
Orthogonality and sequentiality in substructural

Linear HRSs

Connor Lane Smith

cls@clsmith.net

Abstract

Linear HRSs are higher-order rewriting systems having the substructural linear λ-calculus as a

substitution calculus. We explore the properties of orthogonality and sequentiality, focusing on

multiplicative and additive conjunction, and how they di�er in behaviour to `intuitionistic' HRSs.

Keywords and phrases lambda calculus, term rewriting, higher-order rewriting, linear logic

Digital Object Identi�er 10.4230/LIPIcs...

1 Introduction

Linear HRSs are higher-order rewriting systems having the substructural linear λ-calculus

[1] as a substitution calculus [8, 9] over which rewrites take place. Here we explore certain

interesting properties, especially orthogonality and sequentiality, where they di�er in be-

haviour to `intuitionistic' HRSs [5]. We begin with only linear implication `−◦', and later

introduce multiplicative conjunction `⊗' and additive conjunction `&'. Linear HRSs permit-

ting exponentiation `!' have been explored in the context of optimal sharing graphs [6].

I De�nition 1. Given a signature Σ of symbols, a linear λ-term t : τ is derived as follows:

x : σ ` x : σ

Γ ] {x : σ} ` t : τ

Γ ` λx.σt : σ −◦ τ
Γ ` t1 : σ −◦ τ ∆ ` t2 : σ

Γ ]∆ ` t1t2 : τ
F : τ ∈ Σ
` F : τ

I De�nition 2. A pattern is a β-normal term in which a free variable occurrence ξ may

only be applied to (terms η-equivalent to) pairwise-distinct bound variables. We call these

free variables `metavariables'. Moreover, a pattern must have a symbol, e.g. F , at its head.

I De�nition 3. A Linear HRS comprises a set of rules Γ ` l → r : α, i.e. Γ ` l : α and

Γ ` r : α, where l is a pattern and α a base type, inducing a rewrite relation C[lθ]→ C[rθ].

2 Locality

I De�nition 4. A redex is external to a term if it is `persistently outermost'. That is, its

residuals remain outermost no matter which other redexes in the term are contracted.

I De�nition 5. A rewriting system is local if any term which is not in normal form contains

at least one external redex.

A �rst-order TRS is local if it is orthogonal [7]. However, the same is not true of higher-

order rewriting. In an orthogonal HRS, the weakening of a variable may activate a new

outermost redex, so a reducible term need not necessarily have an external redex.

I Example 6. Consider the following HRS:

Gζ → A F (λx.ξ)→ B

Given a term F (λx.G(Gx)), whose outermost redex is G(Gx), one may reduce the inner

redex Gx to yield F (λx.GA), with a new outermost redex at its root having been activated

by the weakening of x. The initial term therefore had no external redex.

© Connor Lane Smith;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Orthogonality and sequentiality in substructural Linear HRSs

2.1 Overlappingness

The constraints placed on variables in the linear λ-calculus has a signi�cant impact on the

overlappingness of patterns. In an HRS, applying a metavariable to a variable means that

the variable may occur in the metavariable's substitute, but it equally may not. This means

that any two metavariable occurrences will always be uni�able, for example by mapping

both metavariables to a single closed term, and so two patterns that di�er only in their

metavariable occurrences will always overlap. In contrast, in a Linear HRS, a variable to

which a metavariable is applied must occur in the substitute, and indeed nowhere else. This

means two patterns may only overlap if intersecting metavariable occurrences are applied to

the same sets of variables.

I Example 7. The following rules overlap in an HRS, but not in a Linear HRS.

F (λx.G(ξx)ζ)→ C(ξA)ζ F (λx.Gζ(ξx))→ Cζ(ξA)

In an HRS, ξ and ζ may be mapped to a single closed term t, i.e. {ξ 7→ λx.t, ζ 7→ t}, unifying
the terms. In a Linear HRS the terms ξx and ζ are not uni�able as the substitute cannot

weaken x, which must occur in the substitute of the former yet cannot in that of the latter.

In HRSs, the overlappingness of two patterns can be determined even after replacing

all metavariable occurrences with holes. This is not true in Linear HRSs, which may have

patterns that are non-overlapping only by the arguments to their metavariable occurrences.

2.2 Extendedness

An HRS is described as `fully-extended' if each metavariable occurrence is applied to all

bound variables in scope. Full extendedness is an important property in HRSs because a

fully-extended orthogonal HRS is local [7].

Orthogonal Linear HRSs are local whether or not they are fully extended: as no variable is

permitted to weaken, there is no opportunity for non-local behaviour through the activation

of a redex by the weakening of a variable. The reducibility of a term may still be determined

by the occurrence of a variable inside one subterm or another, but this cannot change during

reduction. Variable occurrences are invariant to a term's equivalence class; a variable may

only disappear due to a substitution originating from a rewrite local to that variable's binder.

I Example 8. The orthogonal Linear HRS in Example 7 is local even though it is not

fully-extended.

2.3 `Almost overlappingness'

If the Linear HRS in Example 7 were an intuitionistic HRS then its rules would not cover

all possibilities of variable occurrence, as x might occur in both subterms, but in a Linear

HRS the two rules are exhaustive.

We cannot however trivially unify these two rules into a single rule, as F (λx.G(ξx)(ζx))

is not a legal linear λ-term, so it would seem we are essentially forced to distinguish the

two cases despite their common reduct. That two rules may be non-overlapping yet have

common reducts for all redexes, by construction, is only possible in an HRS if the right-hand

side is closed, as otherwise they must be at best almost non-overlapping.

I De�nition 9. A rewriting system is almost non-overlapping if any critical pair is a trivial

overlay.



C. L. Smith XX:3

We may call these rules `almost overlapping', as they would be almost non-overlapping

were it not for the ability of linear variables to suppress the overlap between ξx and ζ.

Almost non-overlapping rules may be resolved simply by removing one of the overlapping

rules. `Almost overlapping' rules are not quite so easily resolved, though they can be if we

introduce a type operator for multiplicative conjunction into the substitution calculus. These

e�ectively allow us to specify that a variable may occur in either of two subterms, but that

we need not discriminate between the two.

I De�nition 10. Multiplicative conjunction is added to the linear λ-calculus like so:

Γ ` t1 : τ1 ∆ ` t2 : τ2
Γ ]∆ ` t1 ⊗ t2 : τ1 ⊗ τ2

Γ ` s : σ1 ⊗ σ2 ∆ ] {x : σ1, y : σ2} ` t : τ

Γ ]∆ ` let s be x⊗ y in t : τ

I Example 11. The Linear HRS in Example 7 may be joined into a single rule by making

use of the `let-⊗-expression':

F (λx. let ξx be y ⊗ z in Gyz)→ let ξA be y ⊗ z in Cyz

Consequently, we are only able to substitute a single term for x no matter which subterm it

occurs in � hence the single right-hand metavariable occurrence ξA.

3 Non-left-linearity

Linear HRSs with only multiplicative conjunction are trivially left-linear: each variable must

occur exactly once on the left-hand side. The same is true of the right-hand side, so metavari-

able erasure is also forbidden. Neither is true once we introduce additive conjunction.

I De�nition 12. Additive conjunction is added to the linear λ-calculus like so:

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` 〈t1, t2〉 : τ1 & τ2

Γ ` t : τ1 & τ2
Γ ` fst t : τ1

Γ ` t : τ1 & τ2
Γ ` snd t : τ2

I Example 13. An `if-then-else' expression can now be written, where If : B−◦ (τ & τ)−◦ τ ,

If True ξ → fst ξ If False ξ → snd ξ

Additive conjunction permits a variable to occur more than once syntactically, even if

it is linear `semantically'. This has the perhaps slightly unusual consequence that a Linear

HRS need not necessarily be left- or right-linear in the traditional syntactic sense.

I Example 14. Consider Huet's [3] classic non-overlapping, yet non-left-linear, TRS:

F (x, x)→ A F (x,G(x))→ B C → G(C)

A very similar Linear HRS is possible, which like the original TRS is non-con�uent:

F 〈x, x〉 → Ax F 〈x,Gx〉 → Bx C → GC

We are forced here to include the free variable x on the right-hand side of the �rst two rules,

which means that unlike the original it is not weakly normalising � but it is non-con�uent:

F 〈C,C〉 → AC → A(GC)→ · · ·
F 〈C,C〉 → F 〈C,GC〉 → BC → B(GC)→ · · ·



XX:4 Orthogonality and sequentiality in substructural Linear HRSs

3.1 Erasure

We could restore weak normalisation to the previous example by including the additive

conjunctive identity, which allows us to `syntactically' erase a variable, although the reduct

is still considered to `use' the variable for the purpose of linearity.

Γ ` 〈〉 : >

I Example 15. Returning to Example 14, where A and B are both of type >−◦ 0:

F 〈x, x〉 → A〈〉 F 〈x,Gx〉 → B〈〉 C → GC

However, unless handled carefully, > is at risk of putting the most interesting properties

of substructural term rewriting in jeopardy.

I Example 16. Consider again the Linear HRS in Example 7, which is non-overlapping

solely due to the linearity of bound variables. If we were to �nd ourselves with a term

F (λx.G(D〈〉)(D〈〉)), which of the two rules would this match?

There are two possible constructions of this term. The �rst derivation constructs the

�rst 〈〉 with x in its type context, as it would if x had begun in that subterm and were

erased during reduction, and the second derivation likewise constructs the second 〈〉 with x
in its type context. In either case the variable is properly accounted for in the construction

x : 0 ` 〈〉 : >, but if we permit either occurrence to substitute x, no matter whether it was

in its type context or not, then the two rules do now overlap in this case.

The key is whether or not we consider the expression Γ ` 〈〉 : > to be constrained after

construction to substitutions over the type context Γ. If we do not then the resulting ex-

pression may be used to `swallow' a substitute for any variable, even one that does not occur

in Γ, and so we lose the ability to de�ne rules that overlap except for their metavariables'

extendedness. If we do apply this constraint then it must be maintained during reduction,

so that we can only construct a new 〈〉-expression from an old if substitution allows, e.g.:

Γ ] {x : σ} ` 〈〉 : > ∆ ` t : σ

Γ ]∆ ` 〈〉[t/x] ≡ 〈〉 : >

It may therefore make sense to label a term 〈〉 with its type context Γ � i.e. 〈〉Γ � so

that its substitutions may be correctly restricted to those variables in Γ.

3.2 Variable containment

Although additive conjunction proves useful for rules such as `If' in Example 13, and is

manageable even when used non-left-linearly, if used to the their full potential they can

serve to undermine the `natural' variable containment provided by the linear λ-calculus and

require that we place restrictions on metavariable usage so that we may have a meaningful

rewrite relation.

The most obvious problem is a rule like F 〈〉 → ξ, in which the metavariable ξ does not

occur on the left-hand side, as it is `used' in the construction of 〈〉. Another, more subtle

problem, is a rule like F (fst ξ)→ snd ξ, where the metavariable ξ does occur on both sides,

yet the value of its second half as used on the right-hand side is unde�ned by the matching

of the left-hand side. In either case, a metavariable in the reduct may be instantiated to

any term having the exact same free variables as the term in the redex � a form of term

narrowing peculiar to the linear type system.



C. L. Smith XX:5

It would be heavy-handed, though, to simply forbid these expressions from the left-hand

side altogether. Although they can be used, if unconstrained, to break the rewrite relation,

they can also be used to construct certain terms on the right-hand side that would not

otherwise be possible.

I Example 17. Consider the following Linear HRS, where F : (0 & 0)−◦ 0:

F 〈C(fst ξ), C(snd ξ)〉 → Fξ

It would not be possible to use two metavariables ξ1 and ξ2 to replace fst ξ and snd ξ, as

the two subterms in 〈t1, t2〉 must have the same set of free variables, which would not hold.

4 Sequentiality

Sequentiality [4] may be de�ned for HRSs in much the same way as it is for TRSs, except for

the added complication of variables, which if the system is non-fully-extended may under-

mine the property in the same way as with non-locality. Yet, since in the linear λ-calculus

variable occurrence is invariant in reduction, the presence of a bound variable in a term may

be determined for good when its root is constructed. If variable occurrence may be checked

`out of band', as if each symbol were labelled when constructed with the variables occurring

in each of its arguments, then bound variables cease to pose a threat to sequentiality: we

are simply matching both on symbols and on their static labels of variable occurrences.

A system like that in Example 7 would then distinguish betweenGx:1 andGx:2, indicating

whether the bound variable x occurs in its �rst or second subterm, so that F (λx.Gx:i�1�2)

has �i � either �1 or �2 � as a sequential index. Using a mechanism like this, or indeed

one that actually performs the required occurrence check to determine whether G ought to

be labelled as Gx:1 or Gx:2 as it goes along, sequentiality may then proceed as normal. Of

course, other rules may require similar labellings, so we must support checking not only Gx:1

but also Gφ for any mapping φ : Γ→ N where Γ ` Gt1t2 : τ .

If a similar system were attempted for non-fully-extended intuitionistic HRSs then the

labelling would undermine the locality of the rewrite step, as the weakening of a variable may

cause a relabelling of symbols all the way up to the root of the term. But with Linear HRSs

a relabelling may only occur downwards, triggered by a substitution local to a variable's

binder, and so sequential reduction remains a meaningful reduction strategy.

Similar to overlappingness, non-full-extendedness allows for two terms to be sequential

only because of their occurring free variables, even if they are non-overlapping.

I Example 18. Consider `Gustave's TRS' [2], which is non-overlapping yet non-sequential:

F (A,B, x)→ r1 F (x,A,B)→ r2 F (B, x,A)→ r3

A Linear HRS counterpart to this may have variable occurrences that alter its sequentiality:

F (λx.λy. x⊗ y ⊗ ξ)→ r1 F (λx.λy. ξ ⊗ x⊗ y)→ r2 F (λx.λy. y ⊗ ξ ⊗ x)→ r3

Although this has the same construction in terms of its atoms and metavariables, and so the

terms are pattern matched in the same way, the fact that those atoms are variables which

may be subject to a variable occurrence check means that we can determine their location

without having to inspect the subterm in such a way that it must be a sequential index.



XX:6 Orthogonality and sequentiality in substructural Linear HRSs

References

1 Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer

Science, 111:3�57, 1993.

2 Gérard Berry. Bottom-up computation of recursive programs. Revue Française

d'Automatique, Informatique et Recherche Opérationnelle, 10:47�82, 1976.

3 Gérard Huet. Con�uent reductions: Abstract properties and applications to term rewriting

systems. Journal of the ACM, 27:797�821, 1980.

4 Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting systems, I and

II. Computation Logic � Essays in Honor of A. Robinson, pages 394�443, 1991.

5 Tobias Nipkow. Higher-order critical pairs. In Proceedings of the 6th Annual IEEE Symposium

on Logic in Computer Science, 1991.

6 Connor Lane Smith. Optimal Sharing Graphs for Substructural Higher-Order Rewriting Sys-

tems. PhD thesis, University of Kent, 2017.

7 `Terese'. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.

8 Vincent van Oostrom. Con�uence for abstract and higher-order rewriting. PhD thesis, Vrije

Universiteit Amsterdam, 1994.

9 Femke van Raamsdonk. Con�uence and normalisation for higher-order rewriting. PhD thesis,

Vrije Universiteit Amsterdam, 1996.


	Introduction
	Locality
	Overlappingness
	Extendedness
	`Almost overlappingness'

	Non-left-linearity
	Erasure
	Variable containment

	Sequentiality

