
Enhancing Testing of VDM-SL models

Peter W. V. Tran-Jørgensen1, René S. Nilsson1,2, and Kenneth Lausdahl3

1 Department of Engineering, Aarhus University, 8200 Aarhus N, Denmark
{pvj,rn}@eng.au.dk

2 AGCO A/S, Dronningborg Allé 2, 8930 Randers NØ, Denmark
3 Mjølner Informatics A/S, 8200 Aarhus N, Denmark

kgl@mjolner.dk

Abstract. We find that testing of VDM-SL models is currently a tedious and
error-prone task due to lack of tool support for conveniently defining tests, ex-
ecuting tests automatically, and validating test results. In VDM++, test-driven
development is supported by the VDMUnit framework, which offers many of the
features one would expect from a modern testing framework. However, since VD-
MUnit relies on object-orientation and exception handling, this framework does
not work for testing VDM-SL models. In this paper, we discuss the challenges of
testing VDM-SL models, and propose a library extension of Overture/VDMUnit
that improves this situation. We demonstrate usage of this library extension, and
show how it also enables one to reuse tests to validate code-generated VDM-SL
models.

Keywords: VDM, unit testing, continuous validation, code-generation

1 Introduction

Currently, there is a lack of tool support for unit and integration testing in VDM-SL [9],
which we find makes testing tedious and error-prone due to lack of support for con-
veniently defining tests, executing them automatically, and validating the results. Con-
cretely, testing of VDM-SL models requires a significant amount of extra boiler-plate
code that must be added and maintained by the modeller throughout the development
process. On the other hand, modern development environments often offer test support
in the form of frameworks that reduce the time spent on validation.

Most popular programming languages are supported by one or more well-established
unit and integration testing frameworks. Examples of these include the JUnit framework
for Java [16], Google Test for C/C++ [12], and NUnit for C# [23]. All of these frame-
works provide a convenient way to

– define tests (for example by annotating test methods, or by using special naming
conventions),

– intercept and control the life-cycle of a test (for example using special “set up”
and “tear down” methods to allocate and free resources before/after executing each
test),

– check test results (by writing assertions),
– easily run groups of tests and,

P. W. V.Tran-Jørgensen et al.

– generate test reports.

Often testing frameworks are implemented using peculiarities of the language they
support. For example, recent versions of JUnit (version 4 and 5) use annotations to
mark test methods, whereas NUnit uses C# attributes, and Google Test uses macros.

While the unit testing frameworks described above are used to check specific cases
(for example that a function computes a value for some input) another approach is
property-based testing, which allows one to test model/program properties in general
using generated input. An example of a tool that supports this approach is QuickCheck
for Haskell [3]. Concretely, QuickCheck enables one to execute several tests cheaply,
while still allowing one to control the tests and input being generated. Inspired by
QuickCheck, property-based testing is available for several popular programming lan-
guages, including Java [15], .NET [11] and C++ [25]. Property-based testing is similar
to combinatorial testing [18], which is already available for VDM and supported by the
Overture tool [17, 4, 24]. In this paper we seek to improve unit and integration testing
for VDM, hence we focus mostly on VDMUnit [10] and extensions of this framework.

VDMUnit provides most of the features one would expect from a unit and integra-
tion testing framework (Section 2). However, as VDMUnit relies on VDM++/VDM-
RT’s [20] object-orientation and exception handling features, this library does not work
for testing VDM-SL models. To address this, we have extended VDMUnit to support
unit and integration testing of VDM-SL models (Section 3). Our extension provides
two VDM-SL modules that expose the features of VDMUnit in a VDM-SL context.
To further support this development process, we have extended Overture’s VDM-to-
Java code-generator [14] to support fully automated translation of VDM-SL unit tests
to equivalent JUnit tests that can be used to validate code-generated models (Section 4).
While this approach only re-uses the model tests, another way to perform validation is to
compare the output computed using the model to that produced using the corresponding
software implementation [8].

The new testing features have supported the development of an industrial harvest
planning system [5, 6] that enables farmers to calculate harvest plans based on different
optimisation strategies (Section 5). In this project, the master algorithm that computes
the harvest plans are modelled in VDM-SL and implemented via Java code-generation.
At the modelling level, this algorithm is validated using VDM-SL unit tests, while code-
generated tests are used to check for subtle errors introduced during the code-generation
process.

2 Background

In this section we highlight some of the existing features of VDMUnit for VDM++/VDM-
RT, and later explain how these have been supported in a VDM-SL setting. In addition,
we briefly describe Overture’s code-generation infrastructure, which we have used to
translate VDM-SL tests into equivalent JUnit tests.

2.1 VDMUnit architecture
The features of VDMUnit are exposed as VDM++ classes that use a Java component
to automatically identify and execute tests using Java’s reflection features. These VDM

Enhancing Testing of VDM-SL models

classes are connected to the Java component using Overture’s VDM-to-Java bridge,
which enables combined execution of VDM and Java [22] in order to

– improve execution performance in a VDM setting (as Java is executed as compiled
code, which generally performs better than VDM which is interpreted),

– use language/framework features that are not directly available in VDM (e.g. re-
flection or access to the underlying operating system), and

– share functionality between VDM dialects.

The architecture of VDMUnit is shown in Figure 1.

Fig. 1: VDMUnit architecture.

2.2 Testing VDM++ models using VDMUnit

In this paper, a test class is a modeller-defined subclass of VDMUnit’s TestCase
class, which defines test operations that validate functionality using assertions. The
name of a test operation must begin with “test”, and the operation itself is expected to
take zero input arguments – otherwise it will be recorded as an error, once executed by
VDMUnit. Listing 1.1 shows an example of a test class that contains a single test.

1 class MyTest is subclass of TestCase
2 operations
3 public testOne : () ==> ()
4 testOne () == Assert‘assertTrue("Expected ‘someFeature‘ to

generate an even number ", someFeature() mod 2 = 0);
5 end MyTest

Listing 1.1: Example of a modeller-defined TestCase.

The TestCase class defines setUp and tearDown operations to intercept and con-
trol the life-cycle of a test. The setUp operation is invoked by VDMUnit before any
test is executed in order to initialise test data whereas tearDown is invoked after a test
has been executed in order to free test resources.

Once a test has been executed, it is either recorded as a

– failure if a condition checked using an assertion is false, an

P. W. V.Tran-Jørgensen et al.

– error if the tests produces a runtime error, or a
– success otherwise.

In case an assertion is false, VDMUnit terminates the execution of the test and
records it as a test failure. Specifically, this is achieved by raising an exception inside
VDMUnit’s Assert class in order to signal a test failure to the framework.

VDMUnit offers different ways to execute tests. One way is to execute all tests
in a single run by evaluating the expression new TestRunner().run(). This opera-
tion call uses automated reflection to execute all tests. Another approach that is more
flexible is to execute tests selectively. An example of this approach is shown in List-
ing 1.2, which constructs and executes a TestSuite consisting of TestCase1 and
TestCase2.

1 let tests : set of Test = {new TestCase1(), new TestCase2()},
2 ts : TestSuite = new TestSuite(tests),
3 result : TestResult = new TestResult()
4 in
5 (
6 ts.run(result);
7 IO‘print(result.toString());
8);

Listing 1.2: Selective test execution using VDMUnit.

2.3 Overture’s code generation platform

Translation of VDM-SL unit tests to equivalent JUnit tests is implemented as an ex-
tension of Overture’s VDM-to-Java code-generator. This code-generator is developed
using Overture’s code generation platform [14, 26], which is a framework for building
code-generators for VDM. The workflow of the code-generation platform is as follows:
First, the platform constructs an intermediate representation (IR) of the generated code
that initially mirrors the structure of the VDM model subject to code-generation. The IR
is then subjected to a series of customised transformations in order to bring it to a form
that is easier to translate into target language code (e.g. Java). For example, by replacing
a node that is non-trivial to code-generate with other nodes that have a direct mapping
into the target language. As transformations operate directly on the IR, which is inde-
pendent of any target language, they can in principle be shared among code-generators.
Once the IR has reached its final form it is handed over to the backend, which is re-
sponsible for translating the individual IR nodes into target language code. This step
is enabled using the code-generation platform’s code-emission framework, which uses
the Apache Velocity template engine [1].

Generation of JUnit tests is achieved using a transformation that identifies VDM-SL
unit tests in the IR according to the naming conventions described above and converts
these tests into a form that eventually is translated to JUnit tests (Java code) using the
code-generation platform’s code emission framework. This process is described in more
detail in Section 4.

Enhancing Testing of VDM-SL models

3 Testing VDM-SL models

3.1 Defining VDM-SL tests

In VDM++/VDM-RT test cases can be created by subclassing VDMUnit’s TestCase
class. However, since VDM-SL does not support inheritance, tests must be defined in a
different way. Instead we have found the naming convention used by JUnit3 (version 3
of JUnit) to be suitable for defining VDM-SL tests. Following this approach, the name
of a test module must end with “Test”, and test operations must begin with “test”.

3.2 Framework overview

Our extension of VDMUnit consists of two VDM-SL modules named TestRunner

and Assert that expose VDMUnit’s testing features to the modeller. These mod-
ules are connected to a Java component that implements test execution by means of
Overture’s VDM-to-Javabridge (see Section 2). This is similar to how VDMUnit for
VDM++/VDM-RT is designed (see Figure 1). The implementation of VDMUnit for
VDM-SL as proposed in this paper is open-source and available via [27].

3.3 The VDM-SL interface

The Assert module is shown in Listing 1.3. This module defines four operations for
validating model functionality: the assertTrueMsg operation takes two arguments,
a message that describes the assertion (pmessage), and the condition to be checked
(pbool). If the condition does not hold the framework will mark the test as a failure
and store the description of the assertion. assertTrue is similar to assertTrueMsg

– except that the former only receives the condition to be checked. The correspond-
ing operations in VDM++ are defined by means of operation overloading, which is
not supported by VDM-SL, hence different names must be used for these operations.
assertFalseMsg and assertFalse in Listing 1.3, are similar to assertTrueMsg

and assertTrue except that they will mark the test under execution as a failure if the
condition being checked is true.

1 module Assert
2
3 imports from TestRunner all
4 exports all
5
6 definitions
7
8 operations
9 assertTrue: bool ==> ()

10 assertTrue (pbool) ==
11 if not pbool then
12 TestRunner‘markFail();
13
14 assertTrueMsg: seq of char * bool ==> ()

P. W. V.Tran-Jørgensen et al.

15 assertTrueMsg (pmessage, pbool) ==
16 if not pbool then
17 (
18 TestRunner‘markFail();
19 TestRunner‘setMsg(pmessage);
20);
21
22 assertFalse: bool ==> ()
23 assertFalse (pbool) ==
24 if pbool then
25 TestRunner‘markFail();
26
27 assertFalseMsg: seq of char * bool ==> ()
28 assertFalseMsg (pmessage, pbool) ==
29 if pbool then
30 (
31 TestRunner‘markFail();
32 TestRunner‘setMsg(pmessage);
33);
34
35 end Assert

Listing 1.3: Module used to validate model functionality.

To enable automated execution of tests, our library extension defines a TestRunner
module with three operations as shown in Listing 1.4. As indicated using the is not
yet specified statement all of these operations are implemented in Java using Over-
ture’s Java bridge (see Section 2). Once executed, the run operation executes all test
operations that conform to the naming convention described in Section 3.1. The identi-
fication of VDM-SL tests operations is implemented using reflection (which is similar
to how VDM++ tests are identified). In addition, the TestRunner module defines two
operations. The markFail operation is used by the test framework to mark the test op-
eration under execution as a failure. Similarly, the setMsg operation is used to pass a
message to the testing framework that describes a test failure. This message is used in
the final test report. The markFail and setMsg operations are used internally by the
framework and should not be invoked directly by the modeller.

1 module TestRunner
2 exports all
3
4 definitions
5
6 operations
7
8 run : ()==>()
9 run()== is not yet specified;

10
11 markFail : () ==> ()

Enhancing Testing of VDM-SL models

12 markFail () == is not yet specified;
13
14 setMsg : seq of char ==> ()
15 setMsg (msg) == is not yet specified;
16
17 end TestRunner

Listing 1.4: Module used to execute tests.

3.4 Limitations

Our extension of VDMUnit exposes all the existing framework features in a VDM-SL
context, with the only exception of selective test execution, shown in Listing 1.2. In
a VDM++ context selective test execution is achieved by passing a set of test cases
to the framework, e.g. {new TestCase1(), new TestCase2}. This approach has
the advantage that it provides a type-safe way to group tests. For example, if the class
definition for TestCase1 is removed or renamed then the type-checker will raise an
error reminding the modeller to update the test selection as well. When test cases are
grouped into modules, according to our approach, there is no type-safe way to select
test cases like in VDM++. The reason for this is that modules (i.e. the test cases) can-
not be instantiated or passed as values. One workaround is to pass the module names
as string literals at the price of loosing type-safety. Concretely, execution of the tests
defined in the modules TestCase1 and TestCase2 can then be achieved by passing
{"TestCase1", "TestCase2"} to the framework.

3.5 VDM-SL test example

An example of a test module, defined using our extension of VDMUnit, is shown in
Listing 1.5. This module defines a setUp operation to initialise state (before executing
each test), and a tearDown operation to execute some appropriate cleanup procedure
(e.g. removing temporary files). In addition, the test module defines three test opera-
tions, named testOdd, testInverse, and testPos.

1 module MyTest
2 imports from Assert all
3 exports all
4
5 definitions
6
7 state St of
8 x : int
9 end;

10
11 operations
12
13 setUp : () ==> ()

P. W. V.Tran-Jørgensen et al.

14 setUp () == initState();
15
16 tearDown : () ==> ()
17 tearDown () == cleanUp();
18
19 testOdd: ()==>()
20 testOdd()==
21 (
22 x := x + 1;
23 Assert‘assertFalseMsg("Expected x to be odd", x mod 2 = 0);
24);
25
26 testInverse: ()==>()
27 testInverse()==
28 Assert‘assertTrueMsg("Expected 1/x to be positive", 1/x > 0);
29
30 testPos: ()==>()
31 testPos()==
32 (
33 x := x - 1;
34 Assert‘assertTrueMsg("Expected x to be positive", x > 0);
35);
36
37 initState : () ==> ()
38 initState () == x := 0;
39
40 cleanUp : () ==> ()
41 cleanUp () == skip;
42
43 end MyTest

Listing 1.5: Test module example.

Once MyTest is executed, by evaluating TestRunner‘run(), the test report shown
in Listing 1.6 is generated by Overture. As shown in this output, three tests are executed
of which testOdd passes successfully, testInverse is recorded as an error (due to
an attempt to divide by zero), and testPos fails due to a wrong assertion.

1 **
2 ** Overture Console
3 **
4 Executing test: MyTest‘testOdd()
5 OK
6 Executing test: MyTest‘testInverse()
7 ERROR: Error 4134: Infinite or NaN trouble in ’MyTest’ (

A.vdmsl) at line 26:56
8 Executing test: MyTest‘testPos()
9 FAIL: Expected x to be positive

10 --
11 | TEST RESULTS |

Enhancing Testing of VDM-SL models

12 |--------------------------------------|
13 | Executed: 3 |
14 | Failures: 1 |
15 | Errors : 1 |
16 |______________________________________|
17 | FAILURE |
18 |______________________________________|
19
20
21 TestRunner‘run() = ()
22 Executed in 0.055 secs.

Listing 1.6: Output obtained by executing the tests in Listing 1.5.

3.6 Java implementation

Automatic execution of tests involves inspection of modules in order to identify the tests
that must be executed. As this is not possible to do solely using VDM-SL, the part of the
framework that handles test execution is implemented in Java, which achieves this using
Java’s reflection feature. In this way, one can inspect the individual test modules at the
abstract syntax level in order to identify and execute the individual test operations. The
combined execution of VDM-SL and Java is enabled using Overture’s VDM-to-Java
bridge.

3.7 Jenkins integration server

In addition to generating test reports such as that shown in Listing 1.6, our extension
of VDMUnit supports test report generation in a JUnit compatible XML format. Using
this approach, one can, for example, inspect and visualise the test reports using the
Jenkins [13] integration server. To generate XML test reports one simply has to pass
the property -Dvdm.unit.report to the Overture interpreter when executing tests.
An example of how this feature has been applied in the context of the harvest planning
project is given in Section 5.

4 Code-generating VDM-SL tests

Overture’s Java code-generator is exposed as a Maven plugin [21] in order to improve
build and test automation in a VDM setting [19]. This Maven plugin already supports
translation of VDMUnit tests, specified using VDM++, to equivalent JUnit tests.4 Es-
sentially, this feature enables one to reuse the model tests to validate the implemen-
tation of the model. This step helps ensure that the code-generator did not introduce
subtle bugs in the translation. As part of our work we have extended the code-generator

4 An online tutorial that demonstrates how to invoke the Java code-generator using Maven is
available via [7].

P. W. V.Tran-Jørgensen et al.

to also support code-generation of VDM-SL unit tests that use the naming convention
introduced in Section 3.1.

The output obtained by translating the VDM-SL tests in Listing 1.5 to JUnit4 tests
is shown in Listing 1.7. This is achieved by first translating the test module, including
the test operations, to Java using Overture’s VDM-to-Java code-generator. Secondly, the
generated test methods and life-cycle methods are annotated using appropriate JUnit an-
notations. This involves annotating the setUp and tearDown methods using @Before

and @After, respectively, as well as annotating all tests using @Test. Finally, the
VDM-SL assertions are translated to equivalent JUnit method calls, i.e. assertTrue
and assertFalse.

1 package dk.au.seng.cge.codegen;
2
3 import java.util.*;
4 import org.overture.codegen.runtime.*;
5 import org.junit.*;
6
7 @SuppressWarnings("all")
8 final public class MyTest {
9 private static St St = new St(null);

10
11 @Before
12 public void setUp() {
13 initState();
14 }
15
16 @After
17 public void tearDown() {
18 cleanUp();
19 }
20
21 @Test
22 public void testOdd() {
23 St.x = St.x.longValue() + 1L;
24 Assert.assertFalse("Expected x to be odd", Utils.equals(

Utils.mod(St.x.longValue(), 2L), 0L));
25 }
26
27 @Test
28 public void testInverse() {
29 Assert.assertTrue(
30 "Expected 1/x to be positive", Utils.divide((1.0 * 1L),

St.x.longValue()) > 0L);
31 }
32
33 @Test
34 public void testPos() {
35 St.x = St.x.longValue() - 1L;

Enhancing Testing of VDM-SL models

36 Assert.assertTrue("Expected x to be positive", St.x.
longValue() > 0L);

37 }
38
39 public void initState() {
40 St.x = 0L;
41 }
42
43 public void cleanUp() {
44 /* skip */
45 }
46
47 public String toString() {
48 return "MyTest{" + "St := " + Utils.toString(St) + "}";
49 }
50
51 public static class St implements Record {
52 public Number x;
53
54 public St(final Number _x) {
55 x = _x;
56 }
57
58 public boolean equals(final Object obj) {
59
60 if (!(obj instanceof St)) {
61 return false;
62 }
63
64 St other = ((St) obj);
65
66 return Utils.equals(x, other.x);
67 }
68
69 public int hashCode() {
70 return Utils.hashCode(x);
71 }
72
73 public St copy() {
74 return new St(x);
75 }
76
77 public String toString() {
78 return "mk_MyTest‘St" + Utils.formatFields(x);
79 }
80 }
81 }

Listing 1.7: Output obtained by translating the VDM-SL tests to Java.

P. W. V.Tran-Jørgensen et al.

Since Overture’s Java code-generator is exposed as a Maven plugin it can be invoked
using the Maven build system in order to code-generate VDM specifications and model
tests, as well as running the generated JUnit tests automatically. Once the Maven plugin
is configured [7], all of this can be achieved by invoking a single Maven command
such as mvn install. The output obtained by running the code-generated versions
of the VDM-SL tests in Listing 1.5 is shown in Listing 1.8. As expected, the output in
this listing shows that the test results are equivalent to those obtained by running the
VDM-SL tests.

1 Running MyTest
2 Tests run: 3, Failures: 1, Errors: 1, Skipped: 0, Time elapsed:

0.066 sec <<< FAILURE!
3 testPos(MyTest) Time elapsed: 0.005 sec <<< FAILURE!
4 java.lang.AssertionError: Expected x to be positive
5 ...
6 testInverse(MyTest) Time elapsed: 0.002 sec <<< ERROR!
7 java.lang.ArithmeticException: Division by zero is undefined
8 ...
9 Results :

10 Failed tests: testPos(MyTest): Expected x to be positive
11 Tests in error:
12 testInverse(dk.au.seng.cge.codegen.MyTest): Division by zero

is undefined
13 Tests run: 3, Failures: 1, Errors: 1, Skipped: 0

Listing 1.8: Output obtained by running the generated JUnit tests.

5 Assessment

The new VDM-SL testing features have supported the development of an industrial
harvest planning system, which enables farmers to optimise the logistics of harvest op-
erations. A typical harvest workflow starts with a combine harvester harvesting the crop.
The collected yield, which is contained in the harvester, is then unloaded into an in-field
grain cart that transports and unloads the yield into a larger on-road truck that finally
delivers the yield to a drying or storage facility. This concept is illustrated in Figure
2, where parts of the optimised route plans for each vehicle are shown. A centralised
master algorithm in the cloud initially generates route plans for each vehicle based on a
system configuration, including the field shape, number of vehicles, yield estimates, and
optimisation strategies. Once the harvest operation starts, the master algorithm moni-
tors the state of all vehicles as well as the overall harvest progress, and if necessary,
modifies the route plans for the individual vehicles to address potential deviations (e.g.
yield discrepancies).

The master algorithm is modelled in VDM-SL and implemented using Overture’s
VDM-to-Java code-generator. Figure 3 shows the structure of the model, including only
the most important modules. The model captures the state and behaviour of the different
vehicles, the overall harvest progress of the field, the route optimisation strategies, and
handling of deviations and unload coordination between vehicles. Totalling to 4200

Enhancing Testing of VDM-SL models

Fig. 2: Harvest logistics illustration.

lines of code5, whereof 1100 lines implement 134 tests. Running all tests through the
Overture interpreter takes approximately 7 hours, whereas the code-generated tests take
approximately 30 minutes. Essentially, the time difference is first of all caused by VDM
performing worse than compiled Java code. Secondly, the generated Java code does not
include pre- and postcondition, and invariant checks.

As mentioned in Section 3.7, the XML-based test results (obtained from both the
model tests and code-generated tests) can be inspected and visualised using the Jenkins
integration server . An example of how these results can be visualised using Jenkins is
shown in Figure 4. This figure provides an overview of the tests results, as well more
detailed information about the changes since last test run. Additionally, a complete list
of all failing tests is provided, and upon further inspection, detailed error messages and
stack traces.

6 Conclusion and future plans

Prior to starting this work, VDMUnit did not support unit testing of VDM-SL models
as it relied on language features only available in VDM++/VDM-RT. To address this,
we developed an extension of VDMUnit that exposes the features of this framework
using the TestRunner and Assert modules, which use a Java component to handle

5 Excluding documentation, comments and empty lines

P. W. V.Tran-Jørgensen et al.

GrainHarvest

«ExternalComponent»
FieldGraph

GrainCart
ContinuousFlow

Headland

OnTheGo

SinglePoint

TrackSeqStrategyUnloadStrategy

bridge_FieldGraph

Field

Storage

LogUnloadCoordinator

Harvester

Fig. 3: Simplified VDM-SL model structure.

Fig. 4: Visualization of VDM-SL test result in Jenkins.

Enhancing Testing of VDM-SL models

test execution. This Java component is connected to these modules using Overtue’s
VDM-to-Java bridge which is helpful when implementing VDM libraries as described
in Section 2.1. To further support this development process, we extended Overture’s
VDM-to-Java code-generator to support translation of VDM-SL unit tests into equiva-
lent JUnit tests. Our work has supported the development of a harvest planning system
for optimising the logistics of harvest operations. Currently, our work supports all of
the testing features available in VDM++/VDM-RT, except for selective test execution
as described in Section 3.4.

The Overture Language Board [2] has recently developed a workflow for library
submissions that enables any community member to submit library proposals. Accep-
tance of a library submission is expected to lead to the inclusion of the library in one or
more VDM tools. Looking ahead, we plan to submit our work as a library proposal to
hopefully get it included in future releases of Overture, thus making our work available
to others.

References

1. The Apache Maven Project website. https://maven.apache.org (2018)
2. Battle, N., Haxthausen, A., Hiroshi, S., Jørgensen, P.W.V., Plat, N., Sahara, S., Verhoef, M.:

The Overture Approach to VDM Language Evolution. In: Proceedings of the 11th Overture
workshop (Aug 2013)

3. Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Func-
tional Programming. pp. 268–279. ICFP ’00, ACM, New York, NY, USA (2000), http:
//doi.acm.org/10.1145/351240.351266

4. Couto, L.D., Larsen, P.G., Hasanagic, M., Kanakis, G., Lausdahl, K., Tran-Jørgensen,
P.W.V.: Towards Enabling Overture as a Platform for Formal Notation IDEs. In: Proceed-
ings of the 2nd Workshop on Formal-IDE (F-IDE) (Jun 2015)

5. Couto, L.D., Tran-Jørgensen, P.W.V., Edwards, G.T.C.: Combining Harvesting Operations
Optimisation using Strategy-based Simulation. In: Proceedings of the 6th International Con-
ference on Simulation and Modeling Methodologies, Technologies and Applications (SI-
MULTECH) (Jul 2016)

6. Couto, L.D., Tran-Jørgensen, P.W.V., Edwards, G.T.C.: Model-Based Development of a
Multi-algorithm Harvest Planning System. In: Simulation and Modeling Methodologies,
Technologies and Applications: International Conference, SIMULTECH 2016 Lisbon, Por-
tugal, July 29-31, 2016, Revised Selected Papers. Springer International Publishing (2018),
https://doi.org/10.1007/978-3-319-69832-8_2

7. Delegate Tutorial. https://github.com/ldcouto/delegate-tutorial (2018)
8. Dutle, A.M., Muñoz, C.A., Narkawicz, A.J., Butler, R.W.: Software Validation via Model

Animation. In: Blanchette, J.C., Kosmatov, N. (eds.) Tests and Proofs. pp. 92–108. Springer
International Publishing, Cham (2015)

9. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008)

10. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://overturetool.org/
publications/books/vdoos/

11. FsCheck website. https://github.com/fscheck/FsCheck (2018)
12. Google Test website. https://github.com/google/googletest (2018)

P. W. V.Tran-Jørgensen et al.

13. Jenkins website. https://jenkins.io (2018)
14. Jørgensen, P.W.V., Couto, L.D., Larsen, M.: A Code Generation Platform for VDM. In: Pro-

ceedings of the 12th Overture workshop (Jun 2014)
15. junit-quickcheck website. https://github.com/pholser/junit-quickcheck

(2018)
16. JUnit website. http://www.junit.org (2018)
17. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture

Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (Jan 2010),
http://doi.acm.org/10.1145/1668862.1668864

18. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial Testing for VDM. In: Proceedings of
the 2010 8th IEEE International Conference on Software Engineering and Formal Meth-
ods. pp. 278–285. SEFM ’10, IEEE Computer Society, Washington, DC, USA (Sep 2010),
http://dx.doi.org/10.1109/SEFM.2010.32, ISBN 978-0-7695-4153-2

19. Larsen, P.G., Lausdahl, K., Tran-Jørgensen, P.W.V., Coleman, J., Wolff, S., Couto, L.D.,
Bandur, V., Battle, N.: Overture VDM-10 Tool Support: User Guide. Tech. Rep. TR-2010-
02, The Overture Initiative (May 2010)

20. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating A Distributed
real time system using VDM. In: Qin, S., Qiu, Z. (eds.) Proceedings of the 13th interna-
tional conference on Formal methods and software engineering. Lecture Notes in Computer
Science, vol. 6991, pp. 179–194. Springer-Verlag, Berlin, Heidelberg (Oct 2011), ISBN 978-
3-642-24558-9

21. The Maven Project website. https://maven.org (2018)
22. Nielsen, C.B., Lausdahl, K., Larsen, P.G.: Combining VDM with Executable Code. In: Der-

rick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.)
Abstract State Machines, Alloy, B, VDM, and Z. Lecture Notes in Computer Science, vol.
7316, pp. 266–279. Springer-Verlag, Berlin, Heidelberg (2012)

23. NUnit website. http://nunit.org/ (2018)
24. Overture tool website. http://overturetool.org/ (2018)
25. RapidCheck website. https://github.com/emil-e/rapidcheck (2018)
26. Tran-Jørgensen, P.W.V.: Enhancing System Realisation in Formal Model Development.

Ph.D. thesis, Aarhus University (Sep 2016)
27. VDMUnit for VDM-SL. https://github.com/overturetool/overture/

pull/671 (2018)

