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It is clear that, while de Bruijn indices certainly work great as a model for vari-

ables as used by abstract machines constrained to a single evaluation strategy, in

our opinion it remains unclear when variable names or de Bruijn indices are best

suited for reasoning about reduction. K. Rose et al. in [RBL12]

1. Introduction

We would like to strengthen Kris Rose and his co-authors statement, by saying that variable
names are better suited for reasoning about reduction; however, based on the very simple calculus
λυ, we show how de Bruijn indices are well suited for counting certain aspects of reduction.

Despite their apparent practical utility, quantitative aspects of term rewriting systems are
not well studied. In [CKS89] Choppy, Kaplan and Soria provide a quantitative evaluation of
a general class of con�uent, terminating term rewriting systems in which the term reduction
cost (i.e. the number of rewriting steps required to reach the �nal normal form) is indepen-
dent of the assumed normalisation strategy. Following a similar, analytic approach, Dershowitz
and Lindenstrauss provide an average-time analysis of inference parallelisation in logic pro-
gramming [DL89]. More recently, Bendkowski, Grygiel and Zaionc analyse quantitative aspects
of normal-order reduction of combinatory logic terms and estimate the asymptotic density of
normalising combinators [BGZ17; Ben17]. Alas, due to the intractable, epitheoretic formalisa-
tion of substitution in untyped λ-calculus, its quantitative rewriting aspects have, to our best
knowledge, not yet been investigated. A full version of this paper is in [BL18].

In the following paper we o�er a combinatorial perspective on substitution resolution in
λ-calculus and propose a combinatorial analysis of explicit substitutions in λυ-calculus [Les94].
Our quantitative analysis of λυ-terms is based on techniques borrowed from analytic combina-
torics, in particular singularity analysis developed by Flajolet and Odlyzko [FO90]. Using these
techniques, we argue that λυ is, in a strong sense, an intrinsically non-strict calculus of explicit
substitutions. Typically λυ-terms represent non-strict computations and almost all substitutions
are in fact suspended. Finally, we investigate the distribution of various redexes governing the
substitution resolution in λυ and investigate the quantitative contribution of various substitution
primitives. Figure 1 summarises the λυ rewriting system.

Remark. We choose to outline λυ-calculus following the presentation of [Les96] where indices
start with 0 instead of [Les94; Ben+96] where de Bruijn indices start with 1, as introduced by
de Bruijn himself, cf. [Bru72]. Although both conventions are assumed in the context of static,
quantitative aspects of λ-calculus, the former convention seems to be the most recent standard,
cf. [GL13; GL15; Ben+17; GG16].
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(λa)b→ a[b/](Beta)

(ab)[s]→ a[s](b[s])(App)

(λa)[s]→ λ(a[⇑ (s)])(Lambda)

0[a/]→ a(FVar)

(S n)[a/]→ n(RVar)

0[⇑ (s)]→ 0(FVarLift)

(S n)[⇑ (s)]→ n[s][↑](RVarLift)

n[↑]→ S n.(VarShift)

(a) Rewriting rules.

T ::= N | λT | T T | T [S]
S ::= T / | ⇑ (S) | ↑
N ::= 0 | SN .

(1)

(b) Terms of λυ-calculus. Note that de Bruijn
indices are encoded in unary base using a suc-
cessor operator S.

Figure 1. The λυ-calculus rewriting system.

2. Counting λυ-terms

In order to count terms, we impose a size notion such that the size of a λυ-term, denoted as
| · |, is equal to the total number of constructors (in the associated term algebra, see Figure 1b)
of which it is built. Figure 2 provides the recursive de�nition of term size.

|n| = n+ 1

|λa| = 1 + |a|
|ab| = 1 + |a|+ |b|
|a[s]| = 1 + |a|+ |s|

|a/| = 1 + |a|
| ⇑ (s)| = 1 + |s|
| ↑ | = 1.

Figure 2. Natural size notion for λυ-terms.

Such a size notion, in which all building constructors contribute equal weight one to the overall
term size was introduced in [Ben+16] as the so-called natural size notion. Certainly, our choice
is arbitrary and, in principle, di�erent size measures can be assumed, cf. [GL15; Ben+16; GG16].
For convenience, we choose the natural size notion thus avoiding the obfuscating (though still
manageable) technical di�culties arising in the analysis of general size model frameworks, see
e.g. [GG16].

Equipped with a size notion ensuring that for each n ≥ 0 the total number of λυ-terms of size
n is �nite, we can proceed with our enumerative analysis. Surprisingly, the counting sequence
corresponding to λυ-terms in the natural size notion corresponds also to the celebrated sequence
of Catalan numbers.

Proposition 2.1. Let Tn and Sn denote the number of λυ-terms and substitutions of size n,
respectively. Then

(2) Tn =

0, for n = 0
1

n+ 1

(
2n

n

)
, otherwise

and Sn =


0, for n = 0
n−1∑
k=0

1

k + 1

(
2k

k

)
otherwise.

hence also

(3) Tn ∼
4n

√
πn3/2

whereas Sn ∼
4n+1

3
√
πn3/2

.

The correspondence exhibited in Proposition 2.1 witnesses the existence of a bijection between
λυ-terms of size n and, for instance, plane binary trees with n inner nodes. In what follows we
provide an alternative, constructive proof of this fact.
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2.1. Bijection between λυ-terms and plane binary trees. Let B denote the set of plane
binary trees (i.e. binary trees in which we distinguish the order of subtrees). Consider the
map ϕ : B → T de�ned as in Figure 3. Note that, for convenience, we omit drawing leafs.
Consequently, nodes in Figure 3 with a single or no subtrees are to be understood as having
implicit leafs attached to vacuous branches.

ϕ

(
•

R

)
= λϕ(R)

ϕ

(
•

L

)
= S n

when ϕ(L) = n

ϕ

(
•

L

)
= a[⇑n+1 (s)]

when ϕ(L) = a[⇑n (s)]

ϕ(•) = 0

ϕ

 •
•

R

 = ϕ(R)[↑]

ϕ

 •
•

L R

 = ϕ(L)[ϕ(R)/]

ϕ

(
•

L R

)
= ϕ(L)ϕ(R)

Figure 3. Pictorial representation of the size-preserving bijection ϕ between
λυ-terms and plane binary trees.

Given a tree T as input, ϕ translates it to a corresponding λυ-term ϕ(T ) based on the shape
of T (performing a so-called pattern matching). This shape, however, might be determined
through a recursive call to ϕ, see the second on third rule of the left-hand size of Figure 3.

Proposition 2.2. The map ϕ : B → T is a bijection preserving the size of translated structures.
In other words, given a tree T with n inner nodes ϕ(T ) is a λυ-term of size n.

With a computable map ϕ : B → T it is now possible to translate plane binary trees to
corresponding λυ-terms in linear, in the size of the binary tree, time. Composing ϕ with e�ective
samplers (i.e. computable functions constructing random, conditioned on size, structures) for the
former, we readily obtain e�ective samplers for random λυ-terms.

Remark. Using Rémy's elegant sampling algorithm [Rém85] constructing uniformly random,
conditioned on size, plane binary trees of given size n with ϕ provides a linear time, exact-
size sampler for λυ-terms. For a detailed presentation of Rémy's algorithm, we refer the curious
reader to [Knu06; BBJ13]. Additional combinatorial parameters, such as for instance the number
of speci�c redex sub-patterns in sampled terms, can be controlled using the tuning techniques
of [BBD18] developed within the general framework of Boltzmann samplers [Duc+04] and the
exact-size sampling framework of the so-called recursive method [NW78].

3. Statistical properties of random λυ-terms

In the current section we focus on quantitative properties of random terms. We start our quest
with properties of explicit substitutions within λυ-calculus. In what follows, we investigate the
proportion of λυ-terms representing intermediate steps of substitution in classic λ-calculus.

3.1. Strict substitution forms. When a β-rule is applied and (λx.a)b is rewritten to a[x := b]
the meta-level substitution of b for variable x in a is executed somewhat outside of the calculus.
In operational terms, the substitution a[x := b] is meant to be resolved ceaselessly and cannot
be, for instance, suspended or even (partially) omitted if it produces a dispensable result. Such a
resolution tactic is re�ected in λυ-calculus in terms of the following notion of strict substitution
forms.
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De�nition 3.1. A λυ-term t is in strict substitution form if there exist two pure (i.e. without
explicit substitutions) terms a, b and a sequence t1, . . . , tn of λυ-terms such that

(4) a[b/]→ t1 → · · · → tn = t

and none of the above reductions is (Beta). Otherwise, t is said to be in lazy substitution form.

In other words, strict substitution forms represent the intermediate computations of resolving
substitutions in the classic λ-calculus. Certainly, by design λυ-calculus permits more involved
resolution tactics, mixing for instance Beta-reduction and υ-reductions. In what follows we show
that the proportion of terms representing the indivisible, classic resolution tactic tends to zero
with the term size tending to in�nity.

Proposition 3.2. Asymptotically almost all λυ-terms are in lazy substitution form.

3.2. Suspended substitutions. Closures in λυ-terms are intended to represent suspended,
unevaluated substitutions in the classic λ-calculus. In other words, substitutions whose resolu-
tion is meant to be carried out in a non-strict manner. It the current section we investigate the
quantitative impact of this suspension on random terms.

De�nition 3.3. Let s be a substitution and t be a λυ-term. Then, s, all its subterms and, all
the constructors it contains are said to be suspended in t if t contains a subterm in form of [s];
in other words, when s occurs under a closure in t.

In the following proposition we show that, in expectation, almost all of the term content
(i.e. represented computation) is suspended under closures.

Proposition 3.4. Let Xn be a random variable denoting the number of constructors not sus-
pended under a closure in a random λυ-term of size n. Then, the expectation E(Xn) satis�es

(5) E(Xn) −−−→
n→∞

316

3
.

3.3. Substitution resolution primitives. The internalisation of substitution in λυ-calculus in-
troduces several new types of redexes governing the resolution of closures, see Figure 1a. Instead
of a single β-redex, speci�c implementations of the λυ-calculus rewriting system, such as for in-
stance the abstract U-machine, have to handle eight rewriting rules together with their intricate
interaction.

In the current section we investigate the distribution of speci�c redexes in random λυ-terms,
providing insight in the quantitative contribution of various substitution resolution primitives.

Proposition 3.5. Let Xn be a random variable denoting the number of β-redexes in a random
λυ-term of size n. Then, after standardisation, Xn converges in law to a Gaussian distribution

with speed of convergence of order O
(

1√
n

)
. The limit expectation E(Xn) and variance V(Xn)

satisfy

(6) E(Xn) −−−→
n→∞

3

64
n and V(Xn) −−−→

n→∞

153

4096
n

Likewise, we obtain similar results for the other rewriting rules.

• (App)-redexes E(Xn) −−−→
n→∞

1

32
n and V(Xn) −−−→

n→∞

45

2048
n

• (Lambda)-redexes E(Xn) −−−→
n→∞

1

32
n and V(Xn) −−−→

n→∞

53

2048
n

• (FVar)-redexes E(Xn) −−−→
n→∞

3

256
n and V(Xn) −−−→

n→∞

729

65536
n

• (RVar)-redexes E(Xn) −−−→
n→∞

1

256
n and V(Xn) −−−→

n→∞

249

65536
n
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• (FVarLift)-redexes E(Xn) −−−→
n→∞

1

128
n and V(Xn) −−−→

n→∞

241

32768
n

• (RVarLift)-redexes E(Xn) −−−→
n→∞

1

384
n and V(Xn) −−−→

n→∞

377

147456
n

• For (VarShift)-redexes E(Xn) −−−→
n→∞

1

64
n and V(Xn) −−−→

n→∞

57

4096
n

The following table outlines the obtained means and variances.

Redex Mean Variance
(Beta) 0.046875n 0.037354n
(App) 0.031250n 0.021973n

(Lambda) 0.031250n 0.025879n
(VarShift) 0.015625n 0.013916n
(FVar) 0.011719n 0.011124n

(FVarLift) 0.007812n 0.007355n
(RVar) 0.003906n 0.003799n

(RVarLift) 0.002604n 0.002557n

4. Conclusions

Our contribution is a step towards the quantitative analysis of substitution resolution and,
in particular, the average-case analysis of abstract machines associated with calculi of explicit
substitutions. Although we focused on λυ-calculus, other calculi are readily amenable to similar
analysis. Our particular choice is motivated by the relative, compared to other calculi of explicit
substitutions, simple syntax of λυ. With merely eight rewriting rules, λυ is one of the concep-
tually simplest calculi of explicit substitutions. Notably, rewriting rules contribute just to the
technical part of the quantitative analysis, not its general scheme. Consequently, we expect that
investigations into more complex calculi might be more technically challenging, however should
not pose signi�cantly more involved issues.

Our quantitative analysis exhibited that typical λυ-terms represent, in a strong sense, in-
trinsically non-strict computations of the classic λ-calculus. Typically, substitutions are not
ceaselessly evaluated, but rather suspended in their entirety; almost all of the encoded compu-
tation is suspended under closures. Not unexpectedly, on average, the most frequent redex is
(Beta). In the υ fragment of λυ, however, the most recurrent redexes are, in order, (App) and
(Lambda). The least frequent, and at the same time the most intricate redex, is (RVarLift).
Let us note that such a diversity of redex frequencies might be exploited in practical imple-
mentations. For instance, knowing that speci�c redexes are more frequent than others, abstract
machines might be aptly optimised.

Finally, as an unexpected by-product of our analysis, we exhibited a size-preserving bijec-
tion between λυ-terms and plane binary trees, enumerated by the famous Catalan numbers.
Notably, such a correspondence has practical implications. Speci�cally, we established an exact-
size sampling scheme for random λυ-terms based on known samplers for the latter structures.
Consequently, it is possible to e�ectively generate random λυ-terms of size n in O(n) time.
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