
StringFuzz: A Fuzzer for String Solvers

Dmitry Blotsky1, Federico Mora2, Murphy Berzish1,
Yunhui Zheng3, Ifaz Kabir1, and Vijay Ganesh1

1 University of Waterloo
2 University of Toronto

3 IBM T.J. Watson Research Center

Abstract. In this paper, we introduce StringFuzz: a modular SMT-
LIB problem instance transformer and generator for string solvers. We
supply a repository of instances generated by StringFuzz in SMT-LIB
2.0/2.5 format. We systematically compare Z3str3, CVC4, Z3str2, and
Norn on groups of such instances, and identify those that are particularly
challenging for some solvers. We briefly explain our observations and
show how StringFuzz helped discover causes of performance degradations
in Z3str3.

1 Introduction

In recent years, many algorithms for solving string constraints have been devel-
oped and implemented in SMT solvers such as Norn [6], CVC4 [12], and Z3 (e.g.,
Z3str2 [13] and Z3str3 [7]). To validate and benchmark these solvers, their de-
velopers have relied on hand-crafted input suites [1, 5, 4] or real-world examples
from a limited set of industrial applications [2, 11]. These test suites have helped
developers identify implementation defects and develop more sophisticated solv-
ing heuristics. Unfortunately, as more features are added to solvers, these bench-
marks often remain stagnant, leaving increasing functionality untested. As such,
there is an acute need for a more robust, inexpensive, and automatic way of
generating benchmarks to test the correctness and performance of SMT solvers.

Fuzzing has been used to test all kinds of software including SAT solvers [10].
Inspired by the utility of fuzzers, we introduce StringFuzz and describe its value
as an exploratory testing tool. We demonstrate its efficacy by presenting limita-
tions it helped discover in leading string solvers. To the best of our knowledge,
StringFuzz is the only tool aimed at automatic generation of string constraints.
StringFuzz can be used to mutate or transform existing benchmarks, as well
as randomly generate structured instances. These instances can be scaled with
respect to a variety of parameters, e.g., length of string constants, depth of con-
catenations (concats) and regular expressions (regexes), number of variables,
number of length constraints, and many more.

2 Blotsky et al.

Contributions 4

1. The StringFuzz tool: In Sect. 2, we describe a modular fuzzer that can
transform and generate SMT-LIB 2.0/2.5 string and regex instances. Scaling
inputs (e.g., long string constants, deep concatenations) are particularly use-
ful in identifying asymptotic behaviors in solvers, and StringFuzz has many
options to generate them. We briefly document StringFuzz’s components
and modular architecture. We provide example use cases to demonstrate its
utility as an exploratory solver testing tool.

2. A repository of SMT-LIB 2.0/2.5 instances: We present a repository
of SMT-LIB 2.0/2.5 string and regex instance suites that we generated us-
ing StringFuzz in Sect. 3. This repository consists of two categories: one
with new instances generated by StringFuzz (generated); and another with
transformed instances generated from a small suite of industrial benchmarks
(transformed).

3. Experimental Results and Analysis: We compare the performance of
Z3str3, CVC4, Z3str2, and Norn on the StringFuzz suites Concats-Balanced,
Concats-Big, Concats-Extracts-Small, and Different-Prefix in Sect. 4. We
highlight these suites because they make some solvers perform poorly, but
not others. We analyze our experimental results, and pinpoint algorithmic
limitations in Z3str3 that cause poor performance.

2 StringFuzz

Implementation and Architecture StringFuzz is implemented as a Python
package, and comes with several executables to generate, transform, and analyze
SMT-LIB 2.0/2.5 string and regex instances. Its components are implemented as
UNIX “filters” to enable easy integration with other tools (including themselves).
For example, the outputs of generators can be piped into transformers, and
transformers can be chained to produce a stream of tuned inputs to a solver.
StringFuzz is composed of the following tools:

stringfuzzg

This tool generates SMT-LIB instances. It supports several generators and
options that specify its output. Details can be found in Table 1a.

stringfuzzx

This tool transforms SMT-LIB instances. It supports several transformers
and options that specify its output and input, which are explained in Ta-
ble 1b. Note that transformers Translate and Reverse also preserve satisfia-
bility under certain conditions.

stringstats

This tool takes an SMT-LIB instance as input and outputs its properties: the
number of variables/literals, the max/median syntactic depth of expressions,
the max/median literal length, etc.

4All source code, problem suites, and supplementary material referenced in this
paper are available at the StringFuzz website [3].

StringFuzz: A Fuzzer for String Solvers 3

Table 1: StringFuzz built-in (a) generators and (b) transformers.

(a) stringfuzzg built-in generators.

Name Generates instances that have ...

Concats Long concats and optional random extracts.
Lengths Many variables (and their concats) with length constraints.
Overlaps An expression of the form A.X = X.B.
Equality An equality among concats, each with variables or constants.
Regex Regexes of varying complexity.
Random-Text Totally random ASCII text.
Random-AST Random string and regex constraints.

(b) stringfuzzx built-in transformers.

Name The transformer ...

Fuzz Replaces literals and operators with similar ones.
Graft Randomly swaps non-leaf nodes with leaf nodes.
Multiply5 Multiplies integers and repeats strings by N.
Nop Does nothing (can translate between SMT-LIB 2.0/2.5).
Reverse6 Reverses all string literals and concat arguments.
Rotate Rotates compatible nodes in syntax tree.
Translate6 Permutes the alphabet.
Unprintable Replaces characters in literals with unprintable ones.

We organized StringFuzz to be easily extended. To show this, we note that while
the whole project contains 3,183 lines of code, it takes an average of 45 lines of
code to create a transformer. StringFuzz can be installed from source, or from
the Python PIP package repository.

Regex Generating Capabilities StringFuzz can generate and transform in-
stances with regex constraints. For example, the command “stringfuzzg regex
-r 2 -d 1 -t 1 -M 3 -X 10” produces this instance:

(set-logic QF_S)

(declare-fun var0 () String)

(assert (str.in.re var0 (re.+ (str.to.re "R5"))))

(assert (str.in.re var0 (re.+ (str.to.re "!PC"))))

(assert (<= 3 (str.len var0)))

(assert (<= (str.len var0) 10))

(check-sat)

Each instance is a set of one or more regex constraints on a single variable,
with optional maximum and minimum length constraints. Each regex constraint

5Can guarantee satisfiable output instances from satisfiable input instances [3].
6Can guarantee input and output instances will be equisatisfiable [3].

4 Blotsky et al.

is a concatenation (re.++ in SMT-LIB string syntax) of regex terms:

(re.++ T1 (re.++ T2 ... (re.++ Tn-1 Tn)))

and each term Ti is recursively defined as any one of: repetition (re.*), Kleene
star (re.+), union (re.union), or a character literal. Nested operators are nested
up to a specified (using the --depth flag) depth of recursion. Terms at depth
0 are regex constants. Below are 3 example regexes (in regex, not SMT-LIB,
syntax) of depth 2 that can be produced this way:

((a|b)|(cc)+) ((ddd)∗) + ((ee) + |(fff)∗)

Equisatisfiable String Transformations StringFuzz can also transform prob-
lem instances. This is done by manipulating parsed syntax trees. By default most
of the built-in transformers only guarantee well-formedness, however, some can
even guarantee equisatisfiability. Table 1b lists the built-in transformers and
notes these guarantees.

Example Use Case In Sect. 3 we use StringFuzz to generate benchmark suites
in a batch mode. We can also use StringFuzz for on-line exploratory debugging.
For example, the script below repeatedly feeds random StringFuzz instances to
CVC4 until the solver produces an error:

while stringfuzzg -r random-ast -m \
| tee instance.smt25 | cvc4 --lang smt2.5 --tlimit=5000 --strings-exp; do
sleep 0

done

3 Instance Suites

In this section, we describe the benchmark suites we generated with StringFuzz,
and on which we conducted our experimental evaluation. Table 2a lists instances
that were generated by stringfuzzg. Table 2b lists instances derived from ex-
isting seed instances by iteratively applying stringfuzzx. Every transformed
instance is named according to its seed and the transformations it undertook.
For example, z3-regex-1-fuzz-graft.smt2 was transformed by applying Fuzz
and then Graft to z3-regex-1.smt2.

The Amazon category contains 472 instances derived from two seeds supplied
by our industrial collaborators. The Regex category is seeded by the Z3str2 regex
test suite [4], which contains 42 instances. Through cumulative transformations
we expanded the 42 seeds to 7,551 unique instances. Finally, the Sanitizer cat-
egory is obtained from five industrial e-mail address and IPv4 sanitizers.

4 Experimental Results and Analysis

We generated several problem instance suites with StringFuzz that made one
solver perform poorly, but not others.7 They are Concats-Balanced, Concats-Big,

7Only the results that made one solver perform poorly and not others are presented,
but results for all StringFuzz suites are available on the StringFuzz website[3].

StringFuzz: A Fuzzer for String Solvers 5

Table 2: Repository of 10,258 SMT-LIB 2.0/2.5 instances.

(a) stringfuzzg-generated instances.

Name Instances have a ... Quantity

Concats-{Small,Big} Right-heavy, deep tree of concats. 120
Concats-Balanced Balanced, deep tree of concats. 100
Concats-Extracts-{Small,Big} Single concat tree, with character extractions. 120
Lengths-{Long,Short} Single, large length constraint on a variable. 200
Lengths-Concats Tree of fixed-length concats of variables. 100
Overlaps-{Small,Big} Formula of the form A.X = X.B. 80
Regex-{Small,Big} Complex regex membership test. 120
Many-Regexes Multiple random regex membership tests. 40
Regex-Deep Regex membership test with many nested operators. 45
Regex-Pair Test for membership in one regex, but not another. 40
Regex-Lengths Regex membership test, and a length constraint. 40
Different-Prefix Equality of two deep concats with different prefixes. 60

(b) stringfuzzx-generated instances.

Name Seed Quantity

Amazon Two industrial regex membership instances. 472
Regex Z3str2 regular expression test suite. 7,551
Sanitizer Five e-mail and IPv4 sanitiser examples. 1,170

Concats-Extracts-Small, and Different-Prefix . Fig. 1 shows the suites that were
uniquely difficult for CVC4. Fig. 2 shows the suites that were uniquely difficult
for Z3str3. All experiments were conducted in series, each with a timeout of 15
seconds, on an Ubuntu Linux 16.04 computer with 32GB of RAM and an Intel R©
CoreTM i7-6700 CPU (3.40GHz).

Usefulness to Z3str3: A Case Study StringFuzz’s ability to produce scaling
instances helped uncover several implementation issues and performance limita-
tions in Z3str3. Scaling inputs can reveal issues that would normally be out of
scope for unit tests or industrial benchmarks. Three different performance and
implementation bugs were identified and fixed in Z3str3 as a result of testing
with the StringFuzz scaling suites Lengths-Long and Concats-Big.

StringFuzz also helped identify a number of performance-related issues and
opportunities for new heuristics in Z3str3. For example, by examining Z3str3’s
execution traces on the instances in the Concats-Big suite we discovered a po-
tential new heuristic. In particular, Z3str3 does not make full use of the solving
context (e.g. some terms are empty strings) to simplify the concatenations of a
long list of string terms before trying to reason about the equivalences among
sub-terms. Z3str3 therefore introduces a large number of unnecessary interme-
diate variables and propagations.

6 Blotsky et al.

(a) Performance on Concats-Extracts-Small (b) Performance on Different-Prefix

Fig. 1: Instances hard for CVC4

(a) Performance on Concats-Balanced (b) Performance on Concats-Big

Fig. 2: Instances hard for Z3str3

5 Related Work

Many solver developers create their own test suites to validate their solvers [1,
5, 4]. Several popular instance suites are also publicly available for solver testing
and benchmarking, such as the Kaluza [2] and Kausler [11] suites. There are
likewise several fuzzers and instance generators currently available, but none of
them can generate or transform string and regex instances. For example, the
FuzzSMT [9] tool generates SMT-LIB instances with bit-vectors and arrays,
but does not support strings or regexes. The SMTpp [8] tool pre-processes and
simplifies instances, but does not generate new ones or fuzz existing ones.

StringFuzz: A Fuzzer for String Solvers 7

References

1. CVC4 regression test suite. https://github.com/CVC4/CVC4/tree/master/test/
regress.

2. Kaluza benchmark suite. http://webblaze.cs.berkeley.edu/2010/kaluza/.
3. Stringfuzz source code, benchmark suites, and suplemental material. http:

//stringfuzz.dmitryblotsky.com.
4. Z3str2 test suite. https://github.com/z3str/Z3-str/tree/master/tests.
5. Z3str3 test scripts. https://github.com/Z3Prover/z3/tree/master/src/test.
6. P. A. Abdulla, M. F. Atig, Y.-F. Chen, L. Hoĺık, A. Rezine, P. Rümmer, and

J. Stenman. Norn: An SMT solver for string constraints. In D. Kroening and
C. S. Păsăreanu, editors, Computer Aided Verification, pages 462–469, Cham, 2015.
Springer International Publishing.

7. M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with theory-aware
heuristics. In D. Stewart and G. Weissenbacher, editors, 2017 Formal Methods in
Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, pages
55–59. IEEE, 2017.

8. R. Bonichon, D. Déharbe, P. Dobal, and C. Tavares. SMTpp: preprocessors and
analyzers for SMT-LIB. In Proceedings of the 13th International Workshop on
Satisfiability Modulo Theories, SMT 2015, 2015.

9. R. Brummayer and A. Biere. Fuzzing and delta-debugging SMT solvers. In Pro-
ceedings of the 7th International Workshop on Satisfiability Modulo Theories, SMT
’09, pages 1–5, New York, NY, USA, 2009. ACM.

10. R. Brummayer, F. Lonsing, and A. Biere. Automated testing and debugging of sat
and qbf solvers. In O. Strichman and S. Szeider, editors, Theory and Applications of
Satisfiability Testing – SAT 2010, pages 44–57, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

11. S. Kausler and E. Sherman. Evaluation of string constraint solvers in the context
of symbolic execution. In Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ASE ’14, pages 259–270, New York,
NY, USA, 2014. ACM.

12. T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T) theory
solver for a theory of strings and regular expressions, volume 8559 of Lecture Notes
in Computer Science, pages 646–662. Springer Verlag, 2014.

13. Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a Z3-based string solver for web appli-
cation analysis. In B. Meyer, L. Baresi, and M. Mezini, editors, Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Rus-
sian Federation, August 18-26, 2013, pages 114–124. ACM, 2013.

