also makes
it unnecessary to execute the co-simulation with a small time step to ensure detection of
the changes in outputs, as the proper step size is reported by the FMU in question. The
querying for maximum step sizes by the co-simulation master would occur after setting
inputs and before invoking the FMUs to progress in the iteration described above.

3 Developing an FMU with Overture

In this section the FMI additions to a VDM-RT project required to export the project as
an FMU is presented. This presentation concerns the structure of a VDM-RT project in
order to be exported as an FMU and the template generated by the plugin. Afterwards,
an example of a co-simulation is demonstrated where one of the FMUs is generated
by using the plugin. Overture can generate both tool-wrapper FMUs and source code
FMUs [1]. In this paper we focus on tool-wrapper FMUs.

3.1 FMI Additions for VDM-RT using Overture FMU

The Overture FMU plugin contains functionality to automatically generate a project
template that complies with the required structure. This template and thereby the required
structure is the following:

– A VDM-RT system System containing the definition of a given system by describ-
ing how different parts are deployed to different Core Processing Units (CPUs) [13].
This is not a class, but a system. The syntax is similar to ordinary classes with some
differences, for example that it cannot be instantiated.

– A conventional [11] VDM-RT class World that provides an entry point into the
model.

– A VDM-RT class called HardwareInterface, which is exemplified below in
Sect. 3.3. This class contains the definition of the ports of the FMU. Its struc-
ture is enforced, and a self-documenting annotation scheme1 is used such that
the HardwareInterface class may be hand-written. The annotation format
is -- @ interface: type = [input/output/parameter/local],
name="..."; and must be located directly above a value or an instance
variable of one of the subclasses of the Port class described below. Ports of type
parameter must be values, and all other ports must be instance variables
of the class HardwareInterface. The reason for this approach is to capture
all assumptions about FMI in the VDM-RT model itself opposed to extending the
VDM-RT language or providing addition configuration files. This provides a solution
where the generic FMI interface can be defined in a library and any instantiation

1 The annotation scheme is documented on the INTO-CPS website http://into-cps-association.
GitHub.io under “Constituent Model Development → Overture → FMU Import/Export.

http://into-cps-association.GitHub.io
http://into-cps-association.GitHub.io
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hereof can be type checked with the concrete specification. Annotations must be pro-
vided since the FMI causality cannot be deduced automatically. Furthermore, these
annotations convey the causality of the ports and has not resulted in any changes of
the VDM-RT language, since they are written in comments.

– The library file Fmi.vdmrt defines the hardware interface port types used in
HardwareInterface. This file contains an inheritance structure with a top-
level generic Port class that is subclassed by ports for each FMI type: Bool, Real,
Int and String. These subclasses are constructed with an initial value and contain
get and set methods. Part of the class is presented in Listing 1; it also contains
StringPort, RealPort and BoolPort implemented in a similar fashion to
IntPort. The getValue function is declared pure, which means it does not
update state (and other constraints described in [13].

�
class Port

types
public String = seq of char;
public FmiPortType = bool | real | int | String;

operations
public setValue : FmiPortType ==> ()
setValue(v) == is subclass responsibility;

public pure getValue : () ==> FmiPortType
getValue() == is subclass responsibility;

end Port

class IntPort is subclass of Port

instance variables
value: int:=0;

operations
public IntPort: int ==> IntPort
IntPort(v)==setValue(v);

public setValue : int ==> ()
setValue(v) ==value :=v;

public pure getValue : () ==> int
getValue() == return value;

end IntPort
� �
Listing 1: FMI library for VDM-RT containing Port class and subclasses for each FMI
type.
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After this required project structure is set up, the behaviour of the FMU must be imple-
mented, which is demonstrated in the following section.

3.2 Overture FMU Example

In this section the controller of a water tank [17] shown in Fig. 1a is presented2. After-
wards, it is described in Sect. 3.4 how the FMI extension GetMaxStepSize maps to
a VDM-RT model. Finally, Sect. 3.5 presents the results of a co-simulation where the
VDM-RT model and Overture FMU is used.

The water tank is equipped with a source of water, two sensors, representing min-
imum and maximum water level, and a valve. When the valve is open, water pours
out of the tank, and when the valve is closed, the water level rises, as the water is still
flowing from the source. The water level is regulated by a controller expressed in a DE
model using Overture and VDM-RT, which models the actuator that opens the valve
when a maximum water level is reached and closes the valve when a minimum water
level is reached. The draining and filling of the water tank and thereby the water level
is expressed in a CT model described in [17]. The FMUs, their ports and dependencies
between them are shown in Fig. 1b.

(a) Water tank example [17]

Controller FMU 
(Overture FMU) 

Water tank FMU 

valve

valve level 

level 

(b) Water tank FMUs

Fig. 1: Overview of the water tank

3.3 VDM-RT Model

The model realisation in VDM-RT is structured as presented in Fig. 2, which matches
the description of the template in Sect. 3.1. The realisation is described below.

2 The other FMU describing the CT part of the water tank is not described here; the interested
reader is referred to [17].
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Fig. 2: Architecture of the VDM-RT model [17]

The HardwareInterface class is the interface of the DE model. In order to
determine this interface it is necessary to consider the entire water tank system. As the
state of the valve is operated by the DE model and has an impact on the calculation of
the water level performed by the CT model, it must be an output from the DE model to
an input on the CT model. The water level is calculated by the CT model and the DE
model requires this information to determine whether to open or close the valve, and
therefore it is an output from the CT model to an input on the DE model. Furthermore,
it is necessary with two parameters on the DE model describing the minimum and
maximum water level, as the DE model controls the state of the valve. The source of
water is embedded in the CT model and therefore not considered. This leads to the
interface presented in Listing 2, where the valve state has the type BoolPort, the water
level has the type RealPort, and the parameters have the type RealPort. The value
of the parameters can initially be changed by the co-simulation master based on the
co-simulation configuration.�
class HardwareInterface

values
-- @ interface: type = parameter, name="minlevel";
public minlevel : RealPort = new RealPort(1.0);
-- @ interface: type = parameter, name="maxlevel";
public maxlevel : RealPort = new RealPort(2.0);

instance variables
-- @ interface: type = input, name="level";
public level : RealPort := new RealPort(0.0);

-- @ interface: type = output, name="valve";
public valveState : BoolPort := new BoolPort(false);

end HardwareInterface
� �
Listing 2: The hardware interface of the water tank controller
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The LevelSensor class in Listing 3 encapsulates the port representing the level
input. Notice that the set method is absent as level is an input, and therefore it is only
possible to read a value from the port.�
class LevelSensor
instance variables
port : RealPort;

operations
public LevelSensor: RealPort ==> LevelSensor
LevelSensor(p) == port := p;

public getLevel: () ==> real
getLevel()== return port.getValue();

end LevelSensor
� �
Listing 3: The encapsulation class for the water level sensor

The ValveActuator class in Listing 4 is similar in structure to the LevelSensor
described above, but it captures the valve output instead of an input. It follows that the
get method is absent, as valve is an output, and therefore it is only possible to write a
value to the port.�
class ValveActuator
instance variables
port : BoolPort;

operations
public ValveActuator: Port ==> ValveActuator
ValveActuator(p) == port := p;

public setValve: bool ==> ()
setValve(value)== port.setValue(value);

end ValveActuator
� �
Listing 4: The encapsulation class for the valve actuator

The Controller class in Listing 5 is the core logic of the DE model. It is instanti-
ated with the LevelSensor and ValveActuator instances described above. The
behaviour is contained in the loop operation, which takes 2 cycles3 and runs every 10

3 A cycles or duration statement at the top level of the loop operation as in this case can lead to
undesired behaviour. Everything within the body of the cycles statement is executed atomically
with the given cycle number, and thus prevents the scheduler from swapping out the current
atomic block. As a result, periodic threads will not have the next period thread swapped before
the current is completed. Therefore, no overlapping errors will be raised because the next period
threads are not yet executing, even though the period has elapsed. This can be seen by setting
the CPU frequency in Listing 6 to e.g. 20 Hz, thereby the cycles would take 50 milliseconds,
but the period is still 10 milliseconds but no error is reported.
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milliseconds until the simulation terminates. 2 cycles in this case corresponds to exactly
10 milliseconds and is calculated as:

τ = cycles/freqCP U = 2/200Hz = 0.01seconds

where τ is time, cycles is the number of cycles from Listing 5, and freqCP U is the CPU
frequency from Listing 6.

The behaviour of the loop operation is first to read the level, check whether it is above
the maximum level or below the minimum level and open or close the valve respectively.�
class Controller

instance variables
levelSensor : LevelSensor;
valveActuator : ValveActuator;

values
open : bool = true;
close: bool = false;

operations
public Controller : LevelSensor * ValveActuator ==> Controller
Controller(l,v)==
(
levelSensor := l;
valveActuator := v;

);

private loop : () ==>()
loop()==
cycles(2)
( let level : real = levelSensor.getLevel() in

( if( level >= HardwareInterface‘maxlevel.getValue())
then valveActuator.setValve(open);

if( level <= HardwareInterface‘minlevel.getValue())
then valveActuator.setValve(close); );

);

thread
periodic(10E6,0,0,0)(loop);

end Controller
� �
Listing 5: The Controller class with the core logic

The system entity System shown in Listing 6 is responsible for describing how
the controller class of the water tank controller is deployed to a CPU and how it
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is connected to other parts in the model. Therefore System instantiates the hardware
interface, instantiates and initialises the hardware encapsulation classes and passes these
to the Controller, which is also instantiated and deployed on a CPU.�
system System

instance variables
-- Hardware interface variable required by FMU Import/Export
public static hwi: HardwareInterface:= new HardwareInterface();
public levelSensor : LevelSensor;
public valveActuator : ValveActuator;
public static controller : [Controller] := nil;
cpu1 : CPU := new CPU(<FP>, 200);

operations
public System : () ==> System
System () ==
( levelSensor := new LevelSensor(hwi.level);
valveActuator := new ValveActuator(hwi.valveState);
controller := new Controller(levelSensor, valveActuator);
cpu1.deploy(controller,"Controller");

);

end System
� �
Listing 6: System class of the DE model

The World class launches the simulation by invoking the start statement in the
Controller class instance, which is contained in System described above. This
leads to the thread contained within the Controller class described above to be
started. The implementation of the World class is presented below in Listing 7.�
class World
operations
public run : () ==> ()
run() ==
( start(System‘controller);
block(); );

private block : () ==>()
block() == skip;

sync
per block => false;

end World
� �
Listing 7: World class of the DE model
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3.4 Synchronisation

Synchronisation in terms of FMI is when outputs are exchanged. From an Overture
FMU perspective, the synchronisation should ideally occur just before reading a value
from a port and after writing to a port. This ensures synchronisation exactly when
an output has changed or allows for retrieving updated inputs just before an input
is read. Listing 8 shows an implementation of the loop operation, where the cycles
statement is removed and thereby expressions and statements takes 2 cycles. This allows
synchronisation at the desired synchronisation points, which GetMaxStepSize will
return. The VDM-RT interpreter makes use of transactions [16], in the sense that it
calculates the behaviour until the next synchronisation point, but does not commit it and
thereby it is not exposed until the correct point in time. Thereby it is possible to calculate
the value that GetMaxStepSize as the minimum time of all transactions as:

min({τ |(Σ, τ) ∈ T}) − τnow

where (Σ, τ) is a transaction pair of state Σ to expose at time τ , T is a set of all
transactions across CPUs, and τnow is the global current time of the co-simulation.�
private loop : () ==>()
loop()==

-- SYNCHRONISATION
let level : real = levelSensor.getLevel() in
( if( level >= HardwareInterface‘maxlevel.getValue())

then valveActuator.setValve(open);
-- SYNCHRONISATION if condition yields true

if( level <= HardwareInterface‘minlevel.getValue())
then valveActuator.setValve(close);
-- SYNCHRONISATION if condition yields true

);
� �
Listing 8: Control loop the DE model with desired synchronisations.

3.5 Co-simulation Result

The result of a co-simulation of the water tank using the VDM-RT model is presented in
Fig. 3. It shows that when the water level exceeds the maximum water level of two the
valve opens, represented by the value 1. It remains open until the water level is below
the minimum water level of one, at which point the valve is closed represented by the
value 0. The step size of the co-simulation is 0.1 seconds. The small step delay is a result
of the Jacobian master algorithm [19] used by the employed co-simulation orchestration
engine. Instead one could use the Gauss-Seidel [19] master algorithm. This particular
issue is addressed in [20].
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Fig. 3: Result of a co-simulation of the water tank

4 Architecture of Overture FMU

The architecture of the Overture FMU and the flow of messages is shown in Fig. 44. The
Overture FMU product is split into three parts that communicate via shared memory and
protobuf messages. The first part, FMU, defines the FMU library that is invoked by the
co-simulation master. The next part, Shared Memory (SHM), are the libraries involved
in converting the data to Protobuf messages and using shared memory to pass data from
the co-simulation Master to the last part, Model Execution, and back. The third and
last part, Model Execution, describes the functionality that carries out the simulation
of the model, where the Java application Overture-FMU5 essentially is a Crescendo
implementation [15] with a different protocol. The reason for this structuring is, that the
SHM part is implemented in such a way, that it could easily be adapted to contain other
messages, that are not FMI-specific. The three parts are described below along with the
loading process of an Overture FMU and transferring of messages between the different
parts.

In order to understand this section, some terminology must be known:

Protobuf: Protobuf6 is the short name for Protocol Buffers, which is a language and
platform-neutral extensible mechanism for serialising structured data developed by
Google. It supports Java and C++ among others, which is used in the development
of the Overture FMU described in Sect. 4.

Java Native Interface (JNI): JNI is a framework that makes it possible for Java ap-
plications to communicate with native libraries. This is also used in the Overture
FMU.

4 The libraries mentioned in the figure is part of the contribution of the work presented in this
paper, unless explicitly stated otherwise.

5 Notice the hyphen, which differentiates the application (Overture-FMU) from the name of the
product (Overture FMU).

6 Available at https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/
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Fig. 4: Architecture of Overture FMU split in three parts parts: FMU, Shared Memory
(SHM), and Model Execution.

4.1 FMU

The overall responsibility of the FMU block7 is to provide a C implementation of
the FMI interface allowing it to serve as an FMU. libshmfmu is therefore the FMU
implementation adhering to the FMI interface that is loaded when Maestro loads the
library inside the FMU. It initialises the communication flow, instantiates the SHM
libraries libshmfmi and libshmipc, and launches Overture-FMU, which is described in
Sect. 4.3. When a function of FMU is invoked, the function invocation information is
passed to the libshmfmi within SHM. The master key mentioned in the figure is a session
key ensuring that multiple Overture tool-wrapper FMUs can coexist without interfering
with each other.

4.2 Shared Memory (SHM)

The SHM part is responsible for passing messages between Model Execution and FMU
using shared memory. This involves mapping each FMI function invocation to protobuf
messages and the other way around. These messages are sent through a fixed-size
shared memory space with read/write access being controlled by several semaphores.
This native part had to be developed almost without any frameworks, as most of the
frameworks suitable for the task could not be cross compiled with a reasonable effort. It
was challenging to ensure cross compilation, which is an important feature. Concretely,
the implementation is split into three libraries that are described below:

libshmfmi: This library does the mapping of FMI function invocations to protobuf
messages, which is stored in the shared memory. Furthermore, it maps the response
from protobuf messages to FMI.

libshmipc: This library embeds the shared memory required for communication and
two semaphores to control access.

shmfmi-server: The shmfmi-server contains the bridge between Java and native code
required to extract bytes from the shared memory, convert them to protobuf messages

7 The source code is available at https://github.com/overturetool/shm-fmi.

https://github.com/overturetool/shm-fmi
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and invoke the relevant functions in Overture-FMU described below. It invokes
the relevant functions by exposing a Java interface, which defines the FMI calls
with protobuf data types, that is implemented by CrescendoFMU, which is part of
Overture-FMU. This Java Interface defines the FMI calls with protobuf data types.
Furthermore, it also performs the mapping the other way with replies. Note, that this
also operates in reverse, as there are callbacks in FMI e.g. for logging. Conceptually
this is simple, but the implementation at the low level is not trivial. Concretely,
shmfmi-server extracts bytes from the shared memory and embeds the JNI interface,
which enables access from Java. It is instantiated by Overture-FMU in the Model
Execution part.

As mentioned in Sect. 2 Crescendo features an XML-RPC interface, which is an
alternative to this shared memory approach. The reason for choosing to use shared mem-
ory is that XML-RPC uses XML and a socket, which is slower in terms of performance
than Java or native C calls. Furthermore, Crescendo did not feature GetMaxStepSize,
so the Crescendo protocol would have to be changed in order to achieve the same func-
tionality. Additionally, Crescendo was co-simulation between two instances and not N
instances, so the slow down per simulator would be significant. Knowing that the shared
memory approach is faster, it is a better solution in this case. It was also envisioned that
the SHM functionality can be reused for other projects and for the C code generator
described in [1], which it was not unfortunately.

4.3 Model Execution

This represents the left-hand side of Fig. 4 and thus the actual execution of the VDM-RT
model. It contains the Java application Overture-FMU8 that is launched by libshmfmu
and acts as an interface to the Crescendo implementation. As mentioned in Sect. 2 VDM-
RT was used in a co-simulation context in the DESTECS project, and therefore the main
functionality of participating in a co-simulation was already present. It was therefore of
interest to preserve most of the main functionality, but it was necessary to make changes
to the interface in order to support FMI. The extension was realised by exposing the
simulation driver of Crescendo, thereby enabling overriding. Thus Overture-FMU is an
application that interprets FMI messages and utilises Crescendo to execute the model,
and then adapts the Crescendo response to FMI. A low level detail is, that the VDM-RT
interpreter [16] is packaged inside the resources folder of an FMU, mentioned in Sect. 2.
The significant development additions in order to perform this adaption consist of the
elements described below:

New Entry Point (main): This receives the master key to the shared memory as an
argument and connects to the existing SHM via shmfmi-server described above.
Afterwards, it instantiates the CrescendoFMU described below.

Mediation Between FMI and Crescendo (CrescendoFMU): This invokes the FMI-
SimulationManager to perform a given task based on the protobuf message converted
to Java by shmfmi-server. Afterwards, it creates an FMI Protobuf reply, which is
returned to shmfmi-server. It implements the interface described in shmfmi-server
above.

8 The source code is available at https://github.com/overturetool/overture-fmu.

https://github.com/overturetool/overture-fmu
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Extension of the SimulationManager (FMISimulationManager): In Crescendo the
controlling entity was inherent in the VDM-RT resource scheduler, but this is not
the case when using FMI, where Maestro is the controlling entity, and therefore ad-
ditional changes had to be carried out. Furthermore, the synchronisation is different.
The FMISimulationManager ensures that the interpreter only calculates to a certain
time. It will calculate until just before it needs to read an input and right after an
output, as this is where the synchronisation should occur. This way the interpreter is
“ahead” of the global co-simulation time, as described in Sect. 3.4, but capable of
calculating a value for GetMaxStepSize presented in Sect. 2.

Handling State (StateCache): The StateCache is necessary because of the way Cre-
scendo operates, where the execution of a step takes all inputs and returns all
outputs. However, FMI operates differently where the setinput, dostep, and
getoutput calls are separated. Therefore this cache was added in order to support
FMI.

5 Concluding Remarks

An advantage of a tool-wrapper FMU as opposed to source code / native FMUs is that the
model is interpreted exactly as the language describes and modifications to the VDM-RT
language are available out of the box. Furthermore, it allowed reuse of the existing
tooling without changes to the interpreter. A disadvantage is, that it requires prerequisites
to execute a tool-wrapper FMU, e.g. that Java is installed and available, and it is most
likely slower in terms of performance compared to a native FMU. Future work on the
Overture FMU tool-wrapper is to test with multiple FMI engines and publish the results
on the FMI tools website 9. Additionally, it would be interesting to perform benchmarks
and comparisons with other FMUs. A new version of the FMI Standard is also under
development, and Overture FMU should be updated to support this.

In this article it has been shown how one can use VDM-RT and Overture to develop
a tool-wrapper FMU that can participate in an FMI co-simulation. This has been exem-
plified by realising a DE controller of a water tank system using Overture FMU and
co-simulating it. Additionally, the architecture of a tool-wrapper Overture FMU has been
described in depth. It contains native libraries, as an FMU must expose a C interface,
that communicates with other shared native libraries over shared memory protected by
semaphores. Furthermore, this also involves launching a Java application that reuses
functionality from the Crescendo tool [2]. Emphasis has also been placed on describing
how calculation of step sizes and synchronisation is carried out, as Overture FMU is
unique in this field. Overture FMU has been successfully used in several industrial case
studies as part of the INTO-CPS project [4].
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