
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Let this Graph be your Witness!

An Attestor for Verifying Java Pointer Programs

Hannah Arndt?, Christina Jansen, Joost-Pieter Katoen[0000−0002−6143−1926],
Christoph Matheja?[0000−0001−9151−0441], and Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University, Germany

Abstract. We present a graph-based tool for analysing Java programs
operating on dynamic data structures. It involves the generation of an ab-
stract state space employing a user-defined graph grammar. LTL model
checking is then applied to this state space, supporting both structural
and functional correctness properties. The analysis is fully automated,
procedure-modular, and provides informative visual feedback including
counterexamples in the case of property violations.

1 Introduction

Pointers constitute an essential concept in modern programming languages, and
are used for implementing dynamic data structures like lists, trees etc. However,
many software bugs can be traced back to the erroneous use of pointers by e.g.
dereferencing null pointers or accidentally pointing to wrong parts of the heap.
Due to the resulting unbounded state spaces, pointer errors are hard to detect.
Automated tool support for validation of pointer programs that provides mean-
ingful debugging information in case of violations is therefore highly desirable.

Attestor is a verification tool that attempts to achieve both of these goals.
To this aim, it first constructs an abstract state space of the input program by
means of symbolic execution. Each state depicts both links between heap ob-
jects and values of program variables using a graph representation. Abstraction
is performed on state level by means of graph grammars. They specify the data
structures maintained by the program, and describe how to summarise substruc-
tures of the heap in order to obtain a finite representation. After labelling each
state with propositions that provide information about structural properties such
as reachability or heap shapes, the actual verification task is performed in a sec-
ond step. To this aim, the abstract state space is checked against a user-defined
LTL specification. In case of violations, a counterexample is provided.

In summary, Attestor’s main features can be characterized as follows:

– It employs context-free graph grammars as a formal underpinning for defin-
ing heap abstractions. These grammars enable local heap concretisation and
thus naturally provide implicit abstract semantics.

? supported by Deutsche Forschungsgemeinschaft (DFG) Grant NO 401/2-1.

2 H. Arndt, C. Jansen, J.-P. Katoen, C. Matheja, T. Noll

– The full instruction set of Java Bytecode is handled. Program actions that are
outside the scope of our analysis, such as arithmetic operations or Boolean
tests on payload data, are handled by (safe) over-approximation.

– Specifications are given by linear-time temporal logic (LTL) formulae which
support a rich set of program properties, ranging from memory safety over
shape, reachability or balancedness to properties such as full traversal or
preservation of the exact heap structure.

– Except for expecting a graph grammar that specifies the data structures
handled by a program, the analysis is fully automated. In particular, no
program annotations are required.

– Modular reasoning is supported in the form of contracts that summarise the
effect of executing a (recursive) procedure. These contracts can be automat-
ically derived or manually specified.

– Valuable feedback is provided through a comprehensive report including
(minimal) non-spurious counterexamples in case of property violations.

– The tool’s functionality is made accessible through the command line as well
as a graphical user and an application programming interface.

Availability. Attestor’s source code, benchmarks, and documentation are avail-
able online at https://moves-rwth.github.io/attestor.

2 The Attestor Tool

Attestor is implemented in Java and consists of about 20.000 LOC (excluding
comments and tests). An architectural overview is depicted in Fig. 1. It shows the
tool inputs (left), its outputs (right), the Attestor backend with its processing
phases (middle), the Attestor frontend (below) as well as the API connecting
back- and frontend. These elements are discussed in detail below.

2.1 Input

As shown in Fig. 1 (left), a verification task is given by four inputs. First, the
program to be analysed. Here, Java as well as Java Bytecode programs with
possibly recursive procedures are supported, where the former is translated to
the latter prior to the analysis. Second, the specification has to be given by a
set of LTL formulae enriched with heap-specific propositions. See Sect. 3 for a
representative list of exemplary specifications.

As a third input, Attestor expects the declaration of the graph grammar
that guides the abstraction. In order to obtain a finite abstract state space,
this grammar is supposed to cover the data structures emerging during program
execution. The user may choose from a set of grammar definitions for standard
data structures such as singly- and doubly-linked lists and binary trees, the
manual specification in a JSON-style graph format and combinations thereof.

Fourth, additional options can be given that e.g. define the initial heap con-
figuration(s) (in JSON-style graph format), that control the granularity of ab-
straction and the garbage collection behaviour, or that allow to re-use results of
previous analyses in the form of procedure contracts [11,13].

https://moves-rwth.github.io/attestor

Let this Graph be your Witness! 3
Attestor Backend

Parsing Inputs

Marking Generation

Grammar & Abstraction
Preprocessing

State Space Generation

Model Checking

Counterexample
Generation

Program

LTL Specification

Graph Grammar

Options

Yes

No
non-spurious

counterexample

Don't Know
possibly spurious
counterexample

Abstract State Space

Attestor API

A t t e s t o r F r o n t e n d

Procedure Contracts

Fig. 1. The Attestor Tool

2.2 Phases

Attestor proceeds in six main phases, see Fig. 1 (middle). In the first and third
phase, all inputs are parsed and preprocessed. The input program is read and
transformed to Bytecode (if necessary), the input graphs (initial configuration,
procedure contracts, and graph grammar), LTL formulae and further options
are read.

Depending on the provided LTL formulae, additional markings are inserted
into the initial heap (see [8] for details) in the second phase. They are used to
track identities of objects during program execution, which is later required to
validate visit and neighbourhood properties during the fifth phase.

In the next phase the actual program analysis is conducted. To this aim,
Attestor first constructs the abstract state space as described in Sect. 2.3 in
detail. In the fifth phase we check whether the provided LTL specification holds
on the state space resulting from the preceding step. We use an off-the-shelf
tableau-based LTL model checking algorithm [2].

If desired, during all phases results are forwarded to the API to make them
accessible to the frontend or the user directly. We address this output in Sect. 2.4.

2.3 Abstract State Space Generation

The core module of Attestor is the abstract state space generation. It employs
an abstraction approach based on hyperedge replacement grammars, whose the-
oretical underpinnings are described in [9] in detail. It is centred around a graph-
based representation of the heap that contains concrete parts side by side with
placeholders representing a set of heap fragments of a certain shape. The state
space generation loop as implemented in Attestor is shown in Fig. 2.

4 H. Arndt, C. Jansen, J.-P. Katoen, C. Matheja, T. Noll

concretise

for each resulting state

execute statement

rectify

abstract

label

subsumed
by existing

state

abstract execution

fixpoint
reached

pick state
in state space

add to
state space

add
initial states

YesNo

No

Yes

Fig. 2. State Space Generation

Initially it is provided with
the initial program state(s),
that is, the program counter
corresponding to the starting
statement together with the
initial heap configuration(s).
From these, Attestor picks a
state at random and applies the
abstract semantics of the next
statement: First, the heap con-
figuration is locally concretised
ensuring that all heap parts
required for the statement to
execute are accessible. This is
enabled by applying rules of
the input graph grammar in
forward direction, which can
entail branching in the state
space. The resulting configura-
tions are then manipulated according to the concrete semantics of the statement.
At this stage, Attestor automatically detects possible null pointer dereferenc-
ing operations as a byproduct of the state space generation. In a subsequent
rectification step, the heap configuration is cleared from e.g. dead variables and
garbage (if desired). Consequently, memory leaks are detected immediately. The
rectified configuration is then abstracted with respect to the data structures
specified by means of the input graph grammar. Complementary to concretisa-
tion, this is realised by applying grammar rules in backward direction, which
involves a check for embeddings of right-hand sides. A particular strength of our
approach is its robustness against local violations of data structures, as it simply
leaves the corresponding heap parts concrete. Finalising the abstract execution
step, the resulting state is labelled with the atomic propositions it satisfies. This
check is efficiently implemented by means of heap automata (see [12,15] for de-
tails). By performing a subsumption check on the state level, Attestor detects
whether the newly generated state is already covered by a more abstract one
that has been visited before. If not, it adds the resulting state to the state space
and starts over by picking a new state. Otherwise, it checks whether further
states have to be processed or whether a fixpoint in the state space generation
is reached. In the latter case, this phase is terminated.

2.4 Output

As shown in Fig. 1 (right), we obtain three main outputs once the analysis is
completed: the computed abstract state space, the derived procedure contracts,
and the model checking results. For each LTL formula in the specification, results
comprise the possible answers “formula satisfied”, “formula (definitely) not sat-
isfied”, or “formula possibly not satisfied”. In case of the latter two, Attestor

Let this Graph be your Witness! 5

Fig. 3. Screenshot of Attestor’s frontend for state space exploration.

additionally produces a counterexample, i.e. an abstract trace that violates the
formula. If Attestor was able to verify the non-spuriousness of this counterex-
ample (second case), we are additionally given a concrete initial heap that is
accountable for the violation and that can be used as a test case for debugging.

Besides the main outputs, Attestor provides general information about the
current analysis. These include log messages such as warnings and errors, but
also details about settings and runtimes of the analyses. The API provides the
interface to retrieve Attestor’s outputs as JSON-formatted data.

2.5 Frontend

Attestor features a graphical frontend that visualises inputs as well as results
of all benchmark runs. The frontend communicates with Attestor’s backend
via the API only. It especially can be used to display and navigate through the
generated abstract state space and counterexample traces.

A screenshot of the frontend for state space exploration is found in Fig. 3.
The left panel is an excerpt of the state space. The right panel depicts the
currently selected state, where red boxes correspond to variables and constants,
circles correspond to allocated objects/locations, and yellow boxes correspond
to nonterminals of the employed graph grammar, respectively. Arrows between
two circles represent pointers. Further information about the selected state is
provided in the topmost panel. Graphs are rendered using cytoscape.js [6].

3 Evaluation

Tool comparison While there exists a plethora of tools for analysing pointer
programs, such as, amongst others, Forester [10], Groove [7], Infer [5],
Hip/Sleek [17], Korat [16], Juggrnaut [9], and Tvla [3], these tools differ
in multiple dimensions:

6 H. Arndt, C. Jansen, J.-P. Katoen, C. Matheja, T. Noll

– Input languages range from C code (Forester, Infer, Hip/Sleek) over
Java/Java Bytecode (Juggrnaut, Korat) to assembly code (Tvla) and
graph programs (Groove).

– The degree of automation differs heavily: Tools like Forester and Infer
only require source code. Others such as Hip/Sleek and Juggrnaut addi-
tionally expect general data structure specifications in the form of e.g. graph
grammars or predicate definitions to guide the abstraction. Moreover, Tvla
requires additional program-dependent instrumentation predicates.

– Verifiable properties typically cover memory safety. Korat is an exception,
because it applies test case generation instead of verification. The tools
Hip/Sleek, Tvla, Groove, and Juggrnaut are additionally capable of
verifying data structure invariants, so-called shape properties. Furthermore,
Hip/Sleek is able to reason about shape-numeric properties, e.g. lengths of
lists, if a suitable specification is provided. While these properties are not
supported by Tvla, it is possible to verify reachability properties. More-
over, Juggrnaut can reason about temporal properties such as verifying
that finally every element of an input data structure has been accessed.

Benchmarks Due to the above mentioned diversity there is no publicly available
and representative set of standardised benchmarks to compare the aforemen-
tioned tools [1]. We thus evaluated Attestor on a collection of challenging,
pointer intensive algorithms compiled from the literature [3,4,10,14]. To assess
our counterexample generation, we considered invalid specifications, e.g. that a
reversed list is the same list as the input list. Furthermore, we injected faults
into our examples by swapping and deleting statements.

Properties During state space generation, memory safety (M) is checked. More-
over, we consider five classes of properties that are verified using the built-in
LTL model checker:
– The shape property (S) establishes that the heap is of a specific shape, e.g.

a doubly-linked list or a balanced tree.
– The reachability property (R) checks whether some variable is reachable from

another one via specific pointer fields.
– The visit property (V) verifies whether every element of the input is accessed

by a specific variable.
– The neighbourhood property (N) checks whether the input data structure

coincides with the output data structure upon termination.
– Finally, we consider other functional correctness properties (C), e.g. the re-

turn value is not null.

Setup For performance evaluation, we conducted experiments on an Intel Core
i7-7500U CPU @ 2.70GHz with the Java virtual machine (OpenJDK version
1.8.0 151) limited to its default setting of 2GB of RAM. All experiments were
run using the Java benchmarking harness jmh. Our experimental results are
shown in Table 1. Additionally, for comparison purpose we considered Java im-
plementations of benchmarks that have been previously analysed for memory
safety by Forester [10], see Table 2.

Let this Graph be your Witness! 7

No. states State Space gen. Verification Total Runtime

Benchmark Properties min max min max min max min max

SLL.traverse M,S,R,V,N,X 13 97 0.030 0.074 0.039 0.097 0.757 0.848
SLL.reverse M,S,R,V,X 46 268 0.050 0.109 0.050 0.127 0.793 0.950
SLL.reverse (recursive) M,S,V,N,X 40 823 0.038 0.100 0.044 0.117 0.720 0.933
DLL.reverse M,S,R,V,N,X 70 1508 0.076 0.646 0.097 0.712 0.831 1.763
DLL.findLast M,C,X 44 44 0.069 0.069 0.079 0.079 0.938 0.938
SLL.findMiddle M,S,R,V,N,X 75 456 0.060 0.184 0.060 0.210 0.767 0.975
Tree.traverse (Lindstrom) M,S,V,N 229 67941 0.119 8.901 0.119 16.52 0.845 17.36
Tree.traverse (recursive) M,S 91 21738 0.075 1.714 0.074 1.765 0.849 2.894
AVLTree.binarySearch M,S 192 192 0.117 0.172 0.118 0.192 0.917 1.039
AVLTree.searchAndBack M,S,C 455 455 0.193 0.229 0.205 0.289 1.081 1.335
AVLTree.searchAndSwap M,S,C 3855 4104 0.955 1.590 1.004 1.677 1.928 2.521
AVLTree.leftMostInsert M,S 6120 6120 1.879 1.942 1.932 1.943 2.813 2.817
AVLTree.insert M,S 10388 10388 3.378 3.676 3.378 3.802 4.284 4.720
AVLTree.sllToAVLTree M,S,C 7166 7166 2.412 2.728 2.440 2.759 3.383 3.762

Table 1. The experimental results. All runtimes are in seconds. Verification time in-
cludes state space generation. SLL (DLL) means singly-linked (doubly-linked) list.

Discussion The results show that both memory safety (M) and shape (S) are
efficiently processed, with regard to both state space size and runtime. This is not
surprising as these properties are directly handled by the state space generation

Benchmark No. states Verification

SLL.bubblesort 287 0.134
SLL.deleteElement 152 0.096
SLLHeadPtr (traverse) 111 0.095
SLL.insertsort 369 0.147
ListOfCyclicLists 313 0.153
DLL.insert 379 0.207
DLL.insertsort1 4302 1.467
DLL.insertsort2 1332 0.514
DLL.buildAndReverse 277 0.164
CyclicDLL (traverse) 104 0.108
Tree.construct 44 0.062
Tree.constructAndDSW 1334 0.365
SkipList.insert 302 0.160
SkipList.build 330 0.173

Table 2. Forester benchmarks (memory safety
only). Verification times are in seconds.

engine. The most challenging
tasks are the visit (V) and
neighbourhood (N) properties
as they require to track ob-
jects across program executions
by means of markings. The
latter have a similar impact
as pointer variables: increasing
their number impedes abstrac-
tion as larger parts of the heap
have to be kept concrete. This
effect can be observed for the
Lindstrom tree traversal proce-
dure where adding one mark-
ing (V) and three markings (N)
both increase the verification ef-
fort by an order of magnitude.

References

1. Abdulla, P.A., Gadducci, F., König, B., Vafeiadis, V.: Verification of evolving
graph structures (Dagstuhl Seminar 15451). Dagstuhl Reports 5(11) (2016) 1–28

2. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL. In: LICS 1995, IEEE (1995) 388–397

3. Bogudlov, I., Lev-Ami, T., Reps, T., Sagiv, M.: Revamping TVLA: Making para-
metric shape analysis competitive. In: CAV 2007, Springer (2007) 221–225

8 H. Arndt, C. Jansen, J.-P. Katoen, C. Matheja, T. Noll

4. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: SAS 2006, Springer (2006)
52–70

5. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory
safety of C programs. In: NFM, Springer (2011) 459–465

6. Cytoscape Consortium: Cytoscape: graph theory / network library for analysis
and visualisation. http://js.cytoscape.org/

7. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using GROOVE. Int. Journal on Software Tools for Technology
Transfer 14 (2012) 15–40

8. Heinen, J.: Verifying Java Programs – A Graph Grammar Approach. PhD thesis,
RWTH Aachen University, Germany (2015)

9. Heinen, J., Jansen, C., Katoen, J.P., Noll, T.: Verifying pointer programs using
graph grammars. Science of Computer Programming 97 (2015) 157–162

10. Hoĺık, L., Lengál, O., Rogalewicz, A., Simácek, J., Vojnar, T.: Fully automated
shape analysis based on forest automata. CoRR abs/1304.5806 (2013)

11. Jansen, C.: Static Analysis of Pointer Programs – Linking Graph Grammars and
Separation Logic. PhD thesis, RWTH Aachen University, Germany (2017)

12. Jansen, C., Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Unified reasoning
about robustness properties of symbolic-heap separation logic. In: ESOP, Springer
(2017) 611–638

13. Jansen, C., Noll, T.: Generating abstract graph-based procedure summaries for
pointer programs. In: ICGT, Springer (2014) 49–64

14. Loginov, A., Reps, T.W., Sagiv, M.: Automated verification of the Deutsch-Schorr-
Waite tree-traversal algorithm. In: SAS 2006, Springer (2006) 261–279

15. Matheja, C., Jansen, C., Noll, T.: Tree-like grammars and separation logic. In:
APLAS, Springer (2015) 90–108

16. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for generating
structurally complex test inputs. In: ICSE, Springer (2007) 771–774

17. Nguyen, H.H., David, C., Qin, S., Chin, W.N.: Automated verification of shape
and size properties via separation logic. In: VMCAI, Springer (2007) 251–266

http://js.cytoscape.org/

	Let this Graph be your Witness!

