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Abstract. The problem of quantitative inclusion formalizes the goal of
comparing quantitative dimensions between systems such as worst-case
execution time, resource consumption, and the like. Such systems are
typically represented by formalisms such as weighted logics or weighted
automata. Despite its significance in analyzing the quality of computing
systems, the study of quantitative inclusion has mostly been conducted
from a theoretical standpoint. In this work, we conduct the first empirical
study of quantitative inclusion for discounted-sum weighted automata
(DS-inclusion, in short).

Currently, two contrasting approaches for DS-inclusion exist: the linear-
programming based DetLP and the purely automata-theoretic BCV. The-
oretical complexity of DetLP is exponential in time and space while of
BCV is PSPACE-complete. All practical implementations of BCV, how-
ever, are also exponential in time and space. Hence, it is not clear which
of the two algorithms renders a superior implementation.

In this work we present the first implementations of these algorithms,
and perform extensive experimentation to compare between the two ap-
proaches. Our empirical analysis shows how the two approaches comple-
ment each other. This is a nuanced picture that is much richer than the
one obtained from the theoretical study alone.

1 Introduction

The analysis of quantitative dimensions of systems, such as worst-case execution
time, energy consumption, and the like, has been studied thoroughly in recent
times. By and large, these investigations have tended to be purely theoretical.
While some efforts in this space [12,13] do deliver prototype tools, the area
lacks a thorough empirical understanding of the relative performance of different
but related algorithmic solutions. In this paper, we further such an empirical
understanding for quantitative inclusion for discounted-sum weighted automata.

Weighted automata [17] are a popular choice for system models in quantita-
tive analysis. The problem of quantitative language inclusion [15] formalizes the
goal of determining which of any two given systems is more efficient under such
a system model. In a discounted-sum weighted automata the value of quantita-
tive dimensions are computed by aggregating the costs incurred during each step
of a system execution with discounted-sum aggregation. The discounted-sum
(DS) function relies on the intuition that costs incurred in the near future are



more “expensive” than costs incurred later on. Naturally, it is the choice for ag-
gregation for applications in economics and game-theory [20], Markov Decision
Processes with discounted rewards [16], quantitative safety [13], and more.

The hardness of quantitative inclusion for nondeterministic DS-automata,
or DS-inclusion, is evident from PSPACE-hardness of language-inclusion (LI)
problem for nondeterministic Büchi automata [23]. Decision procedures for DS-
inclusion were first investigated in [15], and subsequently through target discounted-
sum [11], DS-determinization [10]. A comparator-based argument [9] finally es-
tablished its PSPACE-completeness. However, these theoretical advances in DS-
inclusion have not been accompanied with the development of efficient and scal-
able tools and algorithms. This is the focus of this paper; our goal is to develop
practical algorithms and tools for DS-inclusion.

Theoretical advances have lead to two algorithmic approaches for DS-inclusion.
The first approach, referred to as DetLP, combines automata-theoretic rea-
soning with linear-programming (LP). This method first determinizes the DS-
automata [10], and reduces the problem of DS-inclusion for deterministic DS-
automata to LP [7,8]. Since determinization of DS-automata causes an exponen-
tial blow-up, DetLP yields an exponential time algorithm. An essential feature of
this approach is the separation of automata-theoretic reasoning– determinization–
and numerical reasoning, performed by an LP-solver. Because of this separation,
it does not seem easy to apply on-the-fly techniques to this approach and perform
it using polynomial space, so this approach uses exponential time and space.

In contrast, the second algorithm for DS-inclusion, referred to as BCV (af-
ter name of authors) is purely automata-theoretic [9]. The component of nu-
merical reasoning between costs of executions is handled by a special Büchi
automaton, called the comparator, that enables an on-line comparison of the
discounted-sum of a pair of weight-sequences. Aided by the comparator, BCV
reduces DS-inclusion to language-equivalence between Büchi automata. Since
language-equivalence is in PSPACE, BCV is a polynomial-space algorithm.

While the complexity-theoretic argument may seem to suggest a clear ad-
vantage for the pure automata-theoretic approach of BCV, the perspective from
an implementation point of view is more nuanced. BCV relies on LI-solvers as
its key algorithmic component. The polynomial-space approach for LI relies on
Savitch’s Theorem, which proves the equivalence between deterministic and non-
deterministic space complexity [21]. This theorem, however, does not yield a
practical algorithm. Existing efficient LI-solvers [3,4] are based on Ramsey-based
inclusion testing [6] or rank-based approaches [18]. These tools actually use ex-
ponential time and space. In fact, the exponential blow-up of Ramsey-based
approach seems to be worse than that of DS-determinization. Thus, the theo-
retical advantage BCV seems to evaporate upon close examination. Thus, it is
far from clear which algorithmic approach is superior. To resolve this issue, we
provide in this paper the first implementations for both algorithms and perform
exhaustive empirical analysis to compare their performance.

Our first tool, also called DetLP, implements its namesake algorithm as it is.
We rely on existing LP-solver GLPSOL to perform numerical reasoning. Our sec-
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ond tool, called QuIP, starts from BCV, but improves on it. The key improvement
arises from the construction of an improved comparator with fewer states. We
revisit the reduction to language inclusion in [9] accordingly. The new reduction
reduces the transition-density of the inputs to the LI-solver (Transition density
is the ratio of transitions to states), improving the overall performance of QuIP
since LI-solvers are known to scale better at lower transition-density inputs [19]

Our empirical analysis reveals that theoretical complexity does not provide a
full picture. Despite its poorer complexity, QuIP scales significantly better than
DetLP, although DetLP solves more benchmarks. Based on these observations, we
propose a method for DS-inclusion that leverages the complementary strengths of
these tools to offer a scalable tool for DS-inclusion. Our evaluation also highlights
the limitations of both approaches, and opens directions for further research in
improving tools for DS-inclusion.

2 Preliminaries

Büchi automata A Büchi automaton [23] is a tuple A = (S , Σ, δ, Init ,F),
where S is a finite set of states, Σ is a finite input alphabet, δ ⊆ (S × Σ × S )
is the transition relation, Init ⊆ S is the set of initial states, and F ⊆ S is the
set of accepting states.A Büchi automaton is deterministic if for all states s and
inputs a, |{s′|(s, a, s′) ∈ δ}| ≤ 1. Otherwise, it is nondeterministic. For a word
w = w0w1 . . . ∈ Σω, a run ρ of w is a sequence of states s0s1 . . . satisfying:
(1) s0 ∈ Init , and (2) τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote the
set of states that occur infinitely often in run ρ. A run ρ is an accepting run if
inf (ρ) ∩ F 6= ∅. A word w is an accepting word if it has an accepting run.

The language L(A) of Büchi automaton A is the set of all words accepted by
it. Büchi automata are known to be closed under set-theoretic union, intersection,
and complementation. For Büchi automata A and B, the language-equivalence
and language-inclusion are whether L(A) ≡ L(B) and L(A) ⊆ L(B), resp.

Let A = A[0], A[1], . . . be a natural-number sequence, d > 1 be a rational

number. The discounted-sum of A with discount-factor d is DS (A, d) = Σ∞i=0
A[i]
di .

For number sequences A and B, (A,B) and (A−B) denote the sequences where
the i-th element is (A[i], B[i]) and A[i]−B[i], respectively.

Discounted-sum automata A discounted-sum automaton with discount-factor
d > 1, DS-automaton in short, is a tupleA = (M, γ), whereM = (S , Σ, δ, Init ,S )
is a Büchi automaton, and γ : δ → N is the weight function that assigns a weight
to each transition of automatonM. Words and runs in weighted ω-automata are
defined as they are in Büchi automata. Note that all states are accepting states
in this definition. The weight sequence of run ρ = s0s1 . . . of word w = w0w1 . . .
is given by wtρ = n0n1n2 . . . where ni = γ(si, wi, si+1) for all i. The weight of
a run ρ is given by DS (wtρ, d). For simplicity, we denote this by DS (ρ, d). The
weight of a word in DS-automata is defined as wtA(w) = sup{DS (ρ, d)|ρ is a run
of w in A}. By convention, if a word w 6∈ L(A), then wtA(w) = 0 [15]. A DS-
automata is said to be complete if from every state there is at least one transition
on every alphabet. Formally, for all p ∈ S and for all a ∈ Σ, there exists q ∈ S
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s.t (p, a, q) ∈ δ. A run ρ ∈ P of word w ∈ L(P ) is a diminished run if there exists
a run σ ∈ Q over the same word w s.t. DS (ρ, d) < DS (σ, d). We abuse notation,
and use w ∈ A to mean w ∈ L(A) for Büchi automaton or DS-automaton A.
We limit ourselves to integer discount-factors only. Given DS-automata P and
Q and discount-factor d > 1, the discounted-sum inclusion problem, denoted by
P ⊆d Q, determines whether for all words w ∈ Σω, wtP (w) ≤ wtQ(w).

Comparator automata For natural number µ, integer discount-factor d > 1
and inequality relation ≤, the discounted-sum comparator Aµ,d≤ , comparator, in
short, is a Büchi automaton that accepts (infinite) words over the alphabet
{0, 1 . . . , µ − 1} × {0, 1 . . . , µ − 1} such that a pair (A,B) of sequences is in
L(Aµd ) iff DS (A, d) ≤ DS (B, d). Closure properties of Büchi automata ensure
that comparator exists for all inequality relations [9].

Motivating example As an example of such a problem formulation, consider
the system and specification in Figure 1 and Figure 2, respectively [15]. Here, the
specification P depicts the worst-case energy-consumption model for a motor,
and the system S is a candidate implementation of the motor. Transitions in S
and P are labeled by transition-action and transition-cost. The cost of an exe-
cution (a sequence of actions) is given by an aggregate of the costs of transitions
along its run (a sequence of automaton states). In non-deterministic automata,
where each execution may have multiple runs, cost of the execution is the cost
of the run with maximum cost. A critical question here is to check whether im-
plementation S is more energy-efficient than specification P . This problem can
be framed as a problem of quantitative inclusion between S and P .

3 Prior work

We discuss existing algorithms for DS-inclusion i.e. DetLP and BCV in detail.

3.1 DetLP: DS-determinization and LP-based

Böker and Henzinger studied complexity and decision-procedures for determiniza-
tion of DS-automata in detail [10]. They proved that a DS-automata can be de-
terminized if it is complete, all its states are accepting states and the discount-
factor is an integer. Under all other circumstances, DS-determinization may not
be guaranteed. DS-determinization extends subset-construction for automata
over finite words. Every state of the determinized DS-automata is represented
by an |S|-tuple of numbers, where S = {q1, . . . q|S|} denotes the set of states of
the original DS-automaton. The value stored in the i-th place in the |S|-tuple
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represents the “gap” or extra-cost of reaching state qi over a finite-word w com-
pared to its best value so far. The crux of the argument lies in proving that
when the DS-automata is complete and the discount-factor is an integer, the
“gap” can take only finitely-many values, yielding finiteness of the determinized
DS-automata, albeit exponentially larger than the original.

Theorem 1. [10] [DS-determinization analysis] Let A be a complete DS-automata
with maximum weight µ over transitions and s number of states. DS-determinization
of A generates a DS-automaton with at most µs states.

Chatterjee et al. reduced P ⊆d Q between non-deterministic DS-automata P and
deterministic DS-automata Q to linear-programming [7,8,15]. First, the product

DS-automata P × Q is constructed so that (sP , sQ)
a−→ (tP , tQ) is a transition

with weight wP −wQ if transition sM
a−→ tM with weight wM is present in M , for

M ∈ {P,Q}. P ⊆q Q is False iff the weight of any word in P ×Q is greater than
0. Since Q is deterministic, it is sufficient to check if the maximum weight of all
infinite paths from the initial state in P ×Q is greater than 0. For discounted-
sum, the maximum weight of paths from a given state can be determined by
a linear-program: Each variable (one for each state) corresponds to the weight
of paths originating in this state, and transitions decide the constraints which
relate the values of variables (or states) on them. The objective is to maximize
weight of variable corresponding to the initial state.

Therefore, the DetLP method for P ⊆d Q is as follows: Determinize Q to
QD via DS-determinization method from [10], and reduce P ⊆d QD to linear
programming following [15]. Note that since determinization is possible only if
the DS-automaton is complete, DetLP can be applied only if Q is complete.

Lemma 1. Let P and Q be non-deterministic DS-automata with sP and sQ
number of states respectively, τP states in P . Let the alphabet be Σ and maximum
weight on transitions be µ. Then P ⊆d Q is reduced to linear programming with
O(sP · µsQ) variables and O(τP · µsQ · |Σ|) constraints.

Anderson and Conitzer [7] proved that this system of linear equations can be
solved in O(m · n2) for m constraints and n variables. Therefore,

Theorem 2. [7,15] [Complexity of DetLP] Let P and Q be DS-automata with
sP and sQ number of states respectively, τP states in P . Let the alphabet be Σ and
maximum weight on transitions be µ. Complexity of DetLP is O(s2P ·τP ·µsQ ·|Σ|).

3.2 BCV: Comparator-based approach

The key idea behind BCV is that P ⊆d Q holds iff every run of P is a dimin-
ished run. As a result, BCV constructs an intermediate Büchi automaton Dim
that consists of all diminished runs of P . It then checks whether Dim consists
of all runs of P , by determining language-equivalence between Dim and an au-
tomaton P̂ that consists of all runs of P . The comparator Aµ,d≤ is utilized in the
construction of Dim to compare weight of runs in P and Q.
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1: Input: Weighted automata P , Q, and discount-factor d
2: Output: True if P ⊆d Q, False otherwise
3: P̂ ← AugmentWtAndLabel(P )
4: Q̂← AugmentWtAndLabel(Q)
5: P̂ × Q̂← MakeProductSameAlpha(P̂ , Q̂)
6: µ← MaxWeight(P,Q)
7: Aµ,d≤ ← MakeComparator(µ, d)

8: DimWithWitness ← Intersect(P̂ × Q̂,Aµ,d≤ )
9: Dim ← FirstProject(DimWithWitness)

10: return P̂ ≡ Dim
Algorithm 1: BCV(P,Q, d), Is P ⊆d Q?

Strictly speaking, BCV as presented in [9], is a generic algorithm for in-
clusion under a general class of aggregate functions, called ω-regular aggregate
functions. Here, BCV (Algorithm 1) refers to its adaptation to DS. Procedure
AugmentWtAndLabel separates between runs of the same word in DS-automata
by assigning a unique transition-identity to each transition. It also appends the
transition weight, to enable weight comparison afterwards. Specifically, it trans-
forms DS-automaton A into Büchi automaton Â, with all states as accepting, by
converting transition τ = s

a−→ t with weight wt and unique transition-identity

l to transition τ̂ = s
(a,wt,l)−−−−−→ t in Â. Procedure MakeProductSameAlpha(P̂ , Q̂)

takes the product of P̂ and Q̂ over the same word i.e., transitions sA
(a,nA,lA)−−−−−−→ tA

in A, for A ∈ {P̂ , Q̂}, generates transition (sP , sQ)
(a,nP ,lP ,nQ,lQ)−−−−−−−−−−→ (tP , tQ) in

P̂ × Q̂. The comparator Aµ,d≤ is constructed with upper-bound µ that equals
the maximum weight of transitions in P and Q, and discount-factor d. Intersect
matches the alphabet of P̂ ×Q̂ with Aµ,d≤ , and intersects them. The resulting au-
tomaton DimWithWitness accepts word (w,wtP , idP , wtQ, idQ) iff DS (wtP , d) ≤
DS (wtQ, d). The projection of DimWithWitness on the first three components

of P̂ returns Dim which contains the word (w,wtP , idP ) iff it is a diminished
run in P . Finally, language-equivalence between Dim and P̂ returns the answer.

Unlike DetLP, BCV operates on incomplete DS-automata as well, and can be
extended to DS-automata in which not all states are accepting.

4 QuIP: BCV-based solver for DS-inclusion

We investigate more closely why BCV does not lend itself to a practical imple-
mentation for DS-inclusion (§ 4.1). We identify its drawbacks, and propose an
improved algorithm QuIP as is described in § 4.3. QuIP improves upon BCV by
means of a new optimized comparator that we describe in §4.2.

4.1 Analysis of BCV

The proof for PSPACE-complexity of BCV relies on LI to be PSPACE. In practice,
though, implementations of LI apply Ramsey-based inclusion testing [6], rank-
based methods [18] etc. All of these algorithms are exponential in time and space
in the worst case. Any implementation of BCV will have to rely on an LI-solver.
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Therefore, in practice BCV is also exponential in time and space. In fact, we
show that its worst-case complexity (in practice) is poorer than DetLP.

Another reason that prevents BCV from practical implementations is that
it does not optimize the size of intermediate automata. Specifically, we show
that the size and transition-density of Dim, which is one of the inputs to LI-
solver, is very high (Transition density is the ratio of transitions to states). Both
of these parameters are known to be deterrents to the performance of existing
LI-solvers [5], subsequently to BCV as well:

Lemma 2. Let sP , sQ, sd and τP , τQ, τd denote the number of states and

transitions in P , Q, and Aµ,d≤ , respectively. Number of states and transitions in

Dim are O(sP sQsd) and O(τ2P τ
2
Qτd|Σ|), respectively.

Proof. It is easy to see that the number of states and transitions of P̂ Q̂ are
the same as those of P and Q, respectively. Therefore, the number of states and
transitions in P̂×Q̂ are O(sP sQ) and O(τP τQ), respectively. The alphabet of P̂×
Q̂ is of the form (a,wt1, id1, wt2, id2) for a ∈ Σ, wt1, wt2 are non-negative weights
bounded by µ and idi are unique transition-ids in P and Q respectively. The
alphabet of comparator Aµ,d≤ is of the form (wt1, wt2). To perform intersection
of these two, the alphabet of comparator needs to be matched to that of the
product, causing a blow-up in number of transitions in the comparator by a factor
of |Σ|·τP ·τQ. Therefore, the number of states and transitions in DimWithWitness
and Dim is given by O(sP sQsd) and O(τ2P τ

2
Qτd|Σ|).

The comparator is a non-deterministic Büchi automata withO(µ2) states over an
alphabet of size µ2 [9]. Since transition-density δ = |S| · |Σ| for non-deterministic
Büchi automata, the transition-density of the comparator is O(µ4). Therefore,

Corollary 1. Let sP , sQ, sd denote the number of states in P , Q, Aµ,d≤ , re-
spectively, and δP , δQ and δd be their transition-densities. Number of states and
transition-density of Dim are O(sP sQµ

2) and O(δP δQτP τQ·µ4·|Σ|), respectively.

The corollary illustrates that the transition-density of Dim is very high even for
small inputs. The blow-up in number of transitions of DimWithWitness (hence
Dim) occurs during alphabet-matching for Büchi automata intersection (Algo-
rithm 1, Line 8). However, the blow-up can be avoided by performing intersection

over a substring of the alphabet of P̂ × Q̂. Specifically, if s1
(a,nP ,idP ,nQ,idQ)−−−−−−−−−−−−→ s2

and t1
(wt1,wt2)−−−−−−→ t2 are transitions in P̂ × Q̂ and comparator Aµ,d≤ respectively,

then (s1, t1, i)
(a,nP ,idP ,nQ,idQ)−−−−−−−−−−−−→ (s2, t2, j) is a transition in the intersection iff

nP = wt1 and nQ = wt2, where j = (i+ 1) mod 2 if either s1 or t1 is an accept-
ing state, and j = i otherwise. We call intersection over substring of alphabet
IntersectSelectAlpha. The following is easy to prove:

Lemma 3. Let A1 = Intersect(P̂ ×Q̂,Aµ,d≤ ), and A2 = IntersectSelectAlpha(P̂ ×
Q̂,Aµ,d≤ ). Intersect extends alphabet of Aµ,d≤ to match the alphabet of P̂ × Q̂ and

IntersectSelectAlpha selects a substring of the alphabet of P̂ × Q̂ as defined above.
Then, L(A1) ≡ L(A2).
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IntersectSelectAlpha prevents the blow-up by |Σ| · τP · τQ, resulting in only
O(τP τQτd) transitions in Dim Therefore,

Lemma 4. [Trans. Den. in BCV ] Let δP , δQ denote transition-densities of P

and Q, resp., and µ be the upper bound for comparator Aµ,d≤ . Number of states

and transition-density of Dim are O(sP sQµ
2) and O(δP δQ · µ4), respectively.

Language-equivalence is performed via tools for language-inclusion. The most ef-
fective tool for language-inclusion RABIT [1] is based on Ramsay-based inclusion
testing [6]. The worst-case complexity for A ⊆ B via Ramsay-based inclusion

testing is known to be 2O(n2), when B has n states. Therefore,

Theorem 3. [Practical complexity of BCV ] Let P and Q be DS-automata with
sP , sQ number of states respectively, and maximum weight on transitions be µ.
Worst-case complexity for BCV for integer discount-factor d > 1 when language-

equivalence is performed via Ramsay-based inclusion testing is 2O(s2P ·s
2
Q·µ

4).

Recall that language-inclusion queries are P̂ ⊆ Dim and Dim ⊆ P̂ . Since Dim
has many more states than P̂ , the complexity of P̂ ⊆ Dim dominates.

Theorem 2 and Theorem 3 demonstrate that the complexity of BCV (in
practice) is worse than DetLP.

4.2 Baseline automata: An optimized comparator

The 2O(s2) dependence of BCV on the number of states s of the comparator
motivates us to construct a more compact comparator. Currently a comparator
consists of O(µ2) number of states for upper bound µ [9]. In this section, we
introduce the related concept of baseline automata which consists of only O(µ)-
many states and has transition density of O(µ2).

Definition 1 (Baseline automata). For natural number µ, integer discount-
factor d > 1 and relation R, for R ∈ {≤,≥, <,>,=}, the DSbaseline automata

Bµ,dR , baseline in short, is a Büchi automaton that accepts (infinite) words over

the alphabet {−(µ− 1), . . . , µ− 1} s.t. sequences V ∈ L(Bµ,dR ) iff DS (V, d) R 0.

Semantically, a baseline automata with upper bound µ, discount-factor d and
inequality relation R is the language of all integer sequences bounded by µ for
which their discounted-sum is related to 0 by the relation R. Baseline automata
can also be said to be related to cut-point languages [14].

Since DS (A, d) ≤ DS (B, d) = DS (A−B, d) ≤ 0, Aµ,d≤ accepts (A,B) iff Bµ,d≤
accepts (A−B), regularity of baseline automata follows straight-away from the

regularity of comparator. In fact, the automaton for Bµ,d≤ can be derived from

Aµ,d≤ by transforming the alphabet from (a, b) to (a− b) along every transition.

The first benefit of the modified alphabet is that its size is reduced from µ2 to
2 · µ − 1. In addition, it coalesces all transitions between any two states over
alphabet (a, a + v), for all a, into one single transition over v, thereby also
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reducing transitions. However, this direct transformation results in a baseline
with O(µ2) states. We provide a construction of baseline with O(µ) states only.

The key idea behind the construction of the baseline is that the discounted-
sum of sequence V can be treated as a number in base d i.e. DS (V, d) =

Σ∞i=0
V [i]
di = (V [0].V [1]V [2] . . . )d. So, there exists a non-negative value C in base

d s.t. V +C = 0 for arithmetic operations in base d. This value C can be repre-
sented by a non-negative sequence C s.t. DS (C, d) + DS (V, d) = 0. Arithmetic
in base d over sequences C and V result in a sequence of carry-on X such that:

Lemma 5. Let V,C,X be the number sequences, d > 1 be a positive integer
such that following equations holds true:

1. When i = 0, V [0] + C[0] +X[0] = 0
2. When i ≥ 1, V [i] + C[i] +X[i] = d ·X[i− 1]

Then DS (V, d) + DS (C, d) = 0.

In the construction of the comparator, it has been proven that when A and
B are bounded non-negative integer sequences s.t. DS (A, d) ≤ DS (B, d), the
corresponding sequences C and X are also bounded integer-sequences [9]. The
same argument transcends here: When V is a bounded integer sequence s.t.
DS (V, d) ≤ 0, there exists a corresponding pair of bounded integer sequence C
and X. In fact, the bounds used for the comparator carry over to this case as
well. Sequence C is non-negative and is bounded by µC = µ · d

d−1 since −µC is
the minimum value of discounted-sum of V , and integer-sequence X is bounded
by µX = 1 + µ

d−1 . On combining Lemma 5 with the bounds on X and C we get:

Lemma 6. Let V and be an integer-sequence bounded by µ s.t. DS (V, d) ≤ 0,
and X be an integer sequence bounded by (1 + µ

d−1 ), then there exists an X s.t.

1. When i = 0, 0 ≤ −(X[0] + V [0]) ≤ µ · d
d−1

2. When i ≥ 1, 0 ≤ (d ·X[i− 1]− V [i]−X[i]) ≤ µ · d
d−1

Equations 1-2 from Lemma 6 have been obtained by expressing C[i] in terms of
X[i], X[i−1], V [i] and d, and imposing the non-negative bound of µC = µ· d

d−1 on
the resulting expression. Therefore, Lemma 6 implicitly captures the conditions
on C by expressing it only in terms of V , X and d for DS (V, d) ≤ 0 to hold.

In construction of the baseline automata, the values of V [i] is part of the
alphabet, upper bound µ and discount-factor d are the input parameters. The
only unknowns are the value of X[i]. However, we know that it can take only
finitely many values i.e. integer values |X[i]| ≤ µX . So, we store all possible
values of X[i] in the states. Hence, the state-space S comprises of {(x)||x| ≤
µX} and a start state s. Transitions between these states are possible iff the
corresponding x-values and alphabet v satisfy the conditions of Equations 1-2
from Lemma 6. There is a transition from start state s to state (x) on alphabet
v if 0 ≤ −(x + v) ≤ µ · d

d−1 , and from state (x) to state (x′) on alphabet v if

0 ≤ (d · x − v − x′) ≤ µ · d
d−1 . All (x)-states are accepting. This completes the

construction for baseline automaton Bµ,d≤ . Clearly Bµ,d≤ has only O(µ) states.
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Since Büchi automata are closed under set-theoretic operations, baseline au-
tomata is ω-regular for all other inequalities too. Moreover, baseline automata
for all other inequalities also have O(µ) states. Therefore for sake of completion,

we extend Bµ,d≤ to construct Bµ,d< . For DS (V, d) < 0, DS (C, d) > 0 (implicitly
generated C). Since C is a non-negative sequence it is sufficient if at least one
value of C is non-zero. Therefore, all runs are diverted to non-accepting states
(x,⊥) using the same transitions until the value of c is zero, and moves to ac-
cepting states (x) only if it witnesses a non-zero value for c. Formally,

Construction Let µC = µ· dd−1 ≤ 2·µ and µX = 1+ µ
d−1 . Bµ,d< = (S , Σ, δd, Init ,F)

– S = Init ∪ F ∪ S⊥ where
Init = {s}, F = {x||x| ≤ µX}, and
S⊥ = {(x,⊥)||x| ≤ µX} where ⊥ is a special character, and x ∈ Z.

– Σ = {v : |v| ≤ µ} where v is an integer.
– δd ⊂ S ×Σ × S is defined as follows:

1. Transitions from start state s:
i (s, v, x) for all x ∈ F s.t. 0 < −(x+ v) ≤ µC
ii (s, v, (x,⊥)) for all (x,⊥) ∈ S⊥ s.t. x+ v = 0

2. Transitions within S⊥: ((x,⊥), v, (x′,⊥)) for all (x,⊥), (x′,⊥) ∈ S⊥, if
d · x = v + x′

3. Transitions within F : (x, v, x′) for all x, x′ ∈ F if 0 ≤ d · x− v − x′ < d
4. Transition between S⊥ and F : ((x,⊥), v, x′) for (x,⊥) ∈ S⊥, x′ ∈ F if

0 < d · x− v − x′ < d

Theorem 4. [Baseline] The Büchi automaton constructed above is the baseline

Bµ,d< with upper bound µ, integer discount-factor d > 1 and relation <.

The baseline automata for all inequality relations will have O(µ) states, alphabet
size of 2 · µ− 1, and transition-density of O(µ2).

4.3 QuIP: Algorithm description

The construction of the universal leads to an implementation-friendly QuIP from
BCV. The core focus of QuIP is to ensure that the size of intermediate automata is
small and they have fewer transitions to assist the LI-solvers. Technically, QuIP
differs from BCV by incorporating the baseline automata and an appropriate
IntersectSelectAlpha function, rendering QuIP theoretical improvement over BCV.
Like BCV, QuIP also determines all diminished runs of P . So, it disambiguates
P by appending weight and a unique label to each of its transitions. Since,
the identity of runs of Q is not important, we do not disambiguate between
runs of Q, we only append the weight to each transition (Algorithm 2, Line 4).
The baseline automaton is constructed for discount-factor d, maximum weight
µ along transitions in P and Q, and the inequality ≤. Since the alphabet of the
baseline automata are integers between −µ to µ, the alphabet of the product
P̂ × Q̂ is adjusted accordingly. Specifically, the weight recorded along transitions
in the product is taken to be the difference of weight in P̂ to that in Q̂ i.e. if τP :
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1: Input: Weighted automata P , Q, and discount-factor d
2: Output: True if P ⊆d Q, False otherwise
3: P̂ ← AugmentWtAndLabel(P )
4: Q̂← AugmentWt(Q)
5: P̂ × Q̂← MakeProductSameAlpha(P̂ , Q̂)
6: A ← MakeBaseline(µ, d,≤)
7: DimWithWitness ← IntersectSelectAlpha(P̂ × Q̂,A)
8: Dim ← ProjectOutWt(DimWithWitness)
9: P̂−wt ← ProjectOutWt(P̂ )

10: return P̂−wt ⊆ Dim

Algorithm 2: QuIP(P,Q, d), Is P ⊆d Q?

s1
a1,wt1,l−−−−−→ s2 and τQ : t1

a2,wt2−−−−→ t2 are transitions in P̂ and Q̂ respectively, then

τ = (s1, t1)
a1,wt1−wt2,l−−−−−−−−→ (s2, t2) is a transition in P̂×Q̂ iff a1 = a2 (Algorithm 2,

Line 5). In this case, IntersectSelectAlpha intersects baseline automata A and
product P̂ × Q̂ only on the weight-component of alphabet in P̂ × Q̂. Specifically,

if s1
(a,wt1,l)−−−−−→ s2 and t1

wt2−−→ t2 are transitions in P̂ × Q̂ and comparator Aµ,d≤
respectively, then (s1, t1, i)

a,wt1,l−−−−→ (s2, t2, j) is a transition in the intersection
iff wt1 = wt2, where j = (i + 1) mod 2 if either s1 or t1 is an accepting state,
and j = i otherwise. Automaton Dim and P̂−wt are obtained by project out the
weight-component from the alphabet of P̂ × Q̂ and P̂ respectively. The alphabet
of P̂ × Q̂ and P̂ are converted from (a,wt, l) to only (a, l). It is necessary to
project out the weight component since in P̂ × Q̂ they represent the difference
of weights and and in P̂ they represent the absolute value of weight.

Finally, the language of Dim is equated with that of P̂−wt which is the
automaton generated from P̂ after discarding weights from transitions. However,
it is easy to prove that Dim ⊆ P̂−wt. Therefore, instead of language-equivalence
between Dim and P̂−wt and, it is sufficient to check whether P̂−wt ⊆ Dim. As a
result, QuIP utilizes LI-solvers as a black-box to perform this final step.
Lemma 7. [Trans. Den. in QuIP] Let δP , δQ denote transition-densities of P

and Q, resp., and µ be the upper bound for baseline Bµ,d≤ . Number of states and

transition-density of Dim are O(sP sQµ) and O(δP δQ · µ2), respectively.

Theorem 5. [Practical complexity of QuIP] Let P and Q be DS-automata with
sP , sQ number of states, respectively, and maximum weight on transitions be µ.
Worst-case complexity for QuIP for integer discount-factor d > 1 when language-

equivalence is performed via Ramsay-based inclusion testing is 2O(s2P ·s
2
Q·µ

2).

Theorem 5 demonstrates that while complexity of QuIP (in practice) improves
upon BCV (in practice), it is still worse than DetLP.

5 Experimental evaluation

We provide implementations of our tools QuIP and DetLP and conduct experi-
ments on a large number of synthetically-generated benchmarks to compare their

11



performance. We seek to find answers to the following questions: (1). Which tool
has better performance, as measured by runtime, and number of benchmarks
solved? (2). How does change in transition-density affect performance of the
tools? (3). How dependent are our tools on their underlying solvers?

5.1 Implementation details

We implement our tools QuIP and DetLP in C++, with compiler optimization o3

enabled. We implement our own library for all Büchi-automata and DS-automata
operations, except for language-inclusion for which we use the state-of-the-art LI-
solver RABIT [4] as a black-box. We enable the -fast flag in RABIT, and tune its
JAVA-threads with Xss, Xms, Xmx set to 1GB, 1GB and 8GB respectively. We use
the large-scale LP-solver GLPSOL provided by GLPK (GNU Linear Programming
Kit) [2] inside DetLP. We did not tune GLPSOL since it consumes a very small
percentage of total time in DetLP, as we see later in Fig 4b.

We also employ some implementation-level optimizations. Various steps of
QuIP and DetLP such as product, DS-determinization, baseline construction,
involve the creation of new automaton states and transitions. We reduce their
size by adding a new state only if it is reachable from the initial state, and a
new transition only if it originates from such a state.

The universal automata is constructed on the restricted alphabet of only
those weights that appear in the product P̂ × Q̂ to include only necessary tran-
sitions. We also reduce its size with Büchi minimization tool Reduce [4].

Since all states of P̂ × Q̂ are accepting, we conduct the intersection so that
it avoids doubling the number of product states. This can be done, since it is
sufficient to keep track of whether words visit accepting states in the universal.

5.2 Benchmarks

To the best of our knowledge, there are no standardized benchmarks for DS-
automata. We attempted to experimented with examples that appear in research
papers. However, these examples are too few and too small, and do not render
an informative view of performance of the tools. Following a standard approach
to performance evaluation of automata-theoretic tools [5,19,22], we experiment
with our tools on randomly generated benchmarks.

Random weighted-automata generation The parameters for our random
weighted-automata generation procedure are the number of states N , transition-
density δ and upper-bound µ for weight on transitions. The states are represented
by the set {0, 1, . . . , N − 1}. All states of the weighted-automata are accepting,
and they have a unique initial state 0. The alphabet for all weighted-automata
is fixed to Σ = {a, b}. Weight on transitions ranges from 0 to µ − 1. For our
experiments we only generate complete weighted-automata. These weighted au-
tomata are generated only if the number of transitions bN · δc is greater than
N · |Σ|, since there must be at least one transition on each alphabet from every
state. We first complete the weighted-automata by creating a transition from
each state on every alphabet. In this case the destination state and weight are
chosen randomly. The remaining (N ·|Σ|−bN ·δc)-many transitions are generated
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by selecting all parameters randomly i.e. the source and destination states from
{0, . . . N − 1}, the alphabet from Σ, and weight on transition from {0, µ− 1}.

5.3 Design and setup for experimental evaluation

Our experiments were designed with the objective to compare DetLP and QuIP.
Due to the lack of standardized benchmarks, we conduct our experiments on
randomly-generated benchmarks. Therefore, the parameters for P ⊆d Q are the
number of states sP and sQ, transition density δ, and maximum weight wt. We
seek to find answers to the questions described at the beginning of § 5.

Each instantiation of the parameter-tuple (sP , sQ, δ, wt) and a choice of tool
between QuIP and DetLP corresponds to one experiment. In each experiment,
the weighted-automata P and Q are randomly-generated with the parameters
(sP , δ, wt) and (sQ, δ, wt), respectively, and language-inclusion is performed by
the chosen tool. Since all inputs are randomly-generated, each experiment is
repeated for 50 times to obtain statistically significant data. Each experiment
is run for a total of 1000 sec on for a single node of a high-performance cluster.
Each node of the cluster consists of two quad-core Intel-Xeon processor running
at 2.83GHz, with 8GB of memory per node. The runtime of experiments that do
not terminate within the given time limit is assigned a runtime of ∞. We report
the median of the runtime-data collected from all iterations of the experiment.

These experiments are scaled-up by increasing the size of inputs. The worst-
case analysis of QuIP demonstrates that it is symmetric in sP and sQ, making
the algorithm impartial to which of the two inputs is scaled (Theorem 5). On the
other hand, complexity of DetLP is dominated by sQ (Theorem 2). Therefore,
we scale-up our experiments by increasing sQ only.

Since DetLP is restricted to complete automata, these experiments are con-
ducted on complete weighted automata only. We collect data on total runtime
of each tool, the time consumed by the underlying solver, and the number of
times each experiment terminates with the given resources. We experiment with
sP = 10, δ ranges between 2.5-4 in increments of 0.5 (we take lower-bound of
2.5 since |Σ| = 2), wt ∈ {4, 5}, and sQ ranges from 0-1500 in increments of 25,
d = 3. These sets of experiments also suffice for testing scalability of both tools.

5.4 Observations

We first compare the tools based on the number of benchmarks each can solve.
We also attempt to unravel the main cause of failure of each tool. Out of the
50 experiments for each parameter-value, DetLP consistently solves more bench-
marks than QuIP for the same parameter-values (Fig. 3a-3b)1. The figures also
reveal that both tools solve more benchmarks at lower transition-density. The
most common, in fact almost always, reason for QuIP to fail before its timeout
was reported to be memory-overflow inside RABIT during language-inclusion be-
tween P̂−wt and Dim. On the other hand, the main cause of failure of DetLP was
reported to be memory overflow during DS-determinization and preprocessing
of the determinized DS-automata before GLPSOL is invoked. This occurs due to

1 Figures are best viewed online and in color
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Fig. 3: Number of benchmarks solved out of 50 as sQ increases with sP = 10,
µ = 4. δ = 2.5 and δ = 4 in Fig 3a and Fig 3b, respectively.
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Fig. 4: Time trends: Fig 4a plots total runtime as sQ increases sP = 10,µ = 4,
δ = 2.5. Figure shows median-time for each parameter-value. Fig 4b plots the
ratio of time spent by tool inside its solver at the same parameter values.

the sheer size of the determinized DS-automata, which can very quickly become
very large. These empirical observations indicate that the bottleneck in QuIP and
DetLP may be language-inclusion and explicit DS-determinization, respectively.

We investigate the above intuition by analyzing the runtime trends for both
tools. Fig. 4a plots the runtime for both tools. The plot shows that QuIP fares
significantly better than DetLP in runtime at δ = 2.5. The plots for both the tools
on logscale seem curved (Fig. 4a), suggesting a sub-exponential runtime com-
plexity. These were observed at higher δ as well. However, at higher δ we observe
very few outliers on the runtime-trend graphs of QuIP at larger inputs when just
a few more than 50% of the runs are successful. This is expected since effectively,
the median reports the runtime of the slower runs in these cases. Fig 4b records
the ratio of total time spent inside RABIT and GLPSOL . The plot reveals that
QuIP spends most of its time inside RABIT. We also observe that most memory
consumptions in QuIP occurs inside RABIT. In contrast, GLPSOL consumes a
negligible amount of time and memory in DetLP. Clearly, performance of QuIP
and DetLP is dominated by RABIT and explicit DS-determinization, respectively.
We also determined how runtime performance of tools changes with increasing
discount-factor d. Both tools consume lesser time as d increases.

Finally, we test for scalability of both tools. In Fig. 5a, we plot the median
of total runtime as sQ increases at δ = 2.5, 3 (sP = 10, µ = 4) for QuIP. We
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Fig. 5: Scalability of QuIP (Fig 5a) and DetLP (Fig 5b) at δ = 2.5, 3. Figures
show median-time for each parameter-value.

attempt to best-fit the data-points for each δ with functions that are linear,
quadratic and cubic in sQ using squares of residuals method. Fig 5b does the
same for DetLP. We observe that QuIP and DetLP are best fit by functions that
are linear and quadratic in sQ, respectively.

Inferences and discussion Our empirical analysis arrives at conclusions that
a purely theoretical exploration would not have. First of all, we observe that
despite having a the worse theoretical complexity, the median-time complexity of
QuIP is better than DetLP by an order of n. In theory, QuIP scales exponentially
in sQ, but only linearly in sQ in runtime. Similarly, runtime of DetLP scales
quadratically in sQ. The huge margin of complexity difference emphasizes why
solely theoretical analysis of algorithms is not sufficient.

Earlier empirical analysis of LI-solvers had made us aware of their dependence
on transition-density δ. As a result, we were able to design QuIP cognizant of
parameter δ. Therefore, its runtime dependence on δ is not surprising. However,
our empirical analysis reveals runtime dependence of DetLP on δ. This is un-
expected since δ does not appear in any complexity-theoretic analysis of DetLP
(Theorem 1). We suspect this behavior occurs because the creation of each tran-
sition, say on alphabet a, during DS-determinization requires the procedure to
analyze every transition on alphabet a in the original DS-automata. Higher the
transition-density, more the transitions in the original DS-automata, hence more
expensive is the creation of transitions during DS-determinization.

We have already noted that the performance of QuIP is dominated by RA-
BIT in space and time. Currently, RABIT is implemented in Java. Although
RABIT surpasses all other LI-solvers in overall performance, we believe it can
be improved significantly via a more space-efficient implementation in a more
performance-oriented language like C++. This would, in-turn, enhance QuIP.

The current implementation of DetLP utilizes the vanilla algorithm for DS-
determinization. Since DS-determinization dominates DetLP, there is certainly
merit in designing efficient algorithms for DS-determinization. However, we sus-
pect this will be of limited advantage to DetLP since it will persist to incur the
complete cost of explicit DS-determinization due to the separation of automata-
theoretic and numeric reasoning.
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Based on our observations, we propose to extract the complementary strengths
of both tools: First, apply QuIP with a small timeout; Since DetLP solves more
benchmarks, apply DetLP only if QuIP fails.

6 Concluding remarks and future directions

This paper presents the first empirical evaluation of algorithms and tools for DS-
inclusion. We present two tools DetLP and QuIP. Our first tool DetLP is based
on explicit DS-determinization and linear programming, and renders an expo-
nential time and space algorithm. Our second tool QuIP improves upon a pre-
viously known comparator-based automata-theoretic algorithm BCV by means
of an optimized comparator construction, called universal automata. Despite its
PSPACE-complete theoretical complexity, we note that all practical implemen-
tations of QuIP are also exponential in time and space.

The focus of this work is to investigate these tools in practice. In theory, the
exponential complexity of QuIP is worse than DetLP. Our empirical evaluation
reveals the opposite: The median-time complexity of QuIP is better than DetLP
by an order of n. Specifically, QuIP scales linearly while DetLP scales quadrati-
cally in the size of inputs. This re-asserts the gap between theory and practice,
and aserts the need of better metrics for practical algorithms. Further emprirical
analysis by by scaling the right-hand side automaton will be beneficial.

Nevertheless, DetLP consistently solves more benchmarks than QuIP. Most
of QuIP’s experiments fail due to memory-overflow within the LI-solver, indicat-
ing that more space-efficient implementations of LI-solvers would boost QuIP’s
performance. We are less optimistic about DetLP though. Our evaluation high-
lights the impediment of explicit DS-determinization, a cost that is unavoidable
in DetLP’s separation-of-concerns approach. This motivates future research that
integrates automata-theoretic and numerical reasoning by perhaps combining
implicit DS-determinzation with baseline automata-like reasoning to design an
on-the-fly algorithm for DS-inclusion.

Last but not the least, our empirical evaluations lead to discovering depen-
dence of runtime of algorithms on parameters that had not featured in their
worst-case theoretical analysis, such as the dependence of DetLP on transition-
density. Such evaluations build deeper understanding of algorithms, and will
hopefully serve a guiding light for theoretical and empirical investigation in-
tandem of algorithms for quantitative analysis
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