
AUTOMATIC TERMINATION ANALYSIS USING WANDA

CYNTHIA KOP

Department of Software Science, Radboud University Nijmegen
e-mail address: C.Kop@cs.ru.nl

Abstract. WANDA is a fully automatic termination analysis tool for higher-order term
rewriting. In this paper, we will discuss WANDA’s underlying methodology. Most pertinently,
this includes a higher-order dependency pair framework, weakly monotonic algebras through
higher-order polynomials, and a variation of the higher-order recursive path ordering. All
techniques are employed automatically using SAT encodings.

1. Introduction

Termination of term rewriting systems has been an area of active research for several
decades. In recent years the field of automatically proving termination has flourished, and
several strong provers have been developed to participate against each other in the annual
International Termination Competition [27].

Compared to the core area of first-order term rewriting, higher-order term rewriting
provides some unique challenges, for example due to bound variables. Nevertheless, the
higher-order category of the termination category has seen the participation of a range of
tools (HOT [2]), THOR [6], WANDA), each using different techniques.

WANDA, a tool structured primarily around higher-order dependency pairs, has been the
leading tool in this category since 2013. WANDA was also the tool of choice as a termination
back-end in the higher-order category of the International Confluence Competition [7],
with both participating tools in 2016 (ACPH [25] and CSIˆho [23]) delegating termination
questions to WANDA.

In this paper we will discuss the most important techniques used in WANDA. To this end
we follow roughly the structure of an analysis by WANDA: first a higher-order TRS is read and
(if necessary) translated into WANDA’s internal formalism, AFSMs (§2); then basic techniques
for non-termination (§3) and for simple termination proofs using reduction pairs (§4) are
applied. Finally, responsibility is passed to the dependency pair framework (§5).

2. Higher-order term rewriting using AFSMs

Unlike first-order term rewriting, there is no single, unified approach to higher-order term
rewriting, but rather a number of similar but not fully compatible systems aiming to combine
term rewriting and typed λ-calculi. To support (non-)termination proofs in several popular
formalisms at once, WANDA uses her own internal format, Algebraic Functional Systems with

c© Cynthia Kop
Creative Commons

1



2 CYNTHIA KOP

Meta-variables. AFSMs are essentially simply-typed CRSs [16] and also largely correspond
to the formalism in [4]; they are fully explained in [19, Ch. 2] and in [10]. We here present an
overview which assumes familiarity with term rewriting and simply-typed lambda-calculus.

Terms are built from a set of simply-typed variables V and a set F of simply-typed
function symbols, using abstraction and application to form well-typed expressions. Meta-
terms are built from V, F and a set M of meta-variables, each equipped with a type
declaration [σ1 × · · · × σk]→ τ , using abstraction, application and meta-variable application
Z[s1, . . . , sk] (where Z : [σ1 × · · · × σk]→ τ ∈M and each si : σi). Meta-variables are not
used as λ-binders. We denote FMV (s) for the set of meta-variables occurring in s.

A substitution γ is a partial function mapping variables x : σ to terms of type σ and
meta-variables Z : [σ1 × · · · × σk] → τ to terms λx1 . . . xk.t of type σ1 → . . . → σk → τ .
For a meta-term s whose meta-variables all occur in the domain of γ, we let sγ denote s
with occurrences of variables x in the domain of γ replaced by γ(x), and Z[s1, . . . , sk] by
t[x1 := s1γ, . . . , xk := skγ] if γ(Z) = λx1 . . . xk.t; here, [x1 := s1γ, . . . , xk := skγ] is the
substitution mapping each xi to siγ.

Rules are pairs `⇒ r of meta-terms of the same type, such that FMV (r) ⊆ FMV (`),
both sides are closed (all their variable occurrences are bound) and ` is a pattern: for
all sub-meta-terms of ` which have the form Z[s1, . . . , sk] t1 · · · tn necessarily n = 0 and
s1, . . . , sk are distinct variables. A set of rules R defines a rewrite relation ⇒R as the
smallest monotonic relation on terms that contains all pairs (`γ, rγ) with `⇒ r ∈ R and γ
a substitution on domain FMV (`).

Meta-variables are used in early forms of higher-order rewriting such as Aczel’s Con-
traction Schemes [1] and Klop’s Combinatory Reduction Systems [16]. They strike a
balance between matching modulo β-reduction and syntactic matching. Essentially, ap-
plying a substitution on a meta-term can be seen as computing a β-development. For
example d (λx.sin (Z[x]))[Z := λy.plus y x] evaluates to d (λz.sin (plus z x)), and
Z[0, nil][Z := λxy.plus x (len y)] to plus 0 (len nil).

Example 1. Let F ⊇ {0 : nat, s : nat → nat, nil : list, cons : nat → list →
list, map : (nat→ nat)→ list→ list} and consider the following rules:

map (λx.Z[x]) nil ⇒ nil

map (λx.Z[x]) (cons H T ) ⇒ cons Z[H] (map (λx.Z[x]) T )

Then map (λx.0) (cons 0 (cons (s 0) nil))⇒R cons 0 (map (λx.0) (cons (s 0) nil))⇒R
cons 0 (cons 0 (map (λx.0) nil)) ⇒R cons 0 (cons 0 nil). Note that the bound vari-
able x does not need to occur in the body of λx.0 to match λx.Z[x]. It is allowed to
occur, though: map (λx.s (s x)) (cons 0 (cons (s 0) nil)) reduces in three steps to
cons (s (s 0)) (cons (s (s (s 0))) nil).

Example 2. In Example 1, a term map s (cons 0 nil) can not be reduced, because s does
not instantiate λx.Z[x]. We could alternatively consider the rules:

map Z nil ⇒ nil

map Z (cons H T ) ⇒ cons (Z H) (map Z T )

Here, Z has a type declaration []→ nat→ nat instead of [nat]→ nat, and the second rule
employs explicit application. Then map s (cons 0 nil)⇒R cons (s 0) (map s nil). However,
we may need explicit β-reductions; e.g., map (λx.s x) (cons 0 nil)⇒R cons ((λx.s x) 0)
(map (λx.s x) nil)⇒β cons (s 0) (map (λx.s x) nil).



AUTOMATIC TERMINATION ANALYSIS USING WANDA 3

Following [19, §2.3.1] and [18, §7], uncurrying does not affect termination provided the
rules are (essentially) unchanged. That is, let arity(f) denote the largest number k such that
(1) f can be applied to at least k arguments, and (2) every occurrence of f in R is applied to
at least k arguments. Then to prove termination it suffices to show that there is no infinite
reduction s1 ⇒R s2 ⇒R . . . where, in every term si, all symbols f always occurs with at
least arity(f) arguments. In Example 1, arity(s) = 1 and arity(cons) = arity(map) = 2;
thus, we do not need to consider terms such as map s (cons 0 nil) or map (λx.s x) for
termination. Arities are essential in various techniques (see, e.g., §4).

Input to WANDA.. WANDA is written for Linux, and can be invoked using:
> ./wanda.exe <filename>

Filenames describing an AFSM should have extension .afsm and list first all function
symbols with their types (each on an individual line) and then the rules, after an empty
line as separator. Arities and types of meta-variables do not need to be given, as these
are automatically derived. Types of bound variables may be given in the binder, but can
typically also be derived from context.

Example 3. Example 1 can be described to WANDA as follows.

nil : list

cons : nat -> list -> list

map : (nat -> nat) -> list -> list

map (/\x:nat.Z[x]) nil => nil

map (/\x:nat.Z[x]) (cons H T) => cons Z[H] (map Z T)

WANDA automatically derives arity 2 for both cons and map. Removing the :nat part in the
rules does not affect the analysis, as this typing is clear from context.

The formalism used in the termination competition [27] – “higher-order rewriting union
beta”, which I will typically refer to as Algebraic Functional Systems (AFSs) – is very similar
to AFSMs, but uses variables for matching rather than meta-variables; this gives rules like
those in Example 2. WANDA can read such systems either in the competition’s .xml format
or in her own human-readable presentation of this same format (.afs), and translates them
to AFSMs by applying the transformations of [18] and then replacing all free variables x : σ
in rules by a corresponding meta-variable X : []→ σ.

The use of meta-variables for matching allows for the representation of rules such as
d (λx.sin Z[x])⇒ λx.(d (λy.Z[y]) x)× (cos x), which have no counterpart in AFSs. This
makes it possible to encode pattern HRSs [22, 24] and also CRSs [16] into AFSMs. It is
future work to include such translations directly into WANDA.

Thus, the first step of a termination analysis in WANDA is to read the input: either an
AFSM whose types are derived, or an AFS which is simplified and translated to the AFSM
formalism. The second step is to derive arities, which are saved for later usage. When this
is done, control is passed to the non-termination module.

3. Non-termination

Although the focus in her development has been on termination, WANDA has a basic checker
with two tests to quickly identify simple cases of non-termination.



4 CYNTHIA KOP

Obvious loops. An AFSM is clearly non-terminating if there is a reduction s⇒∗R t such
that an instance sγ of s occurs as a subterm of t. To discover such loops, WANDA takes a
rule left-hand side, replaces meta-variable applications Z[x1, . . . , xk] by variable applications
y x1 · · ·xk, and performs a breadth-first search on reducts, not going beyond the first
thousand reducts. This simple method will not find any sophisticated counterexamples for
termination, but is quick and easy, and often catches mistakes in a recursive call.

Instances of ωω. Non-termination of the untyped λ-calculus may be demonstrated with the
self-reducing term ωω, where ω = λx.xx. A higher-order variation of this example is given by
rules such as f (c Z) X ⇒ Z X with c : σ → σ, where a function (Z) is taken out of a lower-
order context: here, if we let ω := c (λx.f x x), we have f ω ω ⇒R (λx.f x x) ω ⇒β f ω ω.

We can generalise the idea as follows. A context is a meta-term C[21, . . . ,2n] containing
n typed holes 2i, and C[s1, . . . , sn] denotes the same meta-term with each 2i replaced
by si. WANDA identifies rules ` ⇒ r where ` has the form C[D[Z], X] such that: (1)
Z : [] → σ1 → . . . → σn → τ ∈ M, with τ the type of `; (2) there is i such that D[Z] has
type σi and r can be written as E[Z s1 · · ·Xi · · · sn] with Xi : []→ σi ∈M; and (3) X and
Z do not appear at other positions in C or D. When such a rule is detected, WANDA uses
it to construct a non-terminating term. She also looks for certain variations of this shape
which consider meta-variables with more than 0 arguments.

Aside from these checks, the dependency pair framework employs a first-order termination
tool to detect loops in the first-order rules of the AFSM as part of the DP framework (§5).

4. Rule removal

WANDA’s first step for proving termination is rule removal. The basic principle is simple: if
we can identify a well-founded term ordering � such that s % t whenever s⇒R t, and s � t
when a certain rule is used, then that rule cannot be an integral part of an infinite reduction,
so can safely be removed – making the termination problem simpler. Rule removal is not
necessary within WANDA (disabling it does not lose any benchmarks), but often leads to
shorter runtimes and simpler proofs.

In practice, we do not use a single well-founded ordering but a reduction pair :

Definition 4. A reduction pair is a pair (%,�) of a quasi-ordering and a well-founded
ordering on meta-terms of the same type, such that:

• % and � are compatible: � · % is included in �;
• % and� are meta-stable: if s % t and γ is a substitution on domain FMV (f s1 · · · sn)∪

FMV (t), then sγ % tγ (and similar for �);
• % is monotonic: if s % t, then s u % t u, u s % u t and λx.s % λx.t
• % contains beta: (λx.s) t % s[x := t] if s and t are terms.

A reduction pair is strongly monotonic if moreover � is monotonic.

Reduction pairs also play a large rule in the dependency pair framework (§5); there,
strong monotonicity is not required. However, depending on the query there may be

additional requirements, such as f ~X % Xi for some of the symbols f.

WANDA has two ways to generate reduction pairs: weakly monotonic interpretations
and recursive path orderings. Both techniques extend first-order methods, and are most
powerful when arity is taken into account. To do this in the most natural way, WANDA



AUTOMATIC TERMINATION ANALYSIS USING WANDA 5

implicitly converts meta-terms which respect the arity function into functional notation,
where applications are removed as follows:

uncurry(x) = x if x is a variable
uncurry(λx.s) = λx.uncurry(s)

uncurry(Z[s1, . . . , sk]) = Z[uncurry(s1), . . . , uncurry(sk)]
uncurry(f s1 · · · sk) = f(uncurry(s1), . . . , uncurry(sk))) if k = arity(f)

uncurry(s t) = @〈σ,τ〉(uncurry(s), uncurry(t)) if s : σ → τ
and s does not have the form f s1 · · · sarity(f)−1

Essentially, the rules are uncurried and applications replaced by explicit symbols. For
f : σ1 → . . .→ σk → τ , we consider f(s1, . . . , sk) as a (meta-)term of type τ .

Example 5. The uncurried version of the AFSM in Example 1 is:

map(λx.Z[x], nil) ⇒ nil

map(λx.Z[x], cons(H,T )) ⇒ cons(Z[H], map(λx.Z[x], T ))

The second rule in Example 2 is uncurried to:

map(Z, cons(H,T ))⇒ cons(@〈nat,nat〉(Z,H), map(Z, T ))

4.1. Weakly monotonic algebras. The idea of van de Pol’s weakly monotonic algebras [26]
is to assign valuations which map all function symbols f of type σ to a weakly monotonic
functional Jf: an element of JσK, where JoK is the set of natural numbers for a base type o

and Jσ → τK is the set of those functions from JσK to JτK that are weakly monotonic (i.e., if
a, b ∈ JσK and a ≥ b, then f(a) ≥ f(b) for f ∈ Jσ → τK, where ≥ is a point-wise comparison).
This induces a value on closed terms, which can be extended to a reduction pair, as follows.

Given a meta-term s in functional notation and a function α which maps each variable
x : σ occurring freely in s to an element of JσK and each meta-variable Z : [σ1×· · ·×σn]→ τ
to an element of Jσ1 → . . .→ σn → τK, we let [s]Jα be recursively defined as follows:

[x]Jα = α(x) [f(s1, . . . , sk)]
J
α = Jf([s1]Jα , . . . , [sk]Jα )

[λx.s]Jα = u 7→ [s]Jα∪[x:=u] [Z[s1, . . . , sk]]
J
α = α(Z)([s1]

J
α , . . . , [sk]

J
α )

For closed meta-terms `, r, let ` � r if [`]Jα > [r]Jα for all α, and ` % r if [`]Jα ≥ [r]Jα
for all α. Then (%,�) is a reduction pair if the valuations J@〈σ,τ〉 are chosen to have
J@〈σ,τ〉(F,X) ≥ F (X). It is a strongly monotonic pair if each Jf (including all J@〈σ,τ〉) is
monotonic over > in the first arity(f) arguments.

In [12], a strategy is discussed to find interpretations based on higher-order polynomials
for AFSs, and an automation using encodings of the ordering requirements into SAT. WANDA
implements this methodology, only slightly adapted to take meta-variables into account.

Example 6. Let Jnil = 0 and Jcons = (n,m) 7→ n+m+ 1 and Jmap = (f, n) 7→ nf(n) +
2n+ f(0) and J@σ,τ = (f, n) 7→ f(n) +n. Then, writing F := α(Z), n := α(H), m := α(T ):

• [map(Z, nil)]Jα = F (0) ≥ 0 = [nil]Jα
• [map(F, cons(n,m))]Jα = (n + m + 1) · F (n + m + 1) + 2 · (n + m + 1) + F (0) >

(F (n) + n) + (m · F (m) + 2 ·m+ F (0)) + 1 = [cons(@〈nat,nat〉(Z,H), map(Z, T ))]Jα
Also, J@〈nat,nat〉(F, n) = F (n) + n ≥ F (n), and we can similarly choose all J@〈σ,τ〉 so that
⇒β is included in %. As all Jf are strictly monotonic in all arguments, we may remove the
second rule from Example 2.



6 CYNTHIA KOP

4.2. StarHorpo. The recursive path ordering [8] is a syntactic method to extend an ordering
on function symbols to an ordering on first-order terms. There are various extensions of
RPO (e.g. [9, 15]) including a several higher-order variations (e.g. [5, 14]). WANDA uses her
own definition, based on iterative path orders [17], which works well with meta-variables
and (unlike older HORPOs) is natively transitive.

Following [17], StarHorpo employs a star mark ? to indicate a decrease; intuitively,
f?σ(s1, . . . , sk) indicates an upper bound for all functional meta-terms of type σ which
are strictly smaller than f(s1, . . . , sk). Let s? denote λx1 . . . xn.f

?
σ(s1, . . . , sk) if s =

λx1 . . . xn.f(s1, . . . , sk). If s has any other form, then s? is undefined.
StarHorpo assumes given a precedence I: a quasi-ordering on all symbols, whose strict

part I is well-founded; we let ≈ denote the equivalence relation I ∩ J . We assume that
there is a special symbol, ⊥, which is minimal for I(i.e., fI⊥ for all f). All symbols are
assigned a status in {Lex ,Mul}, and let �f

? denotes either the lexicographic or multiset
extension of �?, depending on the status of f. Then (�?,�?) is given by the following rules:

(�) s �? t if s? �? t
(Var) x �? x if x ∈ V
(Abs) λx.s �? λx.t if s �? t
(Meta) Z[s1, . . . , sk] �? Z[t1, . . . , tk] if each si �? ti
(Fun) f(s1, . . . , sn) �? g(t1, . . . , tk) if f ≈ g and [s1, . . . , sn] �f

? [t1, . . . , tk]
(Put) f(s1, . . . , sn) �? t if f?σ(s1, . . . , sn) �? t (for f(~s) : σ)
(Select) f?σ(s1, . . . , sn) �? t if si〈f?τ1(~s), . . . , f?τj (~s)〉 �? t

where si : τ1 → . . .→ τj → σ
(FAbs) f?σ→τ (s1, . . . , sn) �? λx.t if f?τ (s1, . . . , sn, x) �? t
(Copy) f?σ(s1, . . . , sn) �? g(t1, . . . , tk) if f I g and f?τi(~s) �? ti for 1 ≤ i ≤ k
(Stat) f?σ(s1, . . . , sn) �? gσ(t1, . . . , tk) if f ≈ g and f?τi(~s) �? ti for 1 ≤ i ≤ k

and [s1, . . . , sn] �f
? [t1, . . . , tk]

(Bot) s �? ⊥σ if s : σ

Note that �? and �? only compare terms of the same type, and that marked symbols
f? may occur with different types (indicated as subscripts) within a term. Symbols f? may
also have different numbers of arguments, but must always have at least arity(f). The
notation s〈t1, . . . , tn〉 indicates an “application”: s〈〉 = s, (λx.s)〈t, ~u〉 = s[x := t]〈~u〉 and
f(~s)〈t, ~u〉 = f?σ→τ (~s)〈t, ~u〉 = f?τ (~s, t)〈~u〉. Moreover, as part of StarHorpo, function symbols
may have some of their arguments permutated or (if strong monotonicity is not required)
filtered away; symbols with no remaining arguments may be mapped to ⊥σ for a suitable σ.

The full explanation of these rules is available in [19, Chapter 5].

Example 7. To see that ⇒β is included in �?, note that �? is monotonic by (Fun),

(FAbs) and (Meta), and we can derive: @〈σ,τ〉(λx.Z[x], Y ) �? Z[Y ] by (Put), because

@
〈σ,τ〉?
τ (λx.Z[x], Y ) �? Z[Y ] by (Select), because Z[@

〈σ→τ〉?
σ (λx.Z[x], Y )] �? Z[Y ] by (Meta),

because @
〈σ→τ〉?
σ (λx.Z[x], Y ) �? Y by (Select), because Y �? Y by (Meta).

WANDA combines the search for a suitable precedence and status function with the search
for a permutation and filtering, using a SAT encoding following [19, Chapter 8.6].

5. The higher-order dependency pair framework

If any rules remain after rule removal, WANDA passes them on to the dependency pair framework.
Like the first-order DP framework [13], it is an extendable framework for termination and



AUTOMATIC TERMINATION ANALYSIS USING WANDA 7

non-termination, which new termination methods can easily be plugged into in the form of
processors. The DP framework is detailed in [10]. We here consider the high-level steps.

Delegation to a first-order prover. Following [11], the first-order rules in the AFSM
are identified and passed to an external first-order termination tool. If this tool detects
non-termination and returns a counterexample that can be typed (or if the AFSM is
orthogonal, in which case the typing of the first-order part is irrelevant for its termination),
WANDA concludes non-termination. If the first-order prover concludes termination, then all
dependency pairs for these first-order rules are omitted for the remainder of the framework.

Static and Dynamic DPs. There are two approaches to generate dependency pairs,
originating from distinct lines of work around the same period [20, 21]. In both cases, a set
DP of “dependency pairs” (a kind of rewrite rules) is generated, and termination follows if
there is no infinite chain s1, s2, . . . with each si ⇒DP · ⇒∗R si+1. Here, steps using ⇒DP may
only be applied at the root of a term, and steps using⇒R only in argument positions. A DP
problem is the question whether a chain of a certain form exists, and DP processors simplify
DP problems into easier ones – for example by removing DPs using a reduction pair.

The dynamic approach is always applicable, and could in theory be used also to prove
non-termination – although in WANDA this is not yet done. The static approach is only
applicable to AFSMs which pass certain restrictions, and may admit infinite chains even
when the AFSM is terminating. However, proofs using the static approach are typically much
simpler, since it does not generate “collapsing” DPs (of a form such as f `1 · · · `n ⇒ Z[s1]sm).

Despite their differences, the same processors apply to static and dynamic DPs;- the
only difference is in their generation and whether the initial DP problem can be used to
prove non-termination. Thus, WANDA uses the following strategy.

if not static applicable(R) then return framework(static DPs,R);
else if static DPs ⊆ dynamic DPs then return framework(static DPs,R);
else let tmp = framework(dynamic DPs,R) in

if tmp = YES or tmp = NO then return tmp;

else return framework(static DPs,R);

6. Conclusions and future work

Overall, WANDA takes an input file describing an AFSM (or an AFS), performs an analysis
following Sections 3–5 and then prints YES (a termination proof was found), NO (a non-
termination proof was found) or MAYBE (neither could be proved). In the first two cases, this
is followed by a human-readable proof.

There are many directions for improvement. Most pertinently, due to the presence of a
large database of termination benchmarks in the competition format [28], WANDA has been
optimised for AFSs and is decidedly weak in the presence of meta-variables with arguments.
Moreover, non-termination analysis is very limited and does not take advantage of the
DP framework. Other improvements could be to further extend first-order termination
techniques, and build on primarily higher-order techniques like sized types [3].

A complete discussion of most techniques in WANDA and the technology behind automating
them is available in the author’s PhD thesis [19]. WANDA is open-source and available from:

http://wandahot.sourceforge.net/

http://wandahot.sourceforge.net/


8 CYNTHIA KOP

References

[1] P. Aczel. A general Church-Rosser theorem. Unpublished Manuscript, 1978.
[2] F. Blanqui. HOT – an automated termination prover for higher-order rewriting. http://rewriting.

gforge.inria.fr/hot.html.
[3] F. Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite systems. In

Proc. RTA, volume 3091 of LNCS, pages 24–39, 2004.
[4] F. Blanqui, J. Jouannaud, and M. Okada. Inductive-data-type systems. TCS, 272(1-2):41–68, 2002.
[5] F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a quest. In Proc.

CSL, volume 5213 of LNCS, pages 1–14, 2008.
[6] C. Borralleras and A. Rubio. THOR – an automatic tool for proving termination of higher-order rewriting.

https://www.cs.upc.edu/~albert/term.html.
[7] Community. The international Confluence Competition (CoCo). http://coco.nue.riec.tohoku.ac.

jp/.
[8] N. Dershowitz. Orderings for term rewriting systems. TCS, 17(3):279–301, 1982.
[9] M. Ferreira and H. Zantema. Syntactical analysis of total termination. In Proc. ALP, volume 850 of

LNCS, pages 204–222, 1994.
[10] C. Fuhs and C. Kop. The unified higher-order dependency pair framework. TODO.
[11] C. Fuhs and C. Kop. Harnessing first order termination provers using higher order dependency pairs. In

Proc. FroCoS, volume 6989 of LNAI, pages 147–162, 2011.
[12] C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc. RTA, volume 15 of

LIPIcs, pages 176–192, 2012.
[13] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining techniques

for automated termination proofs. In Proc. LPAR, volume 3452 of LNAI, pages 301–331. 2005.
[14] J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS, IEEE, pages

402–411, 1999.
[15] S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering. Unpublished Manuscript,

University of Illinois, 1980.
[16] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: introduction and

survey. TCS, 121(1-2):279 – 308, 1993.
[17] J.W. Klop, V. van Oostrom, and R. de Vrijer. Iterative lexicographic path orders. In Essays dedicated to

Joseph A. Goguen on the Occasion of his 65th Birthday, volume 4060 of LNCS, pages 541–554, 2006.
Festschrift.

[18] C. Kop. Simplifying algebraic functional systems. In Proc. CAI, volume 6742 of LNCS, pages 201–215,
2011.

[19] C. Kop. Higher Order Termination. PhD thesis, VU University Amsterdam, 2012.
[20] C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems. LMCS,

8(2):10:1–10:51, 2012.
[21] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on strong

computability for higher-order rewrite systems. IEICE TIS, 92(10):2007–2015, 2009.
[22] D. Miller. A logic programming language with lambda-abstraction, function variables, and simple

unification. JLC, 1(4):497–536, 1991.
[23] J. Nagele. CoCo 2016 participant: CSIˆho 0.2. http://coco.nue.riec.tohoku.ac.jp/2016/papers/

csiho.pdf.
[24] T. Nipkow. Higher-order critical pairs. In Proc. LICS, pages 342–349, 1991.
[25] K. Onozawa, K. Kikuchi, T. Aoto, and Y. Toyama. ACPH: System description for CoCo 2016. http:

//coco.nue.riec.tohoku.ac.jp/2016/papers/acph.pdf.
[26] J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of Utrecht, 1996.
[27] Wiki. Termination Portal. http://www.termination-portal.org/wiki/Termination_Competition.
[28] Wiki. Termination Problem DataBase (TPDB). http://termination-portal.org/wiki/TPDB.

http://rewriting.gforge.inria.fr/hot.html
http://rewriting.gforge.inria.fr/hot.html
https://www.cs.upc.edu/~albert/term.html
http://coco.nue.riec.tohoku.ac.jp/
http://coco.nue.riec.tohoku.ac.jp/
http://coco.nue.riec.tohoku.ac.jp/2016/papers/csiho.pdf
http://coco.nue.riec.tohoku.ac.jp/2016/papers/csiho.pdf
http://coco.nue.riec.tohoku.ac.jp/2016/papers/acph.pdf
http://coco.nue.riec.tohoku.ac.jp/2016/papers/acph.pdf
http://www.termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/TPDB

	1. Introduction
	2. Higher-order term rewriting using AFSMs
	3. Non-termination
	4. Rule removal
	4.1. Weakly monotonic algebras
	4.2. StarHorpo

	5. The higher-order dependency pair framework
	6. Conclusions and future work
	References

