Continuous formal verification of Amazon s2n

Andrey Chudnov', Nathan Collins', Byron Cook*#, Joey Dodds', Brian
Huffman', Colm MacCérthaigh®, Stephen Magill', Eric Mertens®, Eric
Mullen?, Serdar Tasiran®, Aaron Tomb', and Eddy Westbrook!

1 Galois, Inc.
2 University of Washington
3 Amazon Web Services
4 University College London

Abstract. We describe formal verification of s2n, the open source TLS
implementation used in numerous Amazon services. A key aspect of this
proof infrastructure is continuous checking, to ensure that properties re-
main proved during the lifetime of the software. At each change to the
code, proofs are automatically re-established with little to no interac-
tion from the developers. We describe the proof itself and the technical
decisions that enabled integration into development.

1 Introduction

The Transport Layer Security (TLS) protocol is responsible for much of the
privacy and authentication we enjoy on the Internet today. It secures our phone
calls, our web browsing, and connections between resources in the cloud made
on our behalf. In this paper we describe an effort to prove the correctness of
$2n [?], the open source TLS implementation used by many Amazon and Amazon
Web Services (AWS) products (e.g. Amazon S3 [?]). Formal verification plays
an important role for s2n. First, many security-focused customers (e.g. financial
services, government, pharmaceutical) are moving workloads from their own data
centers to AWS. Formal verification provides customers from these industries
with concrete information about how security is established in Amazon Web
Services. Secondly, automatic and continuous formal verification facilitates rapid
and cost-efficient development by a distributed team of developers.

In order to realize the second goal, verification must continue to work with
low effort as developers change the code. While fundamental advances have been
made in recent years in the tractability of full verification, these techniques
generally either: 1) target a fixed version of the software, requiring significant
re-proof effort whenever the software changes or, 2) are designed around synthesis
of correct code from specifications. Neither of these approaches would work for
Amazon as s2n is under continuous development, and new versions of the code
would not automatically inherit correctness from proofs of previous versions.

To address the challenge of program proving in such a development environ-
ment, we built a proof and associated infrastructure for s2n’s implementations

of DRBG, HMAC, and the TLS handshake. The proof targets an existing im-
plementation and is updated either automatically or with low effort as the code
changes. Furthermore, the proof connects with existing proofs of security prop-
erties, providing a high level of assurance.

Our proof is now deployed in the continuous integration environment for
s2n, and provides a distributed team of developers with repeated proofs of the
correctness of s2n even as they continue to modify the code. In this paper, we
describe how we structured the proof and its supporting infrastructure so that
the lessons we learned will be useful to others who address similar challenges.

Figure 77 gives an overview of our proof for s2n’s implementation of the
HMAC algorithm and the tooling involved. At the left is the ultimate security
property of interest, which for HMAC is that if the key is not known, then
HMAC is indistinguishable from a random function (given some assumptions on
the underlying hash functions). This is a fixed security property for HMAC and
almost never changes (a change would correspond to some new way of thinking
about security in the cryptographic research community). The HMAC specifi-
cation is also fairly static, having been updated only once since its publication
in QOOﬂ Beringer et al. [?] have published a mechanized formal proof that the
high-level HMAC specification establishes the cryptographic security property
of interest.

As we move to the right through Figure 77, we find increasingly low-level ar-
tifacts and the rate of change of these artifacts increases. The low-level HMAC
specification includes details of the API exposed by the implementation, and
the implementation itself includes details such as memory management and per-
formance optimizations. This paper focuses on verifying these components in a
manner that uses proof automation to decrease the manual effort required for
ongoing maintenance of these verification artifacts. At the same time, we ensure
that the automated proof occurring on the right-hand side of the figure is linked
to the stable, foundational security results present at the left.

In this way, we realize the assurance benefit of the foundational security
work of Beringer et al. while producing a proof that can be integrated into the
development workflow. The proof is applied as part of the continuous integration
system for s2n (which uses Travis CI) and runs every time a code change is
pushed or a pull request is issued. In one year of code changes only three manual
updates to the proof were required.

The s2n source code, proof scripts, and access to the underlying proof tools
can all be found in the s2n GitHub [?] repository. The collection of proof runs
is logged and appears on the s2n Travis CI page [?].

In addition to the HMAC proof, we also reused the approach shown in the
right-hand side of Figure ?? to verify the deterministic random bit generator
(DRBG) algorithm and the TLS Handshake protocol. In these cases we didn’t
link to foundational cryptographic security proofs, but nonetheless had specifi-
cations that provided important benefits to developers by allowing them to 1)
check their code against an independent specification and 2) check that their

® And this update did not change the functional behavior specified in the standard.

code continues to adhere to this specification as it changes. Our TLS Handshake
proof revealed a bug (which was promptly fixed) in the s2n implementation [?],
providing evidence for the first point. All of our proofs have continued to be used
in development since their introduction, supporting the second point.

Increasing Automation
Changes Infrequently Changes Frequently

[
Work of Beringer et al.

n " Implementation
" High-Level High-Level Low-Level (
(Security Propeny) (o ,) (ifi) Specification

s2n C code

Indistinguishability Coq HMAC . Incremental ersion 2
h from random J LSpeCification Monolithic API API - Verst .
... version 3 ...

D

Proved In Coq Proved In Coq Combination of Coq (Manual) Proved with SAW
[| and Cryptol (Automatic) (mostly automatic)

This Paper

Fig. 1. An overview of the structure of our HMAC proof.

Related work. Projects such as Everest [?,?], Cao [?], and Jasmin [?], generate
verified cryptographic implementations from higher level specifications, e.g. F*
models. While progress in this space continues to be promising—HACL* has
recently achieved performance on primitives that surpasses handwritten C [?]—
we have found in our experiments that the generated TLS code does not yet meet
the performance, power, and space constraints required by the broad range of
AWS products that use s2n.

Static analysis for hand-written cryptographic implementations has been pre-
viously reported in the context of Frama-C/PolarSSL [?], focusing on scaling
memory safety verification to a large body of code. Additionally, unsound but
effective bug hunting techniques such as fuzzing have been applied to TLS im-
plementations in the past [?,7]. The work we report on goes further by proving
behavioral correctness properties of the implementation that are beyond the ca-
pabilities of these techniques. In this we were helped because the implementation
of $2n is small (less than 10k LOC), and most iteration is bounded.

The goal of our work is to verify deep properties of an existing and actively de-
veloped open source TLS implementation that has been developed for both high
performance and low power as required by a diverse range of AWS products. Our
approach was guided by lessons learned in several previous attempts to prove the
correctness of s2n that either (1) required too much developer interaction during
the modification of the code [?], or (2) where pushbutton symbolic model check-
ing tools did not scale. Similarly, proofs developed using tools from the Verified
Software Toolchain (VST) [?] are valuable for establishing the correctness and
security of specifications, but are not sufficiently resilient to code changes, mak-
ing them challenging to integrate into an ongoing development process. Their
use of a layered proof structure, however, provided us with a specification that
we could use to leverage their security proof in our work.

	Continuous formal verification of Amazon s2n

