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Abstract. We study from a computability perspective static program analysis,
namely detecting sound program assertions, and verification, namely sound check-
ing of program assertions. We first design a general computability model for do-
mains of program assertions and corresponding program analysers and verifiers.
Next, we formalize and prove an instantiation of Rice’s theorem for static pro-
gram analysis and verification. Then, within this general model, we provide and
show a precise statement of the popular belief that program analysis is a harder
problem than program verification: we prove that for finite domains of program
assertions, program analysis and verification are equivalent problems, while for
infinite domains, program analysis is strictly harder than verification.

1 Introduction

It is common to assume that program analysis is harder than program verification
(e.g. [1,17,22]). The intuition is that this happens because in program analysis we need
to synthesize a correct program invariant while in program verification we have just
to check whether a given program invariant is correct. The distinction between check-
ing a proof and computing a witness for that proof can be traced back to Leibniz [18]
in his ars iudicandi and ars inveniendi, respectively representing the analytic and syn-
thetic method. In Leibniz’s ars combinatoria, the ars inveniendi is defined as the art
of discovering “correct” questions while ars iudicandi is defined as the art of discov-
ering “correct” answers. These foundational aspects of mathematical reasoning have a
peculiar meaning when dealing with questions and answers concerning the behaviour
of computer programs as objects of our investigation.

Our main goal is to define a general and precise model for reasoning on the com-
putability aspects of the notions of (sound or complete) static analyser and verifier for
generic programs (viz. Turing machines). Both static analysers and verifiers assume a
given domain A of abstract program assertions, that may range from synctatic program
properties (e.g., program sizes or LOCs) to complexity properties (e.g., number of ex-
ecution steps in some abstract machine) and all the semantic properties of the program
behaviour (e.g., value range of program variables or shape of program memories). A
program analyser is defined to be any total computable (i.e., total recursive) function
that for any program P returns an assertion aP in A, which is sound when the concrete



meaning of the assertion aP includes P . Instead, a program verifier is a (total) decision
procedure which is capable of checking whether a given program P satisfies a given
assertion a ranging in A, answering “true” or “don’t know”, which is sound when a
positive check of a for P means that the concrete meaning of the assertion a includes
P . Completeness, which coupled with soundness is here called precision, for a program
analyser holds when, for any program P , it returns the strongest assertion in A for P ,
while a program verifier is called precise if it is able to prove any true assertion in A
for a program P . This general and minimal model allows us to extend to static program
analysis and verification some standard results and methods of computability theory.
We provide an instance of the well-known Rice’s Theorem [29] for generic analysers
and verifiers, by proving that sound and precise analysers (resp. verifiers) exist only for
trivial domains of assertions. This allows us to generalise known results about undecid-
ability of program analysis, such as the undecidability of the meet over all paths (MOP)
solution for monotone dataflow analysis frameworks [15], making them independent
from the structure of the domain of assertions. Then, we define a model for comparing
the relative “verification power” of program analysers and verifiers. In this model, a
verifier V on a domain A of assertions is more precise than an analyser A on the same
domainA when any assertion a inA which can be proved byA for a program P — this
means that the output of the analyser A(P ) is stronger than the assertion a — can be
also proved by V . Conversely,A is more precise than V when any assertion a proved by
V can be also proved by A. We prove that while it is always possible to constructively
transform a program analyser into an equivalent verifier (i.e., with the same verifica-
tion power), the converse does not hold in general. In fact, we first show that for finite
domains of assertions, any “reasonable” verifier can be constructively transformed into
an equivalent analyser, where reasonable means that the verifier V is: (i) nontrivial: for
any program, V is capable to prove some assertion, possibly a trivially true assertion;
(ii) monotone: if V proves an assertion a and a is stronger than a′ then V is also capable
of proving a′; (iii) logically meet-closed: if V proves both a1 and a2 and the logical con-
junction a1∧a2 is a representable assertion then V is also capable of proving it. Next, we
prove the following impossibility result: for any infinite abstract domain of assertions
A, no constructive reduction from reasonable verifiers on A to equivalent analysers on
A is possible. This provides, to the best of our knowledge, the first formalization of the
common folklore that program analysis is harder than program verification.

2 Background

We follow the standard terminology and notation for sets and computable functions
in recursion theory (e.g., [12,26,30]). If X and Y are sets then X → Y and X 7→ Y
denote, respectively, the set of all total and partial functions fromX to Y . If f : X 7→ Y
then f(x)↓ and f(x)↑ mean that f is defined/undefined on x ∈ X . Hence dom(f) =
{x ∈ X | f(x)↓ }. If S ⊆ Y then f(x) ∈ S denotes the implification f(x)↓ ⇒
f(x) ∈ S. If f, g : X 7→ Y then f = g means that dom(f) = dom(g) and for any
x ∈ dom(f) = dom(g), f(x) = g(x). The set of all partial (total) recursive functions
on natural numbers is denoted by N r7→ N (N r→ N). Recall that A ⊆ N is a recursively
enumerable (r.e., or semidecidable) set if A = dom(f) for some f ∈ N r7→ N, while



A ⊆ N is a recursive (or decidable) set if both A and its complement Ā = N r A
are recursively enumerable, and this happens when there exists f ∈ N r→ N such that
f = λn. n ∈ A ? 1 : 0.

Let Prog denote some deterministic programming language which is Turing com-
plete. More precisely, this means that for any partial recursive function f : N r7→ N there
exists a program P ∈ Prog such that JP K ∼= f , where JP K : D 7→ D is a denotational
input/output semantics of P on a domain D of input/output values for Prog, where:
undefinedness encodes nontermination and ∼= means equality up to some recursive en-
coding enc : D

r→ N and decoding dec : N r→ D functions, i.e., f = enc ◦JP K ◦ dec.
We also assume a small-step transition relation⇒⊆ (Prog×D)× ((Prog×D) ∪D)
for Prog defining an operational semantics which is functionally equivalent to the de-
notational semantics: 〈P, i〉 ⇒∗ o iff JP Ki = o. By an abuse of notation, we will
identify the input/output semantics of a program P with the partial recursive function
computed by P , i.e., we will consider programs P ∈ Prog whose input/output seman-
tics is a partial recursive function JP K : N r7→ N, so that, by Turing completeness,
{JP K : N r7→ N | P ∈ Prog} = N r7→ N.

3 Abstract Domains

Static program analysis and verification are always defined with respect to a given (de-
numerable) domain of program assertions, that we call here abstract domain [7], where
the meaning of assertions is formalized by a function which induces a logical implica-
tion relation between assertions.

Definition 3.1 (Abstract Domain). An abstract domain is a tuple 〈A, γ,≤γ〉 such that:

(1) A is any denumerable set;
(2) γ : A→ ℘(Prog) is any function;
(3) ≤γ , {(a1, a2) ∈ A×A | γ(a1) ⊆ γ(a2)} is a decidable relation.

An abstract element a ∈ A such that γ(a) = Prog is called an abstract top, while a is
called an abstract bottom when γ(a) = ∅. ut

The elements of A are called assertions or abstract values, γ is called concretization
function (this may also be a nonrecursive function, which is typical of abstract domains
representing semantic program properties), and ≤γ is called the implication or approx-
imation relation of A. Thus, in this general model, a program assertion a ∈ A plays the
role of some abstract representation of any program property γ(a) ∈ ℘(Prog), while
the comparison relation a1 ≤γ a2 holds when a1 is a stronger (or more precise) prop-
erty than a2. Let us also observe that, as a limit case, Definition 3.1 allows an abstract
domain to be empty, that is, the tuple 〈∅,∅,∅〉 satisfies the definition of abstract do-
main, where ∅ denotes both the empty set, the empty function (i.e., the unique subset
of ∅×∅) and the empty relation.

Example 3.2 Let us give some simple examples of abstract domains.



(1) ConsiderA = N with γ(n) , {P ∈ Prog | size(P ) ≤ n}, where size : Prog→ N
is some computable program size function. Here, ≤γ is clearly decidable and coin-
cides with the partial order ≤N on numbers.

(2) Consider A = N with γ(n) , {P ∈ Prog | ∀i.∃o, k.(〈P, i〉 ⇒k o) & k ≤ n}, i.e.,
n represents all the programs which, given any input, terminate in at most n steps.
Here again, n ≤γ m iff n ≤N m, so that ≤γ is decidable.

(3) Consider A = N with γ(n) , {P ∈ Prog | ∀i ∈ [0, n].∃o. 〈P, i〉 ⇒∗ o}, that
is, n represents all the programs which terminate for any input i ≤ n. Once again,
n ≤γ m iff n ≤N m.

(4) Consider A = N with γ(n) , {P ∈ Prog | ∀i ∈ N. JP K(i) = o ⇒ o ≤ n},
that is, n represents those programs which, in case of termination, give an output o
bounded by n. Again, n ≤γ m iff n ≤N m.

(5) Consider A = N r7→ N with γ(g) , {P ∈ Prog | ∀i.
(
g(i)↓ ⇒ (∃o, k.〈P, i〉 ⇒k

o, k ≤ g(i))
)
∧
(
(∃o, k.〈P, i〉 ⇒k o) ⇒ g(i)↓ , k ≤ g(i)

)
}, that is, g represents

those programs whose time complexity is bounded by the function g. Here, g ≤γ g′
iff ∀i. g(i)↓ ⇒ (g′(i)↓ ∧ g(i) ≤ g′(i)). ut

Definition 3.1 does not require injectivity of the concretization function γ, thus mul-
tiple assertions could have the same meaning. Two abstract values a1, a2 ∈ A are called
equivalent when γ(a1) = γ(a2). Let us observe that since ≤γ is required to be decid-
able, the equivalence γ(a1) = γ(a2) is decidable as well. For example, for the well-
known numerical abstract domain of convex polyhedra [11] represented through linear
constraints between program variables, we may well have multiple representations P1

and P2 for the same polyhedron, e.g., P1 = {x = z, z ≤ y} and P2 = {x = z, x ≤ y}
both represent the same polyhedron. Thus, in general, an abstract domain A is not re-
quired to be partially ordered by ≤γ . On the other hand, the relation ≤γ is clearly
a preorder on A. The only basic requirement is that for any pair of abstract values
a1, a2 ∈ A, one can decide if a1 is a more precise program assertion than a2, i.e., if
γ(a1) ⊆ γ(a2) holds. In this sense we do not require that a partial order ≤ is defined
a priori on A and that γ is monotone w.r.t. ≤, since for our purposes it is enough to
consider the preorder≤γ induced by γ. If instead A is endowed with a partial order≤A
and A is defined in abstract interpretation [7,8] through a Galois insertion based on the
concretization map γ, then it turns out that γ(a1) ⊆ γ(a2) ⇔ a1 ≤A a2 holds, so that
the decidability of the relation ≤γ = {(a1, a2) ∈ A × A | γ(a1) ⊆ γ(a2)} boils down
to the decidability of the partial order relation≤A. As an example, it is well known that
the abstract domain of polyhedra does not admit a Galois insertion [11], nevertheless
its induced preorder relation ≤γ is decidable: for example, for polyhedra represented
by linear constraints, there exist algorithms for deciding if γ(P1) ⊆ γ(P2) for any pair
of convex polyhedra representations P1 and P2 (see e.g. [23, Section 5.3]).

3.1 Abstract Domains in Abstract Interpretation

An abstract domain in standard abstract interpretation [7,8,9] is usually defined by
a poset 〈A,≤A〉 containing a top element > ∈ A and a concretization map γA :
A → ℘(Dom), where Dom denotes some concrete semantic domain (e.g., program



stores or program traces), such that: (a) A is machine representable, namely the ab-
stract elements of A are encoded by some data structures (e.g., tuples, vectors, lists,
matrices, etc.), and some algorithms are available for deciding if a1 ≤A a2 holds;
(b) a1 ≤A a2 ⇔ γA(a1) ⊆ γA(a2) holds (this equivalence always holds for Galois
insertions); (c) γA(>) = Dom. Let us point out that Definition 3.1 is very general since
the concretization of an abstract value can be any program property, possibly a purely
syntactic property or some space or time complexity property, as in the simple cases of
Example 3.2 (1)-(2)-(5).

Let γA : A→ ℘(Dom) and assume that Dom is defined by program stores, namely
Dom , Var → Val, where Var is a finite set of program variables and Val is a cor-
responding denumerable set of values. Since Var → Val has a finite domain and a
denumerable range, we can assume a recursive encoding of finite tuples of values into
natural numbers N, i.e. Var→ Val ∼= N, and define γA : A→ ℘(N). This is equivalent
assuming that programs have one single variable, say x, which may assume tuples of
values in Val. A set of numbers γA(a) ∈ ℘(N) is meant to represent a property of the
values stored in the program variable x at the end of the program execution, that is, if
the program terminates its execution then the variable x stores a value in γA(a). Hence,
as usual, the property ∅ ∈ ℘(N) means that the program does not correctly terminate
its execution either by true nontermination or by some run-time error, namely, that the
exit program point is not reachable. For simplicity, we do not consider intermediate
program points and assertions in our semantics.

For an abstract domain 〈A, γA,≤A〉 in standard abstract interpretation, the corre-
sponding concretization function γ : A→ ℘(Prog) of Definition 3.1 is defined as:

γ(a) , {P ∈ Prog | ∀i ∈ N. JP K(i) ∈ γA(a)}

where we recall that JP K(i) ∈ γA(a) means JP K(i) = o ⇒ o ∈ γA(a). Hence, if
A contains top >A and bottom ⊥A such that γA(>A) = N and γA(⊥A) = ∅ then
γ(>A) = Prog and γ(⊥A) = {P ∈ Prog | P never terminates}. Moreover, since γA
is monotonic, we have that γ is monotonic as well. The fact that all the elements in
A are machine representable boils down to the requirement that A is a recursive set,
while the binary preorder relation ≤γ is decidable because a1 ≤A a2 ⇔ γ(a1) ⊆
γ(a2) holds and ≤A is decidable. This therefore defines an abstract domain according
to Definition 3.1.

In this simple view of the abstract domain A, there is no input property for the
variable x, meaning that at the beginning x may store any value. It is easy to gen-
eralize the above definition by requiring an input abstract property in A for x, so
that the abstract domain is a Cartesian product A × A together with a concretization
γi/o : A×A→ ℘(Prog) defined as follows:

γi/o(〈ai, ao〉) , {P ∈ Prog | ∀i ∈ N. i ∈ γA(ai)⇒ JP K(i) ∈ γA(ao)}.

This is a generalization since, for any a ∈ A, we have that γ(a) = γi/o(〈>A, a〉).

Example 3.3 (Interval Abstract Domain) Let Int be the standard interval domain [7]
restricted to natural numbers in N, endowed with the standard subset ordering:

Int , {[a, b] | a, b ∈ N, a ≤ b} ∪ {⊥Int} ∪ {[a,+∞) | a ∈ N}



with concretization γInt : Int → ℘(N), where γInt(⊥Int) = ∅, γInt([a, b]) = [a, b]
and γInt([0,+∞)) = N, so that [0,+∞) is also denoted by >Int. Thus, here, for the
concretization function γ : Int → ℘(Prog) we have that: γ(>Int) = Prog, γ(⊥Int) =
{P ∈ Prog | ∀i. JP K(i)↑ }, γ([a,+∞)) = {P ∈ Prog | ∀i ∈ N. JP K(i)↓ ⇒ JP K(i) ≥
a}. We also have the input/output concretization γi/o : Int× Int→ ℘(Prog), where

γi/o(〈I, J〉) , {P ∈ Prog | ∀i ∈ N. i ∈ γInt(I)⇒ JP K(i) ∈ γInt(J)}. ut

4 Program Analysers and Verifiers

In our model, the notions of program analyser and verifier are as general as possible.

Definition 4.1 (Program Analyser). Given an abstract domain 〈A, γ,≤γ〉, a program
analyser on A is any total recursive function A : Prog→ A.
The set of analysers on a given abstract domain A will be denoted by AA.
An analyser A ∈ AA is sound if for any P ∈ Prog and a ∈ A,

A(P ) ≤γ a ⇒ P ∈ γ(a)

while A is precise if it is also complete, i.e., if the reverse implication also holds:

P ∈ γ(a) ⇒ A(P ) ≤γ a. ut

Notice that this definition of soundness is equivalent to the standard notion of sound
static analysis, namely, for any program P , A(P ) always outputs a program assertion
which is satisfied by P , i.e., P ∈ γ(A(P )). Let us also note that on the empty ab-
stract domain ∅, no analyser can be defined simply because there exists no function
in Prog → ∅. Instead, for a singleton abstract domain A• , {•}, if A ∈ AA• is
sound then γ(•) = Prog, so that • is necessarily an abstract top. Also, if the abstract
domain A contains a top abstract value >A ∈ A then, as expected, λP.>A is a trivially
sound analyser on A. Finally, we observe that if A1 and A2 are both precise on the
same abstract domain then we have A1 =γ A2, meaning that A1 and A2 coincide up
to equivalent abstract values, i.e., γ ◦ A1 = γ ◦ A2. In fact, for any P ∈ Prog, we
have that P ∈ γ(A2(P )) implies γ(A1(P )) ⊆ γ(A2(P )) and P ∈ γ(A1(P )) implies
γ(A2(P )) ⊆ γ(A1(P )), so that A1 =γ A2.

Example 4.2 Software metrics static analysers [35] deal with nonsemantic program
properties, such as the domain in Example 3.2 (1). Bounded model checking [4,34]
handles program properties such as those encoded by the domains of Example 3.2 (2)-
(3). Complexity bound analysers such as [32,36] cope with domains of properties such
as those in Example 3.2 (4)-(5). Numerical abstract domains used in program analysis
(see [23]) include the interval abstraction described in Example 3.3. ut

Definition 4.3 (Program Verifier). Given an abstract domain 〈A, γ,≤γ〉, a program
verifier on A is any total recursive function V : Prog×A→ {t, ?}.
The set of verifiers on a given abstract domain A will be denoted by VA.



A verifier V ∈ VA is sound if for any P ∈ Prog and a ∈ A,

V(P, a) = t ⇒ P ∈ γ(a)

while V is precise if it is also complete, i.e., if the reverse implication also holds:

P ∈ γ(a) ⇒ V(P, a) = t.

A verifier V ∈ VA is nontrivial if for any program there exists at least one assertion
which V is able to prove, i.e., for any P ∈ Prog there exists some a ∈ A such that
V(P, a) = t. Also, a verifier is defined to be trivial when it is not nontrivial.
A verifier V ∈ VA is monotone when the verification algorithm is monotone w.r.t. ≤γ ,
i.e., (V(P, a) = t ∧ a ≤γ a′) ⇒ V(P, a′) = t. ut

Remark 4.4 Let us observe some straight consequences of Definition 4.3.
(1) Notice that for all nonempty abstract domains A, λ(P, a). ? is a legal and vacuously
sound verifier. Also, if A = ∅ is the empty abstract domain then the empty verifier
V : Prog×∅→ {t, ?} (namely, the function with empty graph) is trivially precise.
(2) Let us observe that if V is nontrivial and monotone then V is able to prove any
abstract top: in fact, if > ∈ A and γ(>) = Prog then, for any P ∈ Prog, since
there exists some a ∈ A such that V(P, a) = t and a ≤γ >, then, by monotonicity,
V(P,>) = t.
(3) Note that if a verifier V is precise then V(P, a) = ? ⇔ P 6∈ γ(a), so that in this
case an output V(P, a) = ? always means that P does not satisfy the property a.
(4) Finally, if V1 and V2 are precise on the same abstract domain then V1(P, a) = t⇔
P ∈ γ(a)⇔ V2(P, a) = t, so that V1 = V2. ut

Example 4.5 Program verifiers abund in literature, e.g., [3,21,27]. For example, [13]
aims at complexity verification on domains like that in Example 3.2 (5) while reach-
ability verifiers like [33] can check numerical properties of program variables such as
those of Example 3.3. ut

5 Rice’s Theorem for Static Program Analysis and Verification

Classical Rice’s Theorem in computability theory [26,29,30] states that an extensional
propertyΠ ⊆ N of an effective numbering {ϕn | n ∈ N} = N r7→ N of partial recursive
functions is a recursive set if and only if Π = ∅ or Π = N, i.e., Π is trivial. Let us
recall that Π ⊆ N is extensional when ϕn = ϕm implies n ∈ Π ⇔ m ∈ Π . When
dealing with program properties rather than indices of partial recursive functions, i.e.,
when Π ⊆ Prog, Rice’s Theorem states that any nontrivial semantic program property
is undecidable (see [28] for a statement of Rice’s Theorem tailored for program proper-
ties). It is worth recalling that Rice’s Theorem has been extended by Asperti [2] through
an interesting generalization to so-called “complexity cliques”, namely nonextensional
program properties which may take into account the space or time complexity of pro-
grams: for example, the abstract domain of Example 3.2 (5) is not extensional but when
logically “intersected” with an extensional domain (i.e., it is a product domain A1×A2



where the concretization function is the set intersection λ〈a1, a2〉.γ1(a1)∩γ2(a2)) falls
into this generalized version of Rice’s Theorem.

In the following, we provide an instantiation of Rice’s Theorem to sound static pro-
gram analysis and verification by introducing a notion of extensionality for abstract
domains. Abstract domains commonly used in abstract interpretation turn out to be
extensional, when they are used for approximating the input/output behaviour of pro-
grams. For example, if a sound abstract interpretation of a program P in the interval
abstract domain computes as abstract output a program assertion such as x ∈ [1, 5] and
y ∈ [2,+∞) then this assertion is a sound abstract output for any other program Q
having the same input/output behaviour of P .

Definition 5.1 (Extensional Abstract Domain). An abstract domain 〈A, γ,≤γ〉 is ex-
tensional when for any a ∈ A, γ(a) ⊆ Prog is an extensional program property,
namely, if JP K = JQK then P ∈ γ(a)⇔ Q ∈ γ(a). ut

As usual, the intuition is that an extensional program property depends exclusively
on the input/output program semantics J·K. As a simple example, the domains of Exam-
ple 3.2 (3)-(4) are extensional while the domains of Example 3.2 (1)-(2)-(5) are not.

Definition 5.2 (Trivial Abstract Domain). An abstract domain 〈A, γ,≤γ〉 is trivial
when A contains abstract bottom or top elements only, i.e., for any a ∈ A, γ(a) ∈
{∅,Prog}. ut

Definition 5.2 allows 4 possible types for a trivial abstract domain A: (1) A = ∅;
(2) A is nonempty and consists of bottom elements only, i.e., A 6= ∅ and for all a ∈ A,
γ(a) = ∅; (3) A is nonempty and consists of top elements only, i.e., A 6= ∅ and for all
a ∈ A, γ(a) = Prog; (4) A satisfies (2) and (3), i.e., A contains both bottom and top
elements.

Theorem 5.3 (Rice’s Theorem for Program Analysis). Let 〈A, γ,≤γ〉 be an exten-
sional abstract domain and let A ∈ AA be a sound analyser. Then, A is precise iff A is
trivial.

Proof. Since we assume the existence of a sound analyser A ∈ AA on the extensional
abstract domain A, observe that necessarily A 6= ∅.

Assume that A is trivial. We have to show that for any a ∈ A and P ∈ Prog,
A(P ) ≤γ a ⇔ P ∈ γ(a). Assume that P ∈ γ(a) for some a ∈ A. Then, we have
that γ(a) 6= ∅, so that, since A is trivial, it must necessarily be that γ(a) = Prog. By
soundness of A, P ∈ γ(A(P )), so that, since A is trivial, γ(A(P )) = Prog. Hence,
we have that γ(A(P )) = γ(a), thus implying A(P ) ≤γ a. On the other hand, if
A(P ) ≤γ a then γ(A(P )) ⊆ γ(a), so that, since, by soundness of A, P ∈ γ(A(P )),
we also have that P ∈ γ(a).

Conversely, assume now that A is precise, namely, P ∈ γ(a) iff A(P ) ≤γ a.
Thus, since A is a total recursive function and ≤γ is decidable, we have that, for any
a ∈ A, P ∈? γ(a) is decidable. Since γ(a) is an extensional program property, by
Rice’s Theorem, γ(a) must necessarily be trivial, i.e., γ(a) ∈ {∅,Prog}. This means
that the abstract domain A is trivial. ut



Rice’s Theorem for program analysis can be applied to several abstract domains.
Due to lack of space, we just mention that the well-known undecidability of computing
the meet over all paths (MOP) solution for a monotone dataflow analysis problem,
proved by Kam and Ullman [15, Section 6] by resorting to undecidability of Post’s
Correspondence Problem, can be derived as a simple consequence of Theorem 5.3.

Along the same lines of Theorem 5.3, Rice’s Theorem can be instantiated to pro-
gram verification as follows.

Theorem 5.4 (Rice’s Theorem for Program Verification). Let 〈A, γ,≤γ〉 be an ex-
tensional abstract domain and let V ∈ VA be a sound, nontrivial and monotone verifier.
Then, V is precise iff A is trivial.

Proof. Let A be an extensional abstract domain and V ∈ VA be sound and nontrivial.
If A = ∅ then A is trivial while the only possible verifier V : Prog×∅→ {t, ?} is the
empty verifier, which is vacuously precise but it is not nontrivial. Thus, A 6= ∅ holds.

Assume that V is precise, that is, P ∈ γ(a) iff V(P, a) = t. Hence, since V is a
total recursive function, V(P, a) =? t is decidable, so that P ∈? γ(a) is decidable as
well. As in the proof of Theorem 5.3, since γ(a) is an extensional program property, by
Rice’s Theorem, γ(a) ∈ {∅,Prog}. Thus, the abstract domain A is trivial.

Conversely, let A 6= ∅ be a trivial abstract domain. We have to prove that for any
a ∈ A and P ∈ Prog, V(P, a) = t ⇔ P ∈ γ(a). Consider any a ∈ A. Since A is
trivial, γ(a) ∈ {∅,Prog}. If γ(a) = ∅ then, by soundness of V , for any P ∈ Prog,
V(P, a) = ?, so that V(P, a) = t ⇔ P ∈ γ(a) holds. If, instead, γ(a) = Prog,
i.e. a is an abstract top, then, since V is assumed to be nontrivial and monotone, by
Remark 4.4 (2), V is able to prove the abstract top a for any program, namely, for any
P ∈ Prog, V(P, a) = t, so that V(P, a) = t⇔ P ∈ γ(a) holds. ut

Let us remark a noteworthy difference of Theorem 5.4 w.r.t. Rice’s theorem for
static analysis. Let us consider a trivial abstract domain A , {>} with γ(>) = Prog.
Here, the trivially sound analyser λP.> is also precise, in accordance with Theorem 5.3.
Instead, the trivially sound verifier V? , λ(P, a).? is not precise, because P ∈ γ(>)⇔
V?(P,>) = t does not hold. The point here is that V? lacks the property of being
nontrivial, and therefore Theorem 5.4 cannot be applied. On the other hand, Vt ,
λ(P, a).t is nontrivial and precise, because, in this case, P ∈ γ(>) ⇔ Vt(P,>) = t
holds. Similarly, if we consider the trivial abstract domain A′ , {>,>′}, with γ(>) =
Prog = γ(>′), then the verifier

V ′(P, a) ,

{
t if a = >
? if a = >′

is sound and nontrivial, but still V ′ is not precise, because P ∈ γ(>′)⇔ V ′(P,>′) = t
does not hold. The point here is that V ′ is not monotone, because V ′(P,>) = t and
> ≤γ >′ but V ′(P,>′) 6= t, so that Theorem 5.4 cannot be applied.

6 Comparing Analysers and Verifiers

Let us now focus on a model for comparing the relative precision of program analysers
and verifiers w.r.t. a common abstract domain 〈A, γ,≤γ〉.



Definition 6.1 (Comparison Relations). Let V,V ′ ∈ VA, A,A′ ∈ AA, and X ,Y ∈
VA ∪AA.

(1) V v V ′ iff ∀P ∈ Prog .∀a ∈ A. V ′(P, a) = t ⇒ V(P, a) = t
(2) A v A′ iff ∀P ∈ Prog . A(P ) ≤γ A′(P )
(3) V v A iff ∀P ∈ Prog .∀a ∈ A. A(P ) ≤γ a ⇒ V(P, a) = t
(4) A v V iff ∀P ∈ Prog .∀a ∈ A. V(P, a) = t ⇒ A(P ) ≤γ a
(5) X ∼= Y when X v Y and Y v X ut

Let us comment on the previous definitions, which intuitively take into account the
relative “verification powers” of verifiers and analysers. The relation V v V ′ holds
when every assertion proved by V ′ can be also proved by V , while A v A′ means that
the output assertion provided by A is more precise than that produced by A′. Also, a
verifier V is more precise than an analyser A when the verification power of V is not
less than the verification power of A, namely, any assertion a which can be proved by
A for a program P , i.e. A(P ) ≤γ a holds, can be also proved by V . Likewise, A is
more precise than V when any assertion a proved by V can be also proved by A, i.e.,
V(P, a) = t implies A(P ) ≤γ a.

Let us observe that 〈VA,v〉 turns out to be a poset, while 〈AA,v〉 is just a pre-
ordered set (cf. the lattice of abstract interpretations in [8]). We have that 〈VA,v〉 has
a greatest element V? , λ(P, a).?, which, in particular, is always sound although it is
trivial. On the other hand, if A includes a top element > then A> , λP.> is a sound
analyser which is a maximal element in 〈AA,v〉. Also, V ∼= V ′ means that V = V ′ as
total functions, whileA ∼= A′ means that γ ◦A = γ ◦A′. Moreover, the comparison re-
lation v is transitive even when considering analysers and verifiers together: if V v A
and A v V ′ then V v V ′, and if A v V and V v A′ then A v A′. Also, the relation v
shifts soundness from verifiers to analysers, and from analysers to verifiers as follows
(due to lack of space the proof is omitted).

Lemma 6.2. Let V ∈ VA and A ∈ AA. If V is sound and V v A then A is sound; if A
is sound and A v V then V is sound.

As expected, any sound analyser can be used to refine a given sound verifier (cf.
[19,20,24,25]) and this can be formalized and proved in our framework as follows.

Lemma 6.3. Given A ∈ AA and V ∈ VA which are both sound, let

τA(V)(P, a) ,

{
t if A(P ) ≤γ a
V(P, a) if A(P ) 6≤γ a

Then, τA(V) ∈ VA is sound, τA(V) v V and τA(V) = V ⇔ V v A.

Proof. τA(V) ∈ VA is sound because both A and V are sound. If V(P, a) = t then
τA(V)(P, a) = t, i.e., τA(V) v V . Moreover, τA(V) = V iffA(P ) ≤γ a⇒ V(P, a) =
t iff V v A. ut



6.1 Optimal and Best Analysers and Verifiers

It makes sense to define optimality by restricting to sound analysers and verifiers only.
Optimality is defined as minimality w.r.t. the precision relation v, while being the best
analyser/verifier means to be the most precise.

Definition 6.4 (Optimal and Best Analysers and Verifiers) A sound analyserA ∈ AA
is optimal if for any sound A′ ∈ AA, A′ v A ⇒ A′ ∼= A, while A is a best analyser if
for any sound A′ ∈ AA, A v A′.
A sound verifier V ∈ VA is optimal if for any V ′ ∈ VA, V ′ v V ⇒ V ′ ∼= V , while V is
the best verifier if for any V ′ ∈ VA, V v V ′. ut

Let us first observe that if a best analyser or verifier exists then this is unique, while
for analysers if A1 and A2 are two best analysers on A then A1

∼= A2 holds. Of
course, the possibility of defining an optimal/best analyser or verifier depends on the
abstract domain A. For example, for a variable sign domain such as {Z≤0,Z≥0,Z} just
optimal analysers and verifiers could be defined, because for approximating the set {0}
two optimal sound abstract values are available rather than a best sound abstract value.
Here, the expected but interesting property to remark is that the notion of precise (i.e.,
sound and complete) analyser turns out to coincide with the notion of being the best
analyser.

Lemma 6.5. Let A ∈ AA be sound. Then, A is precise iff A is a best analyser.

Proof. (⇒) Consider any sound A′ ∈ AA. Assume, by contradiction, that A 6v A′,
namely, there exists some P ∈ Prog such that γ(A(P )) 6⊆ γ(A′(P )). By soundness
of A′, JP K ∈ γ(A′(P )), so that, by precision of A, γ(A(P )) ⊆ γ(A′(P )), which is a
contradiction. Thus, A v A′ holds. This means that A is a best analyser on A.
(⇐) We have to prove that for any P ∈ Prog and a ∈ A, JP K ∈ γ(a) ⇒ γ(A(P )) ⊆
γ(a). Assume, by contradiction, that there exist Q ∈ Prog and b ∈ A such that JQK ∈
γ(b) and γ(A(Q)) 6⊆ γ(b). Then, we define A′ : Prog→ A as follows:

A′(P ) ,

{
A(P ) if P 6≡ Q
b if P ≡ Q

It turns out that A′ is a total recursive function because P ≡ Q is decidable. Moreover,
A′ is sound: assume that γ(A′(P )) ⊆ γ(a); if P 6≡ Q then A′(P ) = A(P ) so that
γ(A(P )) ⊆ γ(a), and, by soundness of A, JP K ∈ γ(a); if P ≡ Q then A′(Q) = b so
that γ(b) = γ(A′(Q)) = γ(A′(P )) ⊆ γ(a), hence, JQK ∈ γ(b) implies JQK ∈ γ(a).
SinceA is a best analyser on A, we have thatA v A′, so that γ(A(Q)) ⊆ γ(A′(Q)) =
γ(b), which is a contradiction. ut

We therefore derive the following consequence of Rice’s Theorem 5.3 for static
analysis: the best analyser on an extensional abstract domainA exists if and only ifA is
trivial. This fact formalizes in our model the common intuition that, given any abstract
domain, the best static analyser (where best means for any input program) cannot be
defined due to Rice’s Theorem. An analogous result can be given for verifiers.

Lemma 6.6. Let V ∈ VA be sound. Then V is precise iff V is the best verifier on A.



Proof. Assume that V is precise and V ′ ∈ VA be sound. If V ′(P, a) = t then, by
soundness of V ′, JP K ∈ γ(a), and in turn, by completeness of V , V(P, a) = t, thus
proving that V v V ′. On the other hand, assume that V is the best verifier onA. Assume,
by contradiction, that V is not complete, namely that there exist some Q ∈ Prog and
b ∈ A such that JQK ∈ γ(b) and V(Q, b) = ?. We then define V ′ : Prog×A → {t, ?}
as follows:

V ′(P, a) ,

{
t if P ≡ Q ∧ a = b

V(P, a) otherwise

Then, V ′ is a total recursive function because P ≡ Q and a = b are decidable. Also, V ′
is sound because JQK ∈ γ(b) and V is sound. Since V is the best verifier, we have that
V v V ′, so that V ′(Q, b) = t implies V(Q, b) = t, which is a contradiction. ut

Thus, similarly to static analysis, as a consequence of Rice’s Theorem 5.4 for ver-
ification, the best nontrivial and monotone verifier on an extensional abstract domain
A exists if and only if A is trivial, which is a common belief in program verification.
Let us also remark that best abstract program semantics, rather than program analysers,
do exist for nontrivial domains (see e.g. [6]). Clearly, this is not in contradiction with
Theorem 5.3 since these abstract program semantics are not total recursive functions,
i.e., they are not program analysers.

7 Reducing Verification to Analysis and Back

As usual in computability and complexity, our comparison between verification and
analysis is made through a many-one reduction, namely by reducing a verification prob-
lem into an analysis problem and vice versa. The minimal requirement is that these re-
duction functions are total recursive. Moreover, we require that the reduction function
does not depend upon a fixed abstract domain. This allows us to be problem agnos-
tic and to prove a reduction for all possible verifiers and analysers. Program verification
and analysis are therefore equivalent problems whenever we can reduce one to the other.
In the following, we prove that while it is always possible to transform a program anal-
yser into an equivalent program verifier, the converse does not hold in general, but it
can always be done for finite abstract domains.

7.1 Reducing Verification to Analysis

Theorem 7.1. Let 〈A, γ,≤γ〉 be any given abstract domain. There exists a transform
σ : AA → VA such that:

(1) σ is a total recursive function such that for all A ∈ AA, σ(A) ∼= A;
(2) if A ∈ AA is sound then σ(A) is sound;
(3) σ is monotonic;
(4) σ(A) ∼= σ(A′)⇒ A ∼= A′.

Proof. Given A ∈ AA, we define σ(A) : Prog×A→ {t, ?} as follows:

σ(A)(P, a) ,

{
t if A(P ) ≤γ a
? if A(P ) 6≤γ a



(1) Since A is a total recursive function and ≤γ is decidable, we have that σ(A) is a
total recursive function, namely σ(A) ∈ VA, and σ is a total recursive function as well.
Since, by definition, σ(A)(P, a) = t ⇔ A(P ) ≤γ a, we have that σ(A) ∼= A. (2) By
Lemma 6.2, if A is sound then the equivalent verifier σ(A) is sound as well. (3) It
turns out that σ is monotonic: if A v A′ then σ(A′)(P, a) = t ⇔ A′(P ) ≤γ a ⇒
A(P ) ≤γ A′(P ) ≤γ a⇔ σ(A)(P, a) = t, so that σ(A) v σ(A′) holds. (4) Assume
that σ(A) ∼= σ(A′), hence, for any P ∈ Prog, σ(A)(P,A(P )) = σ(A′)(P,A(P )),
namely, A(P ) ≤γ A(P ) ⇔ A′(P ) ≤γ A(P ), so that A′(P ) ≤γ A(P ) holds. On the
other hand, A(P ) ≤γ A′(P ) can be dually obtained, therefore γ(A(P )) = γ(A′(P ))
holds, namely A ∼= A′. ut

Intuitively, Theorem 7.1 shows that program verification on a given abstract domain
A can always and unconditionally be reduced to program analysis onA. This means that
a solution to the program analysis problem onA, i.e. the definition of an analyserA, can
constructively be transformed into a solution to the program verification problem on the
same domain A, i.e. the design of a verifier σ(A) which is equivalent to A. The proof
of Theorem 7.1 provides this constructive transform σ, which is defined as expected:
an analyser A on any (possibly infinite) abstract domain A can be used as a verifier for
any assertion a ∈ A simply by checking whether A(P ) ≤γ a holds or not.

7.2 Reducing Analysis to Verification

It turns out that the converse of Theorem 7.1 does not hold, namely a program analysis
problem in general cannot be reduced to a verification problem. Instead, this reduction
can be always done for finite abstract domains. Given a verifier V ∈ VA, for any pro-
gram P ∈ Prog, let us define Vt(P ) , {a ∈ A | V(P, a) = t}, namely, Vt(P ) is
the set of assertions proved by V for P . Also, given an assertion a ∈ A, we define
↑a , {a′ ∈ A | a ≤γ a′} as the set of assertions weaker than a. The following result
provides a useful characterization of the equivalence between verifiers and analysers.

Lemma 7.2. Let 〈A, γ,≤γ〉 be an abstract domain, A ∈ AA and V ∈ VA. Then,
A ∼= V if and only if for any P ∈ Prog, Vt(P ) = ↑A(P ).

Proof. By Definition 6.1, it turns out thatA v V iff for any P , Vt(P ) ⊆ ↑A(P ), while
we have that V v A iff for any P , ↑A(P ) ⊆ Vt(P ). Thus, A ∼= V if and only if for
any P ∈ Prog, Vt(P ) = ↑A(P ). ut

A consequence of Lemma 7.2 is that, given V ∈ VA, V can be transformed into an
equivalent analyser τ(V) ∈ AA if and only if for any program P , an assertion aP ∈ A
exists such that Vt(P ) = ↑aP . In this case, one can then define τ(V)(P ) , aP .

Lemma 7.3. Let 〈A, γ,≤γ〉 be an abstract domain and V ∈ VA. If A ∈ AA is such
that A ∼= V then: (1) A 6= ∅; (2) V is not trivial; (3) V is monotone.

Proof. (1) We observed just after Definition 4.1 that no analyser can be defined on the
empty abstract domain. (2) If V is trivial then there exists a program Q ∈ Prog such
that for any a ∈ A, V(Q, a) = ?, so that if V ∼= A for someA ∈ AA then, from V v A



we would derive V(Q,A(Q)) = t, which is a contradiction. (3) Assume that V is not
monotone. Then, there exist Q ∈ Prog and a, a′ ∈ A such that a ∈ Vt(Q), a ≤γ a′ but
a′ 6∈ Vt(Q). If V ∼= A, for some A ∈ AA, then, by Lemma 7.2, Vt(Q) = ↑A(Q), so
that we would have that a ∈ ↑A(Q) but a′ 6∈ ↑A(Q), which is a contradiction. ut

We also observe that even for a nontrivial and monotone verifier V ∈ VA on a finite
abstract domain A, it is not guaranteed that an equivalent analyser exists. In fact, if
an equivalent analyser A exists then, by Lemma 7.2, for any program P , Vt(P ) must
contain the least element, namely for any program P it must be the case that there exists
a strongest assertion proved by V for P .

Example 7.4 Consider a sign domain such as S , {Z≤0,Z≥0,Z} where Z≤0 ≤γ Z
and Z≥0 ≤γ Z. For a program such as Q ≡ x := 0, a sound verifier V ∈ VS could
be able to prove all the assertions in S, namely Vt(Q) = S. However, there exists no
assertion aQ ∈ S such that Vt(Q) = ↑ aQ. Hence, by Lemma 7.2, there exists no
analyser in AS which is equivalent to V . Also, if S′ , {Z=0,Z≤0,Z≥0,Z}, so that S′

is a meet-semilattice, and V ′ ∈ VS′ is a sound verifier such that V ′t(Q) = S′ r {Z=0},
still, by Lemma 7.2, there exists no analyser in AS′ which is equivalent to V ′. ut

Definition 7.5 A verifier V ∈ VA is finitely meet-closed when for any P ∈ Prog and
a, a1, a2 ∈ A, if V(P, a1) = t = V(P, a2) and γ(a) = γ(a1)∩γ(a2) then V(P, a) = t.
The following notation will be used: for any domain A,

V+
A , {V ∈ VA | V is nontrivial, monotone and finitely meet-closed}. ut

Thus, finitely meet-closed verifiers can prove logical conjunctions of provable as-
sertions.

Theorem 7.6 (Reduction for Finite Domains). Let 〈A, γ,≤γ〉 be a nonempty finite
abstract domain. There exists a transform τ : V+

A → AA such that:

(1) τ is a total recursive function such that for all V ∈ V+
A, τ(V) ∼= V;

(2) if V ∈ V+
A is sound then τ(V) is sound;

(3) τ is monotonic;
(4) τ(V) ∼= τ(V ′)⇒ V ∼= V ′.

Proof. (1) Let A = {a1, ..., an} be any enumeration of A, with n ≥ 1. Given V ∈ V+
A ,

we define τ(V) : Prog→ A as follows:

τ(V)(P ) ,


r := undef;
forall i ∈ 1..n do

if
(
ai ∈ Vt(P ) ∧ (r = undef ∨ ai ≤γ r)

)
then r := ai;

output r

Then, it turns out that τ is a total recursive function. Since V is a total recursive function,
A is finite and ≤γ is decidable, we have that τ(V) is a total recursive function, so that
τ(V) ∈ AA. Since V is not trivial, for any P ∈ Prog, Vt(P ) 6= ∅. Also, sinceA is finite
and V is finitely meet-closed there exists some ak ∈ Vt(P ) such that Vt(P ) ⊆ ↑ak, so



that τ(V)(P ) outputs some value in A. Moreover, since V is monotone, ↑ak ⊆ Vt(P ),
so that ↑ak = Vt(P ). Thus, the above procedure defining τ(V)(P ) finds and outputs
ak. Hence, for any P ∈ Prog and a ∈ A, V(P, a) = t ⇔ a ∈ Vt(P ) ⇔ a ∈ ↑ak ⇔
ak ≤γ a⇔ τ(V)(P ) ≤γ a, that is, τ(V) ∼= V holds.
(2) By Lemma 6.2, if V is sound then the equivalent analyser τ(V) is sound as well.
(3) It turns out that τ is monotonic: if V v V ′ then, by definition, V ′t(P ) ⊆ Vt(P ),
so that, since Vt(P ) = ↑τ(V)(P ) and V ′t(P ) = ↑τ(V ′)(P ), we obtain τ(V)(P ) ≤γ
τ(V ′)(P ), namely τ(V) v τ(V ′) holds.
(4) Assume that τ(V) ∼= τ(V ′). Hence, for anyP ∈ Prog, γ(τ(V)(P )) = γ(τ(V ′)(P )),
so that, since Vt(P ) = ↑ τ(V)(P ) and V ′t(P ) = ↑ τ(V ′)(P ), we obtain Vt(P ) =
V ′t(P ), namely V = V ′. ut

An example of this reduction of verification to static analysis for finite domains
is dataflow analysis as model checking shown in [31] (excluding Kildall’s constant
propagation domain [16]). Let us now focus on infinite domains of assertions.

Lemma 7.7. There exists a denumerable infinite abstract domain 〈A, γ,≤γ〉 and a ver-
ifier V ∈ V+

A such that for any analyser A ∈ AA, A 6∼= V .

Proof. Let us consider the infinite domain T , N ∪ {>} together with the following
concretization function: γ(>) , Prog and, for any n ∈ N,

γ(n) , {P ∈ Prog | P on input 0 converges in n or fewer steps}
where the number of steps is determined by a small-step operational semantics ⇒, as
recalled in Section 2. Thus, we have that if n,m ∈ N then n ≤γ m iff n ≤N m, while
n ≤γ >. We define a function V : Prog×T→ {t, ?} as follows:

V(P, a) ,


t if a = >
t if a = n and P on input 0 converges in n or fewer steps
? if a = n and P on input 0 does not converge in n or fewer steps

Clearly, for any number n ∈ N, the predicate “P on input 0 converges in n or fewer
steps” is decidable, where the input 0 could be replaced by any other (finite set of)
input value(s). Hence, V turns out to be a total recursive function, that is, a verifier on
the abstract domain T. In particular, let us remark that V is a sound verifier. Moreover,
V is nontrivial, since, for any P ∈ Prog, V(P,>) = t, and monotone because if
V(P, n) = t and n ≤γ a then either a = > and V(P,>) = t or a = m, so that
n ≤N m and therefore V(P,m) = t. Clearly, V is also finitely meet-closed, because
if V(P, a1) = t = V(P, a2) and γ(a) = γ(a1) ∩ γ(a2) then either a = a1 or a =
a2, so that V(P, a) = t. Summing up, it turns out that V ∈ V+

T . Assume now, by
contradiction, that there exists an analyser A ∈ AT such that A ∼= V . By Lemma 7.2,
for any P ∈ Prog, we have that Vt(P ) = ↑A(P ). Hence, if P on input 0 diverges then
Vt(P ) = {>} so that A(P ) = >, while if P on input 0 converges in exactly n steps
then Vt(P ) = {m ∈ N |m ≥ n} ∪ {>}, so A(P ) = n, namely A goes as follows:

A(P ) =

{
> if P on input 0 diverges
n if P on input 0 converges in exactly n steps

SinceA is a total recursive function, we would have defined an algorithmA for deciding
if a program P ∈ Prog on input 0 terminates or not. Since Prog is assumed to be Turing
complete with respect to the operational semantics⇒, this leads to a contradiction. ut



As a straight consequence of Lemma 7.7, the following theorem proves that for any
infinite abstract domain A, no reduction from verifiers in V+

A to equivalent analysers in
AA is possible.
Theorem 7.8 (Impossibility of the Reduction for Infinite Domains). For any denu-
merable infinite abstract domain 〈A, γ,≤γ〉, there exists no function τ : V+

A → AA
such that τ is a total recursive function and for all V ∈ V+

A, τ(V) ∼= V .

Proof. Assume, by contradiction, that τ : V+
A → AA is a total recursive function such

that for all V ∈ V+
A, τ(V) ∈ AA and τ(V) ∼= V . Then, for the infinite domain A and

verifier V ∈ V+
A provided by Lemma 7.7, we would be able to construct an analyser

τ(V) ∈ AA such that τ(V) ∼= V , which would be in contradiction with Lemma 7.7. ut
Intuitively, this result states that given any infinite abstract domain A, no general

algorithm exists for constructively designing out of a reasonable (i.e., nontrivial, mono-
tone and finitely meet-closed) verifier V on A an equivalent analyser on the same do-
main A. This can be read as a precise statement proving the folklore belief that “pro-
gram analysis is harder than verification”, at least for infinite domains of program as-
sertions. It is important to remark that the verifier V ∈ V+

A on the infinite domain A
defined by the proof of Lemma 7.7 is sound. Thus, even if we restrict the reduction
transform τ : V+,sound

A → Asound
A of Theorem 7.8 to be applied to sound verifiers — so

that by Lemma 6.2 the range would be the sound analysers in AA — the same proof of
Lemma 7.7 could still be used for proving that such transform τ cannot exist.

A further consequence of Theorem 7.8 is the fact proved in [10] that abstract inter-
pretation-based program analysis with infinite domains and widening/narrowing oper-
ators is strictly more powerful than with finite domains.

8 Conclusion and Future Work

We put forward a general model for studying static program analysers and verifiers
from a computability perspective. This allowed us to state and prove, with simple argu-
ments borrowed from standard computability theory, that for infinite abstract domains
of program assertions, program analysis is a harder problem than program verification.
This is, to the best of our knowledge, the first formalization and proof of this popular
belief, which also includes the relationship between type inference and type checking.
We think that this foundational model can be extended to study further properties of
program analysers and verifiers. In particular, this opens interesting perspectives in rea-
soning about program analysis and verification in a more abstract way towards a theory
of computation that may include approximate methods, such as program analysers and
verifiers, as objects of investigation, as suggested in [5,14]. For instance, the precision of
program analysis and program verification, as well as their computational complexity,
are intensional program properties. Intensionally different but extensionally equivalent
programs may exhibit completely different behaviours when analysed or verified. In
this perspective, new intensional versions of Rice’s Theorem can be stated for program
analysis, similarly to what is known for Blum’s complexity in [2]. Also, new models
for reasoning about the space and time complexities of program analysis and verifica-
tion algorithms can be studied, especially for defining a notion of complexity class of
program analysers and verifiers.
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