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Abstract. A dynamic partial order reduction (DPOR) algorithm is op-
timal when it always explores at most one representative per Mazurkie-
wicz trace. Existing literature suggests that the reduction obtained by
the non-optimal, state-of-the-art Source-DPOR (SDPOR) algorithm is
comparable to optimal DPOR. We show the first program® with O(n)
Mazurkiewicz traces where SDPOR explores @(2") redundant schedules.
We furthermore identify the cause of this blow-up as an NP-hard prob-
lem. Our main contribution is a new approach, called Quasi-Optimal
POR, that can arbitrarily approximate an optimal exploration using a
provided constant k. We present an implementation of our method in
a new tool called DPU using specialised data structures. Experiments
with Dpu, including Debian packages, show that optimality is achieved
with low values of k, outperforming state-of-the-art tools.

1 Introduction

Dynamic partial-order reduction (DPOR) [10,1,19] is a mature approach to mit-
igate the state explosion problem in stateless model checking of multithreaded
programs. DPORs are based on Mazurkiewicz trace theory [13], a true-concurrency
semantics where the set of executions of the program is partitioned into equiv-
alence classes known as Mazurkiewicz traces (M-traces). In a DPOR, this par-
titioning is defined by an independence relation over concurrent actions that is
computed dynamically and the method explores executions which are represen-
tatives of M-traces. The exploration is sound when it explores all M-traces, and
it is considered optimal [1] when it explores each M-trace only once.

Since two independent actions might have to be explored from the same
state in order to explore all M-traces, a DPOR algorithm uses independence to
compute a provably-sufficient subset of the enabled transitions to explore for each
state encountered. Typically this involves the combination of forward reasoning
(persistent sets [11] or source sets [1,4]) with backward reasoning (sleep sets [11])

4 As this paper was under review, we were made aware of the recent publication of
another paper [3] which contains an independently-discovered example program with
the same characteristics.
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Fig. 1: (a): Programs; (b): Partially-ordered executions;

to obtain a more efficient exploration. However, in order to obtain optimality, a
DPOR needs to compute sequences of transitions (as opposed to sets of enabled
transitions) that avoid visiting a previously visited M-trace. These sequences are
stored in a data structure called wakeup trees in [1] and known as alternatives
in [19]. Computing these sequences thus amounts to deciding whether the DPOR
needs to visit yet another M-trace (or all have already been seen).

In this paper, we prove that computing alternatives in an optimal DPOR
is an NP-complete problem. To the best our knowledge this is the first formal
complexity result on this important subproblem that optimal and non-optimal
DPORs need to solve. The program shown in Fig. 1 (a) illustrates a practical con-
sequence of this result: the non-optimal, state-of-the-art SDPOR algorithm [1]
can explore here O(2") interleavings but the program has only (O(n) M-traces.

The program contains n := 3 writer threads wg, w1, w2, each writing to a
different variable. The thread count increments n — 1 times a zero-initialized
counter ¢. Thread master reads c into variable ¢ and writes to x;.

The statements xg =7 and x; = 8 are independent because they produce
the same state regardless of their execution order. Statements ¢ = ¢ and any
statement in the count thread are dependent or interfering: their execution or-
ders result in different states. Similarly, x; = 0 interferes with exactly one writer
thread, depending on the value of i.

Using this independence relation, the set of executions of this program can
be partitioned into six M-traces, corresponding to the six partial orders shown
in Fig. 1 (b). Thus, an optimal DPOR explores six executions (2n-executions
for n writers). We now show why SDPOR explores @(2") in the general case.
Conceptually, SDPOR is a loop that (1) runs the program, (2) identifies two de-
pendent statements that can be swapped, and (3) reverses them and re-executes
the program. It terminates when no more dependent statements can be swapped.

Consider the interference on the counter variable ¢ between the master and
the count thread. Their execution order determines which writer thread inter-
feres with the master statement x; = 0. If ¢ = 1 is executed just before i = c,
then z; = 0 interferes with w;. However, if i = ¢ is executed before, then z; = 0
interferes with wg. Since SDPOR does not track relations between dependent
statements, it will naively try to reverse the race between x; = 0 and all writer
threads, which results in exploring ((2™) executions. In this program, exploring
only six traces requires understanding the entanglement between both interfer-
ences as the order in which the first is reversed determines the second.



As a trade-off solution between solving this NP-complete problem and po-
tentially explore an exponential number of redundant schedules, we propose a
hybrid approach called Quasi-Optimal POR (QPOR) which can turn a non-
optimal DPOR into an optimal one. In particular, we provide a polynomial
algorithm to compute alternative executions that can arbitrarily approximate
the optimal solution based on a user specified constant k. The key concept is
a new notion of k-partial alternative, which can intuitively be seen as a “good
enough” alternative: they revert two interfering statements while remembering
the resolution of the last k£ — 1 interferences.

The major differences between QPOR and the DPORs of [1] are that: 1)
QPOR is based on prime event structures [17], a partial-order semantics that
has been recently applied to programs [19,21], instead of a sequential view to
thread interleaving, and 2) it computes k-partial alternatives with an O(n*)
algorithm while optimal DPOR corresponds to computing co-partial alternatives
with an @(2") algorithm. For the program shown in Fig. 1 (a), QPOR achieves
optimality with ¥ = 2 because races are coupled with (at most) another race.
As expected, the cost of computing k-partial alternatives and the reductions
obtained by the method increase with higher values of k.

Finding k-partial alternatives requires decision procedures for traversing the
causality and conflict relations in event structures. Our main algorithmic contri-
bution is to represent these relations as a set of trees where events are encoded as
one or two nodes in two different trees. We show that checking causality /conflict
between events amounts to an efficient traversal in one of these trees.

In summary, our main contributions are:

Proof that computing alternatives for optimal DPOR is NP-complete (Sec. 4).
Efficient data structures and algorithms for (1) computing k-partial alterna-
tives in polynomial time, and (2) represent and traverse partial orders (Sec. 5).
Implementation of QPOR in a new tool called DPU and experimental eval-
uations against SDPOR in NIDHUGG and the testing tool MAPLE (Sec. 6).
Benchmarks with ©(n) M-traces where SDPOR explores (0(2") executions
(Sec. 6).

Furthermore, in Sec. 6 we show that: (1) low values of k often achieve optimal-
ity; (2) even with non-optimal explorations DPU greatly outperforms NIDHUGG;
(3) Dpru copes with production code in Debian packages and achieves much
higher state space coverage and efficiency than MAPLE.

Proofs for all our formal results are available in the unabridged version [15].

2 Preliminaries
In this section we provide the formal background used throughout the paper.

Concurrent Programs. We consider deterministic concurrent programs composed
of a fixed number of threads that communicate via shared memory and synchro-
nize using mutexes (Fig. 1 (a) can be trivially modified to satisfy this). We also



assume that local statements can only modify shared memory within a mutex
block. Therefore, it suffices to only consider races of mutex accesses.

Formally, a concurrent program is a structure P := (M, L, T, mg, o), where
M is the set of memory states (valuations of program variables, including in-
struction pointers), £ is the set of mutezxes, mg is the initial memory state, ly is
the initial mutezes state and T is the set of thread statements. A thread statement
t := (1, f) is a pair where i € N is the thread identifier associated with the state-
ment and f: M — (M x A) is a partial function that models the transformation
of the memory as well as the effect A := {loc} U ({acq,rel} x L) of the state-
ment with respect to thread synchronization. Statements of loc effect model
local thread code. Statements associated with (acq,z) or (rel,z) model lock
and unlock operations on a mutex z. Finally, we assume that (1) functions f are
PTIME-decidable; (2) acq/rel statements do not modify the memory; and (3)
loc statements modify thread-shared memory only within lock/unlock blocks.
When (3) is violated, then P has a datarace (undefined behavior in almost all
languages), and our technique can be used to find such statements, see Sec. 6.

We use labelled transition systems (LTS) semantics for our programs. We
associate a program P with the LTS Mp := (S, —, A, s0). The set S := M x
(L — {0,1}) are the states of Mp, i.e., pairs of the form (m,v) where m is the
state of the memory and v indicates when a mutex is locked (1) or unlocked (0).
The actions in A C N x A are pairs (i,b) where i is the identifier of the thread
that executes some statement and b is the effect of the statement. We use the
function p: A — N to retrieve the thread identifier. The transition relation — C
S x A x 8 contains a triple (m,v) ‘%, (m’,v') exactly when there is some
thread statement (i, f) € T such that f(m) = (m’,b) and either (1) b = loc and
v =, or (2) b= (acq,z) and v(z) = 0 and v = V|51, or (3) b= (rel,z) and
v" = V|z0. Notation f,. ., denotes a function that behaves like f for all inputs
except for x, where f(x) = y. The initial state is sg := (my, lo).

Furthermore, if s %, s’ is a transition, the action a is enabled at s. Let enabl(s)

denote the set of actions enabled at s. A sequence o := ay...a,, € A* is a
run when there are states si,...,s, satisfying sg %y s1... 22y s,. We define

state(o) 1= s,. We let runs(Mp) denote the set of all runs and reach(Mp) =
{state(c) € S: o € runs(Mp)} the set of all reachable states.

Independence. Dynamic partial-order reduction methods use a notion called
independence to avoid exploring concurrent interleavings that lead to the same
state. We recall the standard notion of independence for actions in [11]. Two
actions a,a’ € A commute at a state s € S iff

— if a € enabl(s) and s & ¢, then o’ € enabl(s) iff ' € enabl(s’); and

— if a,a’ € enabl(s), then there is a state s’ such that s %%, ¢’ and s 9% .
Independence between actions is an under-approximation of commutativity. A
binary relation ) C Ax A is an independence on M p if it is symmetric, irreflexive,
and every pair {(a,a’) in { commutes at every state in reach(Mp).

In general Mp has multiple independence relations, clearly () is always one

of them. We define relation {$p C A x A as the smallest irreflexive, symmetric



relation where (i,b) $p (i/,b") holds if ¢ # i’ and either b = loc or b = acq «
and V' & {acq z,rel z}. By construction {p is always an independence.

Labelled Prime Event Structures. Prime event structures (PES) are well-known
non-interleaving, partial-order semantics [16,8,7]. Let X be a set of actions. A
PES over X is a structure £ := (E, <, #, h) where F is a set of events, < C Ex E
is a strict partial order called causality relation, # C FE x E is a symmetric,
irreflexive conflict relation, and h: E — X is a labelling function. Causality
represents the happens-before relation between events, and conflict between two
events expresses that any execution includes at most one of them. Fig. 2 (b)
shows a PES over N x A where causality is depicted by arrows, conflicts by
dotted lines, and the labelling h is shown next to the events, e.g., 1 < 5, 8 < 12,
2 # 8, and h(1) = (0,1oc). The history of an event e, [e] := {¢/ € E: ¢’ < e},
is the least set of events that need to happen before e.

The notion of concurrent execution in a PES is captured by the concept
of configuration. A configuration is a (partially ordered) execution of the system,
i.e., aset C C F of events that is causally closed (if e € C, then [e] C C) and
conflict-free (if e,e’ € C, then —(e # €’)). In Fig. 2 (b), the set {8,9,15} is a
configuration, but {3} or {1,2,8} are not. We let conf(€) denote the set of all
configurations of £, and [e] := [e]U{e} the local configuration of e. In Fig. 2 (b),
[11] = {1,8,9,10,11}. A configuration represents a set of interleavings over X.
An interleaving is a sequence in X* that labels any topological sorting of the
events in C. We denote by inter(C) the set of interleavings of C. In Fig. 2 (b),
inter({1,8}) = {ab,ba} with a := (0,1oc) and b := (1,acq m).

The extensions of C are the events not in C' whose histories are included in C:
ex(C):={e€ E: e¢ CAJe| CC}. The enabled events of C are the extensions
that can form a larger configuration: en(C') := {e € ex(C): C U{e} € conf(E)}.
Finally, the conflicting extensions of C' are the extensions that are not enabled:
cex(C) = ex(C) \ en(C). In Fig. 2 (b), ex({1,8}) = {2,9,15}, en({1,8}) =
{9,15}, and cex({1,8}) = {2}. See [20] for more information on PES concepts.

Parametric Unfolding Semantics. We recall the program PES semantics of [19,20]
(modulo notation differences). For a program P and any independence { on Mp
we define a PES Up ¢ that represents the behavior of P, i.e., such that the
interleavings of its set of configurations equals runs(Mp).

Each event in Up ¢ is defined by a canonical name of the form e := (a, H),
where a € A is an action of Mp and H is a configuration of Up . Intuitively, e
represents the action a after the history (or the causes) H. Fig. 2 (b) shows an
example. Event 11 is ((0,acq m), {1,8,9,10}) and event 1 is ({0, loc), ). Note
the inductive nature of the name, and how it allows to uniquely identify each
event. We define the state of a configuration as the state reached by any of its
interleavings. Formally, for C' € conf(Up,¢) we define state(C) as so if C = ()
and as state(o) for some o € inter(C) if C # 0. Despite its appearance state(C)
is well-defined because all sequences in inter(C') reach the same state, see [20]
for a proof.



Thread 0: Thread 1: Thread 2: (0,10c) 5] (2,acq m')
x :=0 lock(m) lock(m?) (0,acq m)
lock(m) y :=1 z :=3 (0, 10¢) (2,100)
if (y == 0) unlock(m) wunlock(m’)

unlock (m) (0,rel m) | 4 (2,rel m')
else (l,acqm) |5

lock(m’)

z =92 (1,10c) (0,acq m’)

l,relm) |7 14 91 (0, 1loc

(a) (b) ¢ (7] [4] 0, Zoc)

Fig.2: (a): a program P; (b): its unfolding semantics Up ¢ ..

Definition 1 (Unfolding). Given a program P and some independence rela-
tion & on Mp = (S,—, A, sq), the unfolding of P under {, denoted Up, is
the PES over A constructed by the following fizpoint rules:

1. Start with a PES £ := (FE,<,#,h) equal to {(0,0,0,0).

2. Add a new event e := (a,C) to E for any configuration C € conf(E) and
any action a € A if a is enabled at state(C) and —(a & h(e')) holds for every
<-mazximal event e’ in C.

3. For any new e in E, update <, #, and h as follows: for every € € C, set
e <e; foranye € E\C, sete' # e ife# e and—(a $ h(e')); set h(e) := a.

4. Repeat steps 2 and 3 until no new event can be added to E; return &.

Step 1 creates an empty PES with only one (empty) configuration. Step 2 inserts
anew event (a, C) by finding a configuration C' that enables an action a which is
dependent with all causality-maximal events in C'. In Fig. 2, this initially creates
events 1, 8, and 15. For event 1 := ({0, loc), ), this is because action (0, loc)
is enabled at state(f)) = sp and there is no <-maximal event in () to consider.
Similarly, the state of C7 := {1,8,9,10} enables action a; := (0,acq m), and
both h(1) and h(10) are dependent with a; in $p. As a result (a;,C;) is an
event (number 11). Furthermore, while as := (0, loc) is enabled at state(Csy),
with Cy := {8,9, 10}, as is independent of h(10) and (aq, Co) is not an event.

After inserting an event e := (a,C), Def. 1 declares all events in C causal
predecessors of e. For any event ¢’ in E but not in [e] such that h(e’) is dependent
with a, the order of execution of e and ¢’ yields different states. We thus set them
in conflict. In Fig. 2, we set 2 # 8 because h(2) is dependent with h(8) and 2 ¢ [§]
and 8 ¢ [2].

3 Unfolding-Based DPOR

This section presents an algorithm that exhaustively explores all deadlock states
of a given program (a deadlock is a state where no thread is enabled).

For the rest of the paper, unless otherwise stated, we let P be a terminating
program (i.e., runs(Mp) is a finite set of finite sequences) and ¢ an independence
on Mp. Consequently, Up, ¢ has finitely many events and configurations.



Algorithm 1: Unfolding-based POR exploration. See text for defini-
tions.

1 Initially, set U := (), 14 Function cexp(C)

2 and call Explore(, 0, 0). 5| R:=0

5 Procedure Explore(C, D, A) 16 | foreach event e € C of type acq
1| Add ex(C) to U 17 et := pt(e)

5 | if en(C) C D return e Em = pm(e)

. i A=0 19 while —(e,, < e;) do

7| | Choose e from en(C)\ D 2 €m = pm(€m)

< | else 21 if (e, < e;) break

¢ 22 em = pm(em

9 L Choose e from AN en(C) o o (h(eg, [ez] Ulen])
0 | Explore(CU({e},D,A\{e}) 9 Add ¢ to R

1| if 37 € A12(C, D U {e}) ) L
2 ‘ Explore(C,DU{e}, J\ C) 2! return R
3 U:=UnN QC,D

ot

Our POR algorithm (Alg. 1) analyzes P by exploring the configurations
of Up ¢, It visits all C-maximal configurations of Up ¢, which correspond to the
deadlock states in reach(Mp), and organizes the exploration as a binary tree.

Explore(C, D, A) has a global set U that stores all events of Up, ¢, discovered
so far. The three arguments are: C, the configuration to be explored; D (for
disabled), a set of events that shall never be visited (included in C) again; and
A (for add), used to direct the exploration towards a configuration that conflicts
with D. A call to Explore(C, D, A) visits all maximal configurations of Up ¢
which contain C and do not contain D, and the first one explored contains C'UA.

The algorithm first adds ez(C) to U. If C' is a maximal configuration (i.e.,
there is no enabled event) then line 5 returns. If C is not maximal but en(C) C D,
then all possible events that could be added to C' have already been explored
and this call was redundant work. In this case the algorithm also returns and
we say that it has explored a sleep-set blocked (SSB) execution [1]. Alg. 1 next
selects an event enabled at C, if possible from A (line 7 and 9) and makes a
recursive call (left subtree) that explores all configurations that contain all events
in CU{e} and no event from D. Since that call visits all maximal configurations
containing C' and e, it remains to visit those containing C' but not e. At line 11
we determine if any such configuration exists. Function Alt returns a set of
configurations, so-called clues. A clue is a witness that a C-maximal configuration
exists in Up ¢, which contains C' and not D U {e}.

Definition 2 (Clue). Let D and U be sets of events, and C a configuration
such that CN'D = (0. A clue to D after C in U is a configuration J C U such
that C' U J is a configuration and DN J = 0.



Definition 3 (Alt function). Function Alt denotes any function such that
At (B, F) returns a set of clues to F' after B in U, and the set is non-empty if
Up,¢ has at least one mazimal configuration C where B C C and CNF = .

When Alt returns a clue J, the clue is passed in the second recursive call
(line 12) to “mark the way” (using set A) in the subsequent recursive calls at
line 10, and guide the exploration towards the maximal configuration that J
witnesses. Def. 3 does not identify a concrete implementation of Alt. It rather
indicates how to implement Alt so that Alg. 1 terminates and is complete (see
below). Different PORs in the literature can be reframed in terms of Alg. 1.
SDPOR [1] uses clues that mark the way with only one event ahead (|J\C| = 1)
and can hit SSBs. Optimal DPORs [1,19] use size-varying clues that guide the
exploration provably guaranteeing that any SSB will be avoided.

Alg. 1is optimal when it does not explore a SSB. To make Alg. 1 optimal Alt
needs to return clues that are alternatives [19], which satisfy stronger constraints.
When that happens, Alg. 1 is equivalent to the DPOR in [19] and becomes
optimal (see [20] for a proof).

Definition 4 (Alternative [19]). Let D and U be sets of events and C a
configuration such that CND = (. An alternative to D after C in U is a clue J
to D after C in U such thatVe e D :3e¢' € J, e # €.

Line 13 removes from U events that will not be necessary for Alt to find
clues in the future. The events preserved, Qc,p := C U D U #(C U D), include
all events in C'U D as well as every event in U that is in conflict with some
event in C'U D. The preserved events will suffice to compute alternatives [19],
but other non-optimal implementations of Alt could allow for more aggressive
pruning.

The C-maximal configurations of Fig. 2 (b) are [7] U [17], [14], and [19].
Our algorithm starts at configuration C' = (). After 10 recursive calls it visits
C = [TJU[17]. Then it backtracks to C' = {1}, calls A1t ({1}, {2}), which provides,
e.g., J = {1,8}, and visits C' = {1, 8} with D = {2}. After 6 more recursive calls
it visits C' = [14], backtracks to C' = [12], calls A1t ([12], {2, 13}), which provides,
e.g., J = {15}, and after two more recursive calls it visits C' = [12] U {15}
with D = {2,13}. Finally, after 4 more recursive calls it visits C = [19].

Finally, we focus on the correctness of Alg. 1, and prove termination and
soundness of the algorithm:

Theorem 1 (Termination). Regardless of its input, Alg. 1 always stops.

Theorem 2 (Completeness). Let C be a C-mazimal configuration of Up ¢ .
Then Alg. 1 calls Explore(C, D, A) at least once with C' = C.

4 Complexity

This section presents complexity results about the only non-trival steps in Alg. 1:
computing ex(C) and the call to A1t (-,-). An implementation of A1t (B, F)



that systematically returns B would satisfy Def. 3, but would also render Alg. 1
unusable (equivalent to a DFS in Mp). On the other hand the algorithm becomes
optimal when Alt returns alternatives. Optimality comes at a cost:

Theorem 3. Given a finite PES &, some configuration C € conf(E), and a
set D C ex(C), deciding if an alternative to D after C exists in € is NP-complete.

Theorem 3 assumes that £ is an arbitrary PES. Assuming that £ is the un-
folding of a program P under {p does not reduce this complexity:

Theorem 4. Let P be a program and U a causally-closed set of events from
Up,e - For any configuration C C U and any D C ex(C), deciding if an alter-
native to D after C exists in U is NP-complete.

These complexity results lead us to consider (in next section) new approaches
that avoid the NP-hardness of computing alternatives while still retaining their
capacity to prune the search.

Finally, we focus on the complexity of computing ex(C), which essentially
reduces to computing cez(C'), as computing en(C') is trivial. Assuming that & is
given, computing cex(C') for some C € conf () is a linear problem. However, for
any realistic implementation of Alg. 1, £ is not available (the very goal of Alg. 1
is to find all of its events). So a useful complexity result about cex(C) necessarily
refers to the orignal system under analysis. When £ is the unfolding of a Petri
net [14], computing cez(C) is NP-complete:

Theorem 5. Let N be a Petri net, t a transition of N, € the unfolding of N
and C a configuration of €. Deciding if h=1(t) N cex(C) = () is NP-complete.

Fortunately, computing cez(C) for programs is a much simpler task. Function
cexp(C), shown in Alg. 1, computes and returns cez(C) when £ is the unfolding
of some program. We explain cexp(C") in detail in Sec. 5.3. But assuming that
functions pt and pm can be computed in constant time, and relation < decided
in O(log|C|), as we will show, clearly cexp works in time O(n?logn), where
n :=|C], as both loops are bounded by the size of C.

5 New Algorithm for Computing Alternatives

This section introduces a new class of clues, called k-partial alternatives. These
can arbitrarily reduce the number of redundant explorations (SSBs) performed
by Alg. 1 and can be computed in polynomial time. Specialized data structures
and algorithms for k-partial alternatives are also presented.

Definition 5 (k-partial alternative). Let U be a set of events, C C U a
configuration, D C U a set of events, and k € N a number. A configuration J is
a k-partial alternative to D after C if there is some D C D such that |Z§| =k
and J is an alternative to D after C.



A E-partial alternative needs to conflict with only & (instead of all) events
in D. An alternative is thus an oco-partial alternative. If we reframe SDPOR in
terms of Alg. 1, it becomes an algorithm using singleton I-partial alternatives.
While k-partial alternatives are a very simple concept, most of their simplicity
stems from the fact that they are expressed within the elegant framework of PES
semantics. Defining the same concept on top of sequential semantics (often used
in the POR literature [11,10,23,1,2,9]), would have required much more complex
device.

We compute k-partial alternatives using a comb data structure:

Definition 6 (Comb). Let A be a set. An A-comb ¢ of size n € N is an
ordered collection of spikes (s1,...,s,), where each spike s; € A* is a sequence
of elements over A. Furthermore, a combination over ¢ is any tuple {a1,...,a,)
where a; € s; is an element of the spike.

It is possible to compute k-partial alternatives (and by extension optimal
alternatives) to D after C' in U using a comb, as follows:

1. Select k (or |D|, whichever is smaller) arbitrary events ey, ..., e, from D.

2. Build a U-comb (sq,...,s) of size k, where spike s; contains all events in
U in conflict with e;.

3. Remove from s; any event é such that either [¢] U C' is not a configuration
or [e]N D # 0.

4. Find combinations (e}, ...,e}) in the comb satisfying —(e; # €}) for i # j.

5. For any such combination the set J := [¢]]U. . .U[e}] is a k-partial alternative.

Step 3 guarantees that J is a clue. Steps 1 and 2 guarantee that it will conflict
with at least k events from D. It is straightforward to prove that the procedure
will find a k-partial alternative to D after C'in U when an co-partial alternative
to D after C exists in U. It can thus be used to implement Def. 3.

Steps 2, 3, and 4 require to decide whether a given pair of events is in conflict.
Similarly, step 3 requires to decide if two events are causally related. Efficiently
computing k-partial alternatives thus reduces to efficiently computing causality
and conflict between events.

5.1 Computing Causality and Conflict for PES events

In this section we introduce an efficient data structure for deciding whether two
events in the unfolding of a program are causally related or in conflict.

As in Sec. 3, let P be a program, Mp its LTS semantics, and {p its inde-
pendence relation (defined in Sec. 2). Additionally, let £ denote the PES Up ¢,
of P extended with a new event L that causally precedes every event in Up ¢ ..

The unfolding £ represents the dependency of actions in Mp through the
causality and conflict relations between events. By definition of {p we know
that for any two events e, e’ € &:

— If e and €' are events from the same thread, then they are either causally
related or in conflict.



— If e and ¢’ are lock/unlock operations on the same variable, then similarly
they are either causally related or in conflict.

This means that the causality/conflict relations between all events of one
thread can be tracked using a tree. For every thread of the program we define
and maintain a so-called thread tree. Each event of the thread has a corresponding
node in the tree. A tree node n is the parent of another tree node n’ iff the event
associated with n is the immediate causal predecessor of the event associated
with n’. That is, the ancestor relation of the tree encodes the causality relations
of events in the thread, and the branching of the tree represents conflict. Given
two events e, ¢’ of the same thread we have that e < ¢’ iff =(e # ¢€’) iff the tree
node of e is an ancestor of the tree node of ¢’.

We apply the same idea to track causality/conflict between acq and rel
events. For every lock | € £ we maintain a separate lock tree, containing a
node for each event labelled by either (acq,!) or (rel,l). As before, the ancestor
relation in a lock tree encodes the causality relations of all events represented in
that tree. Events of type acq/rel have tree nodes in both their lock and thread
trees. Events for loc actions are associated to only one node in the thread tree.

This idea gives a procedure to decide a causality/conflict query for two events
when they belong to the same thread or modify the same lock. But we still need
to decide causality and conflict for other events, e.g., loc events of different
threads. Again by construction of {p, the only source of conflict/causality for
events are the causality/conflict relations between the causal predecessors of the
two. These relations can be summarized by keeping two mappings for each event:

Definition 7. Let ¢ € E be an event of £. We define the thread mapping
tmax: E x N — E as the only function that maps every pair (e, ) to the unique
<-mazximal event from thread i in [e], or L if [e] contains no event from thread i.
Similarly, the lock mapping lmaz: E x L — E maps every pair {(e,l) to the
unique <-mazimal event €' € [e] such that h(e') is an action of the form (acg,l)
or (rel,l), or L if no such event exists in [e].

The information stored by the thread and lock mappings enables us to decide
causality and conflict queries for arbitrary pairs of events:

Theorem 6. Let e, e’ € £ be two arbitrary events from resp. threads i and ',
with i # i'. Then e < €' holds iff e < tmazx(e',i). And e # €' holds iff there is
some | € L such that lmaz(e,l) # Imaz(e’,1).

As a consequence of Theorem 6, deciding whether two events are related by
causality or conflict reduces to deciding whether two nodes from the same lock
or thread tree are ancestors.

5.2 Computing Causality and Conflict for Tree Nodes

This section presents an efficient algorithm to decide if two nodes of a tree are
ancestors. The algorithm is similar to a search in a skip list [18].



Let (N, <,r) denote a tree, where N is a set of nodes, < C N x N is the
parent relation, and r € N is the root. Let d(n) be the depth of each node in
the tree, with d(r) = 0. A node n is an ancestor of n’ if it belongs to the only
path from r to n’. Finally, for a node n € N and some integer ¢ € N such that
g < d(n) let g(n,g) denote the unique ancestor n’ of n such that d(n’) = g.

Given two distinct nodes n,n’ € N, we need to efficiently decide whether n is
an ancestor of n’. The key idea is that if d(n) = d(n’), then the answer is clearly
negative; and if the depths are different and w.l.o.g. d(n) < d(n’), then we have
that n is an ancestor of n’ iff nodes n and n” := ¢(n’,d(n)) are the same node.

To find n” from n’, a linear traversal of the branch starting from n’ would
be expensive for deep trees. Instead, we propose to use a data structure similar
to a skip list. Each node stores a pointer to the parent node and also a number
of pointers to ancestor nodes at distances s!,s?,s%,..., where s € N is a user-
defined step. The number of pointers stored at a node n is equal to the number of
trailing zeros in the s-ary representation of d(n). For instance, for s := 2 a node
at depth 4 stores 2 pointers (apart from the pointer to the parent) pointing to
the nodes at depth 4 —s! = 2 and depth 4 — s? = 0. Similarly a node at depth 12
stores a pointer to the ancestor (at depth 11) and pointers to the ancestors at
depths 10 and 8. With this algorithm computing ¢(n,g) requires traversing
log(d(n) — g) nodes of the tree.

5.3 Computing Conflicting Extensions

We now explain how function cexp(C) in Alg. 1 works. A call to cexp(C)
constructs and returns all events in cex(C). The function works only when the
PES being explored is the unfolding of a program P under the independence {p.

Owing to the properties of Up ¢ ., all events in cex(C') are labelled by acq
actions. Broadly speaking, this is because only the actions from different threads
that are co-enabled and are dependent create conflicts in Up .. And this is
only possible for acq statements. For the same reason, an event labelled by
a := (i, (acq, 1)) exists in cez(C) iff there is some event e € C such that h(e) = a.

Function cexp exploits these facts and the lock tree introduced in Sec. 5.1
to compute cex(C). Intuitively, it finds every event e labelled by an (acq,l)
statement and tries to “execute” it before the (rel,l) that happened before e
(if there is one). If it can, it creates a new event é with the same label as e.

Function pt(e) returns the only immediate causal predecessor of event e in
its own thread. For an acq/rel event e, function pm(e) returns the parent node
of event e in its lock tree (or L if e is the root). So for an acq event it returns
a rel event, and for a rel event it returns an acq event.

6 Experimental Evaluation

We implemented QPOR in a new tool called DPU (Dynamic Program Unfolder,
available at https://github.com/cesaro/dpu/releases/tag/v0.5.2). DPU is
a stateless model checker for C programs with POSIX threading. It uses the


https://github.com/cesaro/dpu/releases/tag/v0.5.2

LLVM infrastructure to parse, instrument, and JIT-compile the program, which
is assumed to be data-deterministic. It implements k-partial alternatives (k is
an input), optimal POR, and context-switch bounding [6].

DpuU does not use data-races as a source of thread interference for POR.
It will not explore two execution orders for the two instructions that exhibit a
data-race. However, it can be instructed to detect and report data races found
during the POR exploration. When requested, this detection happens for a user-
provided percentage of the executions explored by POR.

6.1 Comparison to SDPOR

In this section we investigate the following experimental questions: (a) How
does QPOR compare against SDPOR? (b) For which values of k do k-partial
alternatives yield optimal exploration?

We use realistic programs that expose complex thread synchronization pat-
terns including a job dispatcher, a multiple-producer multiple-consumer scheme,
parallel computation of 7, and a thread pool. Complex synchronizations pat-
terns are frequent in these examples, including nested and intertwined critical
sections or conditional interactions between threads based on the processed data,
and provide means to highlight the differences between POR approaches and
drive improvement. Each program contains between 2 and 8 assertions, often
ensuring invariants of the used data structures. All programs are safe and have
between 90 and 200 lines of code. We also considered the SV-COMP’17 bench-
marks, but almost all of them contain very simple synchronization patterns, not
representative of more complex concurrent algorithms. On these benchmarks
QPOR and SDPOR perform an almost identical exploration, both timeout on
exactly the same instances, and both find exactly the same bugs.

In Table 1, we present a comparison between DPU and NIDHUGG [2], an
efficient implementation of SDPOR, for multithreaded C programs. We run k-
partial alternatives with k& € {1,2,3} and optimal alternatives. The number of
SSB executions dramatically decreases as k increases. With k£ = 3 almost no
instance produces SSBs (except MPC(4,5)) and optimality is achieved with
k = 4. Programs with simple synchronization patterns, e.g., the P1 benchmark,
are explored optimally both with £ = 1 and by SDPOR, while more complex
synchronization patterns require k > 1.

Overall, if the benchmark exhibits many SSBs, the run time reduces as k in-
creases, and optimal exploration is the fastest option. However, when the bench-
mark contains few SSBs (cf., MPAT, P1, POKE), k-partial alternatives can be
slightly faster than optimal POR, an observation inline with previous litera-
ture [1]. Code profiling revealed that when the comb is large and contains many
solutions, both optimal and non-optimal POR, will easily find them, but opti-
mal POR spends additional time constructing a larger comb. This suggests that
optimal POR would profit from a lazy comb construction algorithm.

Dpu is faster than NIDHUGG in the majority of the benchmarks because it
can greatly reduce the number of SSBs. In the cases where both tools explore
the same set of executions, DPU is in general faster than NIDHUGG because



Benchmark Dru (k=1) Dru (k=2) Dru (k=3) Dru (optimal) NIDHUGG

Name Th Confs Time SSB Time SSB Time SSB Time Mem Time Mem SSB
Disp(5,2 8 137 0.8 1K 0.4 43 0.4 0 0.4 37 1.2 33 2K
Disp(5,3 9 2K 5.4 11K 1.3 595 1.0 1 1.0 37 10.8 33 13K
DISPESA 10 15K 58.5 105K 16.4 6K 10.3 213 10.3 87 109 33 115K
Disp(5,5 11 151K TO - 476 53K 280 2K 257 729 TO 33 -
Disp(5,6 12 ? TO - TO - TO - TO 1131 TO 33 -
MPAT(4) 9 384 0.5 0 N/A N/A 0.5 37 0.6 33 0
MPAT(5) 11 4K 2.4 0 N/A N/A 2.7 37 1.8 33 0
MPAT(6 13 46K 50.6 0 N/A N/A 73.2 214 21.5 33 0
MpAT(7 15 645K TO - TO - TO - TO 660 359 33 0
MPAT(8 17 ? TO - TO - TO - TO 689 TO 33 -
MPC(2,5 8 60 0.6 560 0.4 0 0.4 38 2.0 34 3K
MPC(3,5 9 3K 26.5 50K 3.0 3K 1.7 0 1.7 38 70.7 34 90K
MPC(4,5 10 314K TO - TO - 391 30K 296 239 TO 33 -
MPC(5,5 11 ? TO - TO - TO - TO 834 TO 34 -
P1(5 6 120 0.4 0 N/A N/A 0.5 39 19.6 35 0
P1(6 7 720 0.7 0 N/A N/A 0.7 39 123 35 0
Pi(7 8 5K 3.5 0 N/A N/A 4.0 45 TO 34 -
P1(8 9 40K 48.1 0 N/A N/A 42.9 246 TO 34 -
PoL(7,3 14 3K 48.5 72K 2.9 1K 1.9 6 1.9 39 74.1 33 90K
PoL(8,3 15 4K 153 214K 5.5 3K 3.0 10 3.0 52 251 33 274K
PoL(9,3 16 5K 464 592K 9.5 5K 4.8 15 4.8 73 TO 33 -
PoL(10,3 17 7K TO - 17.2 9K 6.8 21 7.1 99 TO 33 -
Por(11,3 18 10K TO - 27.2 12k 9.7 28 10.6 138 TO 33 -
Por(12,3 19 12K TO - 46.3 20K 13.5 36 16.4 184 TO 33 -

Table 1: Comparing QPOR and SDPOR. Machine: Linux, Intel Xeon 2.4GHz. TO:
timeout after 8 min. Columns are: Th: nr. of threads; Confs: maximal configurations;
Time in seconds, Memory in MB; SSB: Sleep-set blocked executions. N/A: analysis
with lower k yielded 0 SSBs.

it JIT-compiles the program, while NIDHUGG interprets it. All the benchmark
in Table 1 are data-race free, but NIDHUGG cannot be instructed to ignore data-
races and will attempt to revert them. DPU was run with data-race detection
disabled. Enabling it will incur in approximatively 10% overhead. In contrast
with previous observations [1,2], the results in Table 1 show that SSBs can
dramatically slow down the execution of SDPOR.

6.2 Evaluation of the Tree-based Algorithms

We now evaluate the efficiency of our tree-based algorithms from Sec. 5 answer-
ing: (a) What are the average/maximal depths of the thread/lock sequential
trees? (b) What is the average depth difference on causality /conflict queries? (c)
What is the best step for branch skip lists? We do not compare our algorithms
against others because to the best of our knowledge none is available (other than
a naive implementation of the mathematical definition of causality/conflict).
We run DpPU with an optimal exploration over 15 selected programs from Ta-
ble 1, with 380 to 204K maximal configurations in the unfolding. In total, the
15 unfoldings contain 246 trees (150 thread trees and 96 lock trees) with 5.2M
nodes. Fig. 3 shows the average depth of the nodes in each tree (subfigure a)
and the maximum depth of the trees (subfigure b), for each of the 246 trees.
While the average depth of a node is 22.7, as much as 80% of the trees have a
maximum depth of less than 8 nodes, and 90% of them less than 16 nodes. The
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Fig.3: (a), (b): depths of trees; (c), (d): frequency of depth distances

average of 22.7 is however larger because deeper trees contain proportionally
more nodes. The depth of the deepest node of every tree was between 3 and 77.
We next evaluate depth differences in the causality and conflict queries over
these trees. Fig. 3 (a) and (b) respectively show the frequency of various depth
distances associated to causality and conflict queries made by optimal POR.
Surprisingly, depth differences are very small for both causality and conflict
queries. When deciding causality between events, as much as 92% of the queries
were for tree nodes separated by a distance between 1 and 4, and 70% had a
difference of 1 or 2 nodes. This means that optimal POR, and specifically the
procedure that adds ez(C') to the unfolding (which is the main source of causality
queries), systematically performs causality queries which are trivial with the
proposed data structures. The situation is similar for checking conflicts: 82% of
the queries are about tree nodes whose depth difference is between 1 and 4.
These experiments show that most queries on the causality trees require very
short walks, which strongly drives to use the data structure proposed in Sec. 5.
Finally, we chose a (rather arbitrary) skip step of 4. We observed that other
values do not significantly impact the run time/memory consumption for most
benchmarks, since the depth difference on causality /conflict requests is very low.

6.3 Evaluation Against the State-of-the-art on System Code

We now evaluate the scalability and applicability of DPU on five multithreaded
programs in two Debian packages: blktrace [5], a block layer I/O tracing mech-
anism, and mafft [12], a tool for multiple alignment of amino acid or nucleotide
sequences. The code size of these utilities ranges from 2K to 40K LOC, and mafft
is parametric in the number of threads.



Benchmark Dru MAPLE

. Name LOC Th Time Ex R Time Ex R

We compared DPU against MAPLE
. ApD(2) 40K 3 24.3 2 U 2.7 2 8
[24], a state-of-the-art testing tool for Abp(4) 40k 5 25.5 24 U 345 24 U
. App(6) 40K 7 48.1 720 U  TO 316 U
multithreaded programs, as the top ‘App(s) a0k 9 T0 14K U  TO 329 U
ranked verification tools from SV- _ApD(10) 40K 11 TO 14K U  TO 295 U
) o+ ; Bik(5) 2k 2 0.9 1 S 4.6 1 S
COMP 17arestlllunableto?opeW1th BIk(i%) 2K 2 09 5 S 233 5 8
such large and complex multithreaded  Brk(18) 2k 2 1.0 180 S  T0 105 S
BLk(20) 2Kk 2 1.5 1147 $  TO 106 S
code. Unfortunately we could not Buk(22) 2k 2 2.6 5424 §  T0 108 S
compare against NIDHUGG because it BW€(24) 2K 2 10.0 20K §  T0 105 S
. DND(2,4) 16K 3 11.1 80 U 122 80 U
cannot deal with the (abundant) C- [l 16k 5 118 96 s 151 96 s
librar 1ls in th FOOTAINS. DND(4,4) 16K 5 TO 13K U  TO 360 U
brary calls in these programs DND(6,2) 16K 7 149.3 4320 S  TO 388 S
Table 2 presents our experimen- MpL(1,4) 38K 7 26.1 1 U 1.4 1 U
: . MpL(22) 38K 5 29.2 9 U 13.3 9 U
tal results. We use DPU with opti- \j05'3) 38k = 6.2 s76 U 70 304 U
mal exploration and the modified ver-  MDL(3,2) 38K 7 31.1 286 U 402 256 U
. M 4 in 221, To test MbrL(4,3) 38K 9 TO 14K U TO 329 U
sion- o ,APLE used in [22]. To SV pLa(1s) 4k 2 228 1 U 1.7 1 U
the effectiveness of both approaches in  Pra(2,4) 41k 3 37.2 80 U 142.4 80 U
fndi PLA(4,3) 41K 5 160.5 1368 U  TO 266 U
state space coverage and bug finding, prx 6,3) 41K 7 TO 4580 U TO 269 U

we introduce bugs in 4 of the bench-
marks (ADD,DND,MDL,PLA). For the Table 2: Comparing DPU with Maple
safe benchmark BLK, we perform ex- (same machine). LOC: lines of code; Execs:
haustive state-space exploration using nr. of executions; R: safe or unsafe. Other
MAPLE’s DFS mode. On this bench- columns as before. Timeout: 8 min.

mark, DPU outperfors MAPLE by sev-

eral orders of magnitude: DPU explores up to 20K executions covering the entire
state space in 10s, while MAPLE only explores up to 108 executions in 8 min.

For the remaining benchmarks, we use the random scheduler of MAPLE, con-
sidered to be the best baseline for bug finding [22]. First, we run DPU to retrieve
a bound on the number of random executions to answer whether both tools are
able to find the bug within the same number of executions. MAPLE found bugs
in all buggy programs (except for one variant in ADD) even though DPU greatly
outperforms and is able to achieve much more state space coverage.

6.4 Profiling a Stateless POR

In order to understand the cost of each component of the algorithm, we pro-
file DPU on a selection of 7 programs from Table 1. DPU spends between 30%
and 90% of the run time executing the program (65% in average). The remaining
time is spent computing alternatives, distributed as follows: adding events to the
event structure (15% to 30%), building the spikes of a new comb (1% to 50%),
searching for solutions in the comb (less than 5%), and computing conflicting
extensions (less than 5%). Counterintuitively, building the comb is more expen-
sive than exploring it, even in the optimal case. Filling the spikes seems to be
more memory-intensive than exploring the comb, which exploits data locality.
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Conclusion

We have shown that computing alternatives in an optimal DPOR exploration is
NP-complete. To mitigate this problem, we introduced a new approach to com-
pute alternatives in polynomial time, approximating the optimal exploration
with a user-defined constant. Experiments conducted on benchmarks including
Debian packages show that our implementation outperforms current verification
tools and uses appropriate data structures. Our profiling results show that run-
ning the program is often more expensive than computing alternatives. Hence,
efforts in reducing the number of redundant executions, even if significantly
costly, are likely to reduce the overall execution time.
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