
Deciding Probabilistic Bisimilarity Distance One
for Labelled Markov Chains

Qiyi Tang and Franck van Breugel

DisCoVeri Group, York University, Toronto, Canada

Abstract. Probabilistic bisimilarity is an equivalence relation that cap-
tures which states of a labelled Markov chain behave the same. Since this
behavioural equivalence only identifies states that transition to states
that behave exactly the same with exactly the same probability, this
notion of equivalence is not robust. Probabilistic bisimilarity distances
provide a quantitative generalization of probabilistic bisimilarity. The
distance of states captures the similarity of their behaviour. The smaller
the distance, the more alike the states behave. In particular, states are
probabilistic bisimilar if and only if their distance is zero. This quantita-
tive notion is robust in that small changes in the transition probabilities
result in small changes in the distances.
During the last decade, several algorithms have been proposed to approx-
imate and compute the probabilistic bisimilarity distances. The main re-
sult of this paper is an algorithm that decides distance one in O(n2+m2),
where n is the number of states and m is the number of transitions of the
labelled Markov chain. The algorithm is the key new ingredient of our
algorithm to compute the distances. The state of the art algorithm can
compute distances for labelled Markov chains up to 150 states. For one
such labelled Markov chain, that algorithm takes more than 49 hours. In
contrast, our new algorithm only takes 13 milliseconds. Furthermore, our
algorithm can compute distances for labelled Markov chains with more
than 10,000 states in less than 50 minutes.

Keywords: Labelled Markov chain, probabilistic bisimilarity, proba-
bilistic bisimilarity distance.

1 Introduction

A behavioural equivalence captures which states of a model give rise to the same
behaviour. Bisimilarity, due to Milner [21] and Park [24], is one of the best
known behavioural equivalences. Verifying that an implementation satisfies a
specification boils down to checking that the model of the implementation gives
rise to the same behaviour as the model of the specification, that is, the models
are behavioural equivalent (see [1, Chapter 3]).

In this paper, we focus on models of probabilistic systems. These models can
capture randomized algorithms, probabilistic protocols, biological systems and
many other systems in which probabilities play a central role. In particular, we
consider labelled Markov chains, that is, Markov chains the states of which are
labelled.

1 2 3 4 5 6

0 0

0

0

0

0 0

1 1 1 1 1 1

1
2

1
2

1
2 1

2
1
2

1
2

1
2

1
2 1

2
1
2

1
2

1
2 1

2

1
2

The above example shows how the behaviour of rolling a die can be mimicked
by flipping a coin, an example due to Knuth and Yao [18]. Six of the states
are labelled with the values of a die and the other states are labelled zero. In
this example, we are interested in the labels representing the value of a die.
As the reader can easily verify, the states with these labels are each reached
with probability 1

6 from the initial, top most, state. In general, labels are used
to identify particular states that have properties of interest. As a consequence,
states with different labels are not behaviourally equivalent.

Probabilistic bisimilarity, due to Larsen and Skou [20], is a key behavioural
equivalence for labelled Markov chains. As shown by Katoen, Kemna, Zapreev
and Jansen [15], minimizing a labelled Markov chain by identifying those states
that are probabilistic bisimilar speeds up model checking. Probabilistic bisimi-
larity only identifies those states that behave exactly the same with exactly the
same probability. If, for example, we replace the fair coin in the above example
with a biased one, then none of the states labelled with zero in the original model
with the fair coin are behaviourally equivalent to any of the states labelled with
zero in the model with the biased coin. Behavioural equivalences like probabilis-
tic bisimilarity rely on the transition probabilities and, as a result, are sensitive
to minor changes of those probabilities. That is, such behavioural equivalences
are not robust, as first observed by Giacalone, Jou and Smolka [11].

The probabilistic bisimilarity distances that we study in this paper were first
defined by Desharnais, Gupta, Jagadeesan and Panangaden in [10]. Each pair of
states of a labelled Markov chain is assigned a distance, a real number in the unit
interval [0, 1]. This distance captures the similarity of the behaviour of the states.
The smaller the distance, the more alike the states behave. In particular, states
have distance zero if and only if they are probabilistic bisimilar. This provides
a quantitative generalization of probabilistic bisimilarity that is robust in that
small changes in the transition probabilities give rise to small changes in the
distances. For example, we can model a biased die by using a biased coin instead
of a fair coin in the above example. Let us assume that the odds of heads of the
biased coin, that is, going to the left, is 51

100 . A state labelled zero in the model
of the fair die has a non-trivial distance, that is, a distance greater than zero
and smaller than one, to the corresponding state in the model of the biased die.

2

For example, the initial states have distance about 0.036. We refer the reader
to [30] for a more detailed discussion of a similar example.

As we already mentioned earlier, behavioural equivalences can be used to
verify that an implementation satisfies a specification. Similarly, the distances
can be used to check how similar an implementation is to a specification. We
also mentioned that probabilistic bisimilarity can be used to speed up model
checking. The distances can be used in a similar way, by identifying those states
that behave almost the same, that is, have a small distance (see [3, 22, 25]).

We focus in this paper on computing the probabilistic bisimilarity distances.
In particular, we present a decision procedure for distance one. That is, we com-
pute the set of pairs of states that have distance one. Recall that distance one
is the maximal distance and, therefore, captures that states behave very differ-
ently. States with different labels have distance one. However, also states with
the same label can have distance one, as the next example illustrates.

0 0 1

1 1
2

1

1
2

Instead of computing the set of state pairs that have distance one, we compute
the complement, that is, the set of state pairs with distance smaller than one.
Obviously, the set of state pairs with distance zero is included in this set. First,
we decide distance zero. As we mentioned earlier, distance zero coincides with
probabilistic bisimilarity. The first decision procedure for probabilistic bisimi-
larity was provided by Baier [4]. More efficient decision procedures were subse-
quently proposed by Derisavi, Hermanns and Sanders [9] and also by Valmari
and Franceschinis [29]. The latter two both run in O(m log n), where n and m
are the number of states and transitions of the labelled Markov chain. Subse-
quently, we use a traversal of a directed graph derived from the labelled Markov
chain. This traversal takes O(n2 +m2).

The decision procedures for distance zero and one can be used to compute
or approximate probabilistic bisimilarity distances as indicated below.

D0

D1

SPI •

Q DI

SPPI

few non-trivial distances many non-trivial distances

small distances approximate distances

3

Once we have computed the sets D0 and D1 of state pairs that have distance
zero or one, we can easily compute the number of state pairs with non-trivial
distances. If the number of non-trivial distances is small, then we can use the
simple policy iteration (SPI) algorithm due to Bacci, Bacci, Larsen and Mardare
[2] to compute those distances. Otherwise, we can either compute all distances
smaller than a chosen ε > 0 or we can approximate the distances up to some
chosen accuracy α > 0. In the former case, we first compute a query set Q of
state pairs that contains all state pairs the distances of which are at most ε.
Subsequently, we apply the simple partial policy iteration (SPPI) algorithm due
to Bacci et al. [2] to compute the distances for all state pairs in Q. In the latter
case, we start with a pair of distance functions, one being a lower-bound and
the other being an upper-bound of the probabilistic bisimilarity distances, and
iteratively improve the accuracy of those until they are α close. We call this
new approximation algorithm distance iteration (DI) as it is similar in spirit to
Bellman’s value iteration [5].

Chen, Van Breugel and Worrell [7] presented an algorithm to compute the
distances by means of Khachiyan’s ellipsoid method [16]. Though the algorithm
is polynomial time, in practice it is not as efficient as the policy iteration algo-
rithms (see the examples in [27, Section 8]). The state of the art algorithm to
compute the probabilistic bisimilarity distances consists of two components: D0

and SPI. To compare this algorithm with our new algorithm consisting of the
components D0, D1 and SPI, we implemented all the components in Java and ran
both implementations on several labelled Markov chains. These labelled Markov
chains model randomized algorithms and probabilistic protocols that are part
of the distribution of probabilistic model checkers such as PRISM [19]. Whereas
the original state of the art algorithm can handle labelled Markov chains with up
to 150 states, our new algorithm can handle more than 10,000 states. Further-
more, for one such labelled Markov chain with 150 states, the original algorithm
takes more than 49 hours, whereas our new algorithm takes only 13 milliseconds.
Also, the new algorithm consisting of the components D0, D1, Q and SPPI to
compute only small distances along with the new algorithm consisting of the
components D0, D1 and DI to approximate the distances give rise to even less
execution times for a number of the labelled Markov chains.

The main contributions of this paper are

– a polynomial decision procedure for distance one,

– an algorithm to compute the probabilistic bisimilarity distances,

– an algorithm to compute those probabilistic bisimilarity distances smaller
than some given ε > 0, and

– an approximation algorithm to compute the probabilistic bisimilarity dis-
tances up to some given accuracy α > 0.

Furthermore, by means of experiments we have shown that these three new
algorithms are very effective, improving significantly on the state of the art.

4

2 Labelled Markov Chains and Probabilistic Bisimilarity
Distances

We start by reviewing the model of interest, labelled Markov chains, its most
well known behavioural equivalence, probabilistic bisimilarity due to Larsen and
Skou [20], and the probabilistic bisimilarity pseudometric due to Desharnais et
al. [10]. We denote the set of rational probability distributions on a set S by
Distr(S). For µ ∈ Distr(S), its support is defined by support(µ) = { s ∈ S |
µ(s)> 0 }. Instead of S × S, we often write S2.

Definition 1. A labelled Markov chain is a tuple 〈S,L, τ, `〉 consisting of

– a nonempty finite set S of states,
– a nonempty finite set L of labels,
– a transition function τ : S → Distr(S), and
– a labelling function ` : S → L.

For the remainder of this section, we fix such a labelled Markov chain 〈S,L, τ, `〉.

Definition 2. Let µ, ν ∈ Distr(S). The set Ω(µ, ν) of couplings of µ and ν is
defined by

Ω(µ, ν) =

{
ω ∈ Distr(S2)

∣∣∣∣ ∀s ∈ S :
∑
t∈S ω(s, t) = µ(s)∧

∀t ∈ S :
∑
s∈S ω(s, t) = ν(t)

}
.

Note that ω ∈ Ω(µ, ν) is a joint probability distribution with marginals µ
and ν. The following proposition will be used to prove Proposition 5.

Proposition 1. For all µ, ν ∈ Distr(S) and X ⊆ S2,

∀ω ∈ Ω(µ, ν) : support(ω) ⊆ X if and only if support(µ)× support(ν) ⊆ X.

Definition 3. An equivalence relation R ⊆ S2 is a probabilistic bisimulation
if for all (s, t) ∈ R, `(s) = `(t) and there exists ω ∈ Ω(τ(s), τ(t)) such that
support(ω) ⊆ R. Probabilistic bisimilarity, denoted ∼, is the largest probabilistic
bisimulation.

The probabilistic bisimilarity pseudometric of Desharnais et al. [10] maps
each pair of states of a labelled Markov chain to a distance, an element of the
unit interval [0, 1]. Hence, the pseudometric is a function from S2 to [0, 1], that

is, an element of [0, 1]S
2

. As we will discuss below, it can be defined as a fixed
point of the following function.

Definition 4. The function ∆ : [0, 1]S
2 → [0, 1]S

2

is defined by

∆(d)(s, t) =

1 if `(s) 6= `(t)

min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) d(u, v) otherwise

5

Since a concave function on a convex polytope attains its minimum (see [17,
page 260]), the above minimum exists. We will use this fact in Proposition 4, one

of the key technical results in this paper. We endow the set [0, 1]S
2

of functions
from S2 to [0, 1] with the following partial order: d v e if d(s, t) ≤ e(s, t) for all

s, t ∈ S. The set [0, 1]S
2

together with the order v form a complete lattice (see
[8, Chapter 2]). The function ∆ is monotone (see [6, Section 3]). According to
the Knaster-Tarski fixed point theorem [28, Theorem 1], a monotone function
on a complete lattice has a least fixed point. Hence, ∆ has a least fixed point,
which we denote by µ(∆). This fixed point assigns to each pair of states their
probabilistic bisimilarity distance.

Given that µ(∆) captures the probabilistic bisimilarity distances, we define
the following sets.

D0 = { (s, t) ∈ S2 | µ(∆)(s, t) = 0 }
D1 = { (s, t) ∈ S2 | µ(∆)(s, t) = 1 }

The probabilistic bisimilarity pseudometric µ(∆) provides a quantitative gen-
eralisation of probabilistic bisimilarity as captured by the following result by
Desharnais et al. [10, Theorem 1].

Theorem 1. D0 = { (s, t) ∈ S2 | s ∼ t }.

3 Distance One

We concluded the previous section with the characterization of D0 as the set of
state pairs that are probabilistic bisimilar. In this section we present a charac-
terization of D1 as a fixed point of the function introduced in Definition 5.

Let us consider the case that the probabilistic bisimilarity distance of states s
and t is one, that is, µ(∆)(s, t) = 1. Then ∆(µ(∆))(s, t) = 1. From the def-
inition of ∆, we can conclude that either `(s) 6= `(t), or for all couplings
ω ∈ Ω(τ(s), τ(t)) we have support(ω) ⊆ D1.

We partition the set S2 of state pairs into

S2
0 = { (s, t) ∈ S2 | s ∼ t }
S2
1 = { (s, t) ∈ S2 | `(s) 6= `(t) }
S2
? = S2 \ (S2

0 ∪ S2
1)

Hence, if µ(∆)(s, t) = 1, then either (s, t) ∈ S2
1 , or (s, t) ∈ S2

? and for all
couplings ω ∈ Ω(τ(s), τ(t)) we have support(ω) ⊆ D1. This leads us to the
following function.

Definition 5. The function Γ : 2S
2 → 2S

2

is defined by

Γ (X) = S2
1 ∪ { (s, t) ∈ S2

? | ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ X }.

Proposition 2. The function Γ is monotone.

6

Since the set 2S
2

of subsets of S2 endowed with the order ⊆ is a complete
lattice (see [8, Example 2.6(2)]) and the function Γ is monotone, we can conclude
from the Knaster-Tarski fixed point theorem that Γ has a greatest fixed point,
which we denote by ν(Γ). Next, we show that D1 is a fixed point of Γ .

Proposition 3. D1 = Γ (D1).

Since we have already seen that D1 is a fixed point of Γ , we have that
D1 ⊆ ν(Γ). To conclude that D1 is the greatest point of Γ , it remains to show
that ν(Γ) ⊆ D1, which is equivalent to the following.

Proposition 4. ν(Γ) \D1 = ∅.

Proof. Towards a contradiction, assume that ν(Γ) \D1 6= ∅. Let

m = min{µ(∆)(s, t) | (s, t) ∈ ν(Γ) \D1 }
M = { (s, t) ∈ ν(Γ) \D1 | µ(∆)(s, t) = m }

S2
1S2

0 M
D1

ν(Γ)

Since ν(Γ) \D1 6= ∅, we have that M 6= ∅. Furthermore,

M ⊆ ν(Γ) \D1. (1)

Since ν(Γ) \D1 ⊆ ν(Γ), we have

M ⊆ ν(Γ) = Γ (ν(Γ)) ⊆ S2
1 ∪ S2

? . (2)

For all (s, t) ∈M ,

(s, t) ∈ ν(Γ) ∧ (s, t) 6∈ D1 [(1)]

⇒ (s, t) ∈ Γ (ν(Γ)) ∧ (s, t) 6∈ S2
1

⇒ ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ ν(Γ). (3)

For each (s, t) ∈M , let

ωs,t = argmin
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v)µ(∆)(u, v). (4)

We distinguish the following two cases.

7

– Assume that there exists (s, t) ∈M such that support(ωs,t) ∩D1 6= ∅. Let

p =
∑

(u,v)∈ν(Γ)∩D1

ωs,t(u, v).

By (3), we have that support(ωs,t) ⊆ ν(Γ). Since support(ωs,t) ∩D1 6= ∅
by assumption, we can conclude that p > 0. Again using the fact that
support(ωs,t) ⊆ ν(Γ), we have that∑

(u,v)∈ν(Γ)\D1

ωs,t(u, v) = 1− p. (5)

Furthermore,

m = µ(∆)(s, t)

= ∆(µ(∆))(s, t)

= min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v)µ(∆)(u, v)

=
∑
u,v∈S

ωs,t(u, v)µ(∆)(u, v) [(4)]

=
∑

(u,v)∈ν(Γ)

ωs,t(u, v)µ(∆)(u, v) [(3)]

=
∑

(u,v)∈ν(Γ)∩D1

ωs,t(u, v)µ(∆)(u, v) +
∑

(u,v)∈ν(Γ)\D1

ωs,t(u, v)µ(∆)(u, v)

= p+
∑

(u,v)∈ν(Γ)\D1

ωs,t(u, v)µ(∆)(u, v)

≥ p+ (1− p)m.

The last step follows from (5) and the fact that µ(∆)(u, v) ≥ m for all
(u, v) ∈ ν(Γ) \D1. From the facts that p > 0 and m ≥ p+ (1− p)m we can
conclude that m ≥ 1. This contradicts (1).

– Otherwise, support(ωs,t) ∩ D1 = ∅ for all (s, t) ∈ M . Next, we will show
that M is a probabilistic bisimulation under this assumption. From the fact
that M is a probabilistic bisimulation, we can conclude from Theorem 1
that µ(∆)(s, t) = 0 for all (s, t) ∈ M . Hence, since M 6= ∅ we have that
M ∩ S2

0 6= ∅ which contradicts (2).
Next, we prove that M is a probabilistic bisimulation. Let (s, t) ∈M . Since
M ⊆ ν(Γ)\D1 by (1), we have that (s, t) 6∈ D1 and, hence, ∆(µ(∆))(s, t) =
µ(∆)(s, t) < 1. From the definition of ∆, we can conclude that `(s) = `(t).
Since

m = µ(∆)(s, t)

=
∑

(u,v)∈ν(Γ)\D1

ωs,t(u, v)µ(∆)(u, v) [as above]

8

and µ(∆)(u, v) ≥ m for all (u, v) ∈ ν(Γ) \ D1, we can conclude that
µ(∆)(u, v) = m for all (u, v) ∈ support(ωs,t). Hence, support(ωs,t) ⊆ M .
Therefore, M is a probabilistic bisimulation. ut

Theorem 2. D1 = ν(Γ).

Proof. Immediate consequence of Proposition 3 and 4. ut

We have shown that D1 can be characterized as the greatest fixed point of Γ .
Next, we will show that D1 can be decided in polynomial time.

Theorem 3. Distance one can be decided in O(n2 +m2).

Proof. As we will show in Theorem 5, distance smaller than one can be decided
in O(n2 +m2). Hence, distance one can be decided in O(n2 +m2) as well. ut

4 Distance Smaller Than One

To compute the set of state pairs which have distance one, we can first compute
the set of state pairs which have distance less than one. The latter set we denote
by D<1. We can then obtain D1 by taking the complement of D<1. As we will
discuss below, D<1 can be characterized as the least fixed point of the following
function.

Definition 6. The function Γ: 2S
2 → 2S

2

is defined by

Γ(X) = S2 \ Γ (S2 \X).

The next theorem follows from Theorem 2.

Theorem 4. D<1 = µ(Γ).

Next, we show that the computation of D<1 can be formulated as a reach-
ability problem on a directed graph which is induced by the labelled Markov
chain. Thus, we can use standard search algorithms, for example, breadth-first
search, on the induced graph.

Next, we present the graph induced by the labelled Markov chain.

Definition 7. The directed graph G = (V,E) is defined by

V = S2
0 ∪ S2

?

E = { 〈(u, v), (s, t)〉 | τ(s)(u)> 0 ∧ τ(t)(v)> 0 }

We are left to show that in the graph G defined above, a vertex (s, t) is
reachable from some vertex in S2

0 if and only if the state pair (s, t) in the labelled
Markov chain has distance less than one.

As we have discussed earlier, if a state pair (s, t) has distance one, either s
and t have different labels, or for all couplings ω ∈ Ω(τ(s), τ(t)) we have that
support(ω) ⊆ D1. To avoid the universal quantification over couplings, we will
use Proposition 1 in the proof of following proposition.

9

Proposition 5. µ(Γ) = { (s, t) | (s, t) is reachable from some (u, v) ∈ S2
0 }.

Theorem 5. Distance smaller than one can be decided in O(n2 +m2).

Proof. Distance smaller than one can be decided as follows.

1. Decide distance zero.
2. Breadth-first search of G, with the queue initially containing the pairs of

states that have distance zero.

By Theorem 4 and Proposition 5, we have that s and t have distance smaller
than one if and only if (s, t) is reachable in the directed graph G from some
(u, v) such that u and v have distance zero. These reachable state pairs can be
computed using breadth-first search, with the queue initially containing S2

0 .
Distance zero, that is, probabilistic bisimilarity, can be decided in O(m log n)

as shown by Derisavi, Hermanns and Sanders in [9]. The directed graph G has
n2 vertices and m2 edges. Hence, breadth-first search takes O(n2 +m2). ut

5 Number of Non-trivial Distances

As we have already discussed earlier, distance zero captures that states behave
exactly the same, that is, they are probabilistic bisimilar, and distance one indi-
cates that states behave very differently. The remaining distances, that is, those
greater than zero and smaller than one, we call non-trivial. Being able to de-
termine quickly the number of non-trivial distances of a labelled Markov chain
allows us to decide whether computing all these non-trivial distances (using some
policy iteration algorithm) is feasible.

To determine the number of non-trivial distances of a labelled Markov chain,
we use the following algorithm.

1. Decide distance zero.
2. Decide distance one.

As first proved by Baier [4], distance zero, that is, probabilistic bisimilarity,
can be decided in polynomial time. As we proved in Theorem 3, distance one
can be decided in polynomial time as well. Hence, we can compute the number
of non-trivial distances in polynomial time.

To decide distance zero, we implemented the algorithm to decide probabilis-
tic bisimilarity due to Derisavi, Hermanns and Sanders [9] in Java. We also
implemented our algorithm to decide distance one, described in the proof of
Theorem 3 and Theorem 5.

We applied our implementation to labelled Markov chains that model ran-
domized algorithms and probabilistic protocols. These labelled Markov chains
have been obtained from the verification tool PRISM [19]. We compute the num-
ber of non-trivial distances for two models: the randomized self-stabilising algo-
rithm due to Herman [13] and the bounded retransmission protocol by Helmink,
Sellink and Vaandrager [12].

10

For the randomized self-stabilising algorithm, the size of the labelled Markov
chain grows exponentially in the numbers of processes, N . The results for the
randomized self-stabilising algorithm are shown in the table below. As we can
see from the table, for systems up to 128 states, the algorithm runs for less than
a second. For the system with 512 states, the algorithm terminates within seven
minutes. For the case N = 3, there are only 12 non-trivial distances. The size
is so small that we can easily compute all the non-trivial distances. Section 6
will use the simple policy iteration algorithm as the next step to compute them.
The same applies to the case N = 5. For N = 7 or 9, the number of non-trivial
distances is around 11,000 and 200,000, respectively. This makes computing all
of them infeasible. Thus, instead of computing all of them, we need to find
alternative ways to handle systems with a large number of non-trivial distances.
We will discuss two alternative ways in Section 7 and Section 8. Moreover, in
this example, as |D1| = |S2

1 |, we know that all the state pairs with distance one
are those that have different labels.

N |S| D0 +D1 non-trivial |D0| |D1| |S2
1 |

3 8 1.00 ms 12 38 14 14

5 32 6.06 ms 280 304 440 440

7 128 0.77 s 11,032 2,160 3,192 3,192

9 512 378.42 s 230,712 13,648 17,784 17,784

In the bounded retransmission protocol, there are two parameters: N denotes
the number of chunks and M the maximum allowed number of retransmissions
of each chunk. The results are shown in the table below. The algorithm can
handle systems up to 3,526 states within 11 minutes. In this example, there
are no non-trivial distances. As a consequence, deciding distance zero and one
suffices to compute all the distances in this case.

N M S D0 +D1 |D0| |D1| |S2
1 |

16 2 677 3.0 s 456,977 1,352 1,352

16 3 886 8.6 s 783,226 1,770 1,770

16 4 1,095 17.5 s 1,196,837 2,188 2,188

16 5 1,304 22.8 s 1,697,810 2,606 2,606

32 2 1,349 24.7 s 1,817,105 2,696 2,696

32 3 1,766 69.7 s 3,115,226 3,530 3,530

32 4 2,183 141.0 s 4,761,125 4,364 4,364

32 5 2,600 208.6 s 6,754,802 5,198 5,198

64 2 2,693 235.2 s 7,246,865 5,384 5,384

64 3 3,526 616.4 s 12,425,626 7,050 7,050

11

6 All Distances

To compute all distances of a labelled Markov chain, we augment the exist-
ing state of the art algorithm, which is based on algorithms due to Derisavi,
Hermanns and Sanders [9] (step 1) and Bacci, Bacci, Larsen and Mardare [2]
(step 3), by incorporating our decision procedure (step 2) as follows.

1. Decide distance zero.
2. Decide distance one.
3. Simple policy iteration.

Given that we not only decide distance zero, but also distance one, before
running simple policy iteration, the correctness of the simple policy iteration
algorithm in the augmented setting needs an adjusted proof.

As we already discussed in the previous section, step 1 and 2 are polynomial
time. However, step 3 may take at least exponential time in the worst case, as
we have shown in [26]. Hence, the overall algorithm is exponential time.

The first example we consider here is the synchronous leader election protocol
of Itai and Rodeh [14] which is taken from PRISM. The protocol takes the
number of processors, N , and a constant K as parameters. We compare the
running time of our new algorithm with the state of the art algorithm, that
combines algorithms due to Derisavi et al. and due to Bacci et al. The results
are shown in the table below. In this protocol, the number of non-trivial distances
is zero. Thus, our new algorithm terminates without running step 3 which is the
simple policy iteration algorithm. On the other hand, the original simple policy
iteration algorithm computes the distances of all the elements in the set D1 \S2

1 ,
the size of which is huge as can be seen from the last two columns of the table.

N K |S| D0+SPI D0+D1+SPI speed-up |D0| |D1| |S2
1 |

3 2 26 4 s 1 ms 4,281 122 554 50

3 4 147 49 hrs 13 ms 13,800,000 7,419 14,190 292

3 6 459 - 214 ms - 88,671 122,010 916

3 8 1,059 - 3 s - 508,851 612,630 2,116

4 2 61 812 s 3 ms 305,000 459 3,262 120

4 4 812 - 388 ms - 145,780 513,564 1,622

4 6 3,962 - 82 s - 4,350,292 11,347,152 7,922

4 8 12,400 - 2,971 s - 46,198,188 107,561,812 24,798

5 2 141 - 6 ms - 2,399 17,482 280

5 4 4,244 - 33 s - 3,318,662 14,692,874 8,486

6 2 335 - 25 ms - 14,327 97,898 668

12

The simple policy iteration algorithm can only handle a limited number of
states. For the labelled Markov chain with 26 states (N = 3 and K = 2) the
simple policy iteration algorithm takes four seconds, while our new algorithm
takes one millisecond. The speed-up is more than 4,000 times. For the labelled
Markov chain with 61 states (N = 4 and K = 2), the simple policy iteration
algorithm runs in 812 seconds, while our new algorithm takes three milliseconds.
The speed-up of the new algorithm is 30,000 times. The biggest system the
simple policy iteration algorithm can handle is the one with 147 states (N = 3
and K = 4) and it takes more than 49 hours. In contrast, our new algorithm
terminates within 13 milliseconds. That makes the new algorithm seven orders
of magnitude faster than the state of the art algorithm. This example also shows
that the new algorithm can handle systems with at least 12,400 states.

In the second example, we model two dies, one using a fair coin and the other
one using a biased coin. The goal is to compute the probabilistic bisimilarity
distance between these two dies. An implementation of the die algorithm is part
of PRISM. The resulting labelled Markov chain has 20 states.

As there are only 30 non-trivial distances, we run the simple policy iteration
algorithm as step 3. The new algorithm is about 46 times faster than the original
algorithm.

|S| D0+SPI D0+D1+SPI speed-up non-trivial |D0| |D1| |S2
1 |

20 5.55 s 0.12 s 46.25 30 20 350 198

7 Small Distances

As we have discussed in Section 5, for systems of which the number of non-
trivial distances is so large that computing all of them is infeasible, we have
to find alternative ways. In practice, as we only identify the state pairs with
small distances, we can cut down the number of non-trivial distances by only
computing those with small distances.

To compute the non-trivial distances smaller than a positive number, ε, we
use the following algorithm.

1. Decide distance zero.

2. Decide distance one.

3. Compute the query set

Q = { (s, t) ∈ S2 \ (D0 ∪D1) | ∆(d)(s, t) ≤ ε }

where

d(s, t) =

{
1 if (s, t) ∈ D1

0 otherwise

4. Simple partial policy iteration for Q.

13

The first two steps remain the same. In step 3, we compute a query set Q
that contains all state pairs with distances no greater than ε, as shown in Propo-
sition 6. In step 4, we use this set as the query set to run the simple partial policy
iteration algorithm by Bacci et al. [2].

Proposition 6. Let d be the distance function defined in step 3. For all (s, t) ∈
S2 \ (D0 ∪D1), if µ(∆)(s, t) ≤ ε, then ∆(d)(s, t) ≤ ε.

Given that we not only decide distance zero, but also distance one, before
running simple partial policy iteration, the correctness of the simple partial
policy iteration algorithm in the augmented setting needs an adjusted proof.

As we have seen before, step 1 and 2 take polynomial time. In step 3, com-
puting ∆(d) corresponds to solving a minimum cost network flow problem. Such
a problem can be solved in polynomial time using, for example, Orlin’s network
simplex algorithm [23]. As we have shown in [27], step 4 takes at least expo-
nential time in the worst case. Therefore, the overall algorithm is exponential
time.

We consider the randomized quicksort algorithm, an implementation of which
is part of jpf-probabilistic [31]. The input of the algorithm is the list to be sorted.
The list of size 6 gives rise to a labelled Markov chain with 82 states. We com-
pare the running time of the new algorithm for small distances (D0 + D1 + Q
+ SPPI) to the original algorithm (D0 + SPI) and the new algorithm presented
in Section 6 (D0 + D1 + SPI). The original algorithm (D0 + SPI) takes about
14 hours, the new algorithm which incorporates the decision procedure of dis-
tance one takes less than 7 hours. For ε = 0.1, the new algorithm for small
distances takes 57 minutes. This makes it about 7 times faster than the algo-
rithm presented in Section 6 and about 15 times faster than the original simple
policy iteration algorithm. For ε = 0.01, the new algorithm for small distances
takes even less time, namely 41 minutes. As can be seen in the table below, the
total number of non-trivial distances is 2,300. The simple partial policy iteration
algorithm starts with the query set Q but may have to compute the distances
of other state pairs as well. The total number of state pairs considered by the
simple partial policy iteration algorithm can be found in the column labelled
total.

ε D0 +D1 +Q + SPPI |Q| total non-trivial

0.1 57 min 96 1,002 2,300

0.01 41 min 84 842 2,300

8 Approximation Algorithm

We propose another solution to deal with a large number of non-trivial distances
by approximating the distances rather than computing the exact values. To
approximate the distances such that the approximate values differ from the exact
ones by at most α, a positive number, we use the following algorithm.

14

1. Decide distance zero.
2. Decide distance one.

3. l(s, t) =

{
1 if (s, t) ∈ D1

0 otherwise

u(s, t) =

{
0 if (s, t) ∈ D0

1 otherwise

repeat
f o r each (s, t) ∈ S2 \ (D0 ∪D1)

i f l(s, t) 6= u(s, t)
l(s, t) = ∆(l)(s, t)
u(s, t) = ∆(u)(s, t)

u n t i l ‖l − u‖ ≤ α

Again, the first two steps remain the same. Step 3 contains the new ap-
proximation algorithm called distance iteration (DI). In this step, we define two
distance functions, a lower-bound l and an upper-bound u. We repeatedly apply
∆ to these two functions until the difference of the non-trivial distances in these
two functions is smaller than the threshold α. For each state pair we end up
with an interval of at most size α in which their distance lies. To prove the algo-
rithm correct, we modify the function ∆ defining the probabilistic bisimilarity
distances slightly as follows.

Definition 8. The function ∆0 : [0, 1]S
2 → [0, 1]S

2

is defined by

∆0(d)(s, t) =

{
0 if (s, t) ∈ D0

∆(d)(s, t) otherwise

Some properties of ∆0, which are key to the correctness proof of the above
algorithm, are collected in the following theorem.

Theorem 6.

(a) The function ∆0 is monotone.
(b) The function ∆0 is nonexpansive.
(c) µ(∆0) = µ(∆).
(d) µ(∆0) = ν(∆0).
(e) µ(∆0) = supm∈N∆

m
0 (d0), where d0(s, t) = 0 for all s, t ∈ S.

(f) ν(∆0) = infn∈N∆
n
0 (d1), where d1(s, t) = 1 for all s, t ∈ S.

Let us use randomized quicksort introduced in Section 7 and the randomized
self-stabilising algorithm due to Herman [13] introduced in Section 5 as exam-
ples. Recall that for the randomized self-stabilising algorithm, when N = 7, the
number of non-trivial distances is 11,032, which we are not able to handle using
the simple policy iteration algorithm. We apply the approximation algorithm to
this model and the randomized quicksort example with 82 states and present
the results below. The accuracy α is set to be 0.01.

15

The approximation algorithm for randomized quicksort runs for about 14 min-
utes, which is about 3 to 4 times faster than the algorithm for small distances
in Section 7. For the randomized self-stabilising algorithm with 128 states, the
approximation algorithm terminates in about 54 hours. Although the number
of non-trivial distances for the randomized self-stabilising algorithm is about
5 times of that of the randomized quicksort, the running time is more than
200 times slower. It is unknown whether this approximation algorithm has ex-
ponential running time.

model |S| non-trivial D0 +D1+DI

randomized quicksort 82 2,300 14 min

randomized self-stabilising algorithm 128 11,032 54 hrs

9 Conclusion

In this paper, we have presented a decision procedure for probabilistic bisimi-
larity distance one. This decision procedure provides the basis for three new al-
gorithms to compute and approximate the probabilistic bisimilarity distances of
a labelled Markov chain. The first algorithm decides distance zero, then decides
distance one, and finally uses simple policy iteration to compute the remaining
distances. As shown experimentally, this new algorithm significantly improves
the state of the art algorithm that only decides distance zero and then uses sim-
ple policy iteration. The second algorithm computes all probabilistic bisimilarity
distances that are smaller than some given upper bound, by deciding distance
zero, deciding distance one, computing a query set, and running simple partial
policy iteration for that query set. This second algorithm can handle labelled
Markov chains that have considerably more non-trivial distances than our first
algorithm. The third algorithm approximates the probabilistic bisimilarity dis-
tances up to a given accuracy, deciding distance zero, deciding distance one and
running distance iteration. Also this third algorithm can handle labelled Markov
chains that have considerably more non-trivial distances than our first algorithm.
Whereas we know that the first two algorithms take at least exponential time
in the worst case, the analysis of the running time of the third algorithm has
not yet been determined. Moreover, if we are only interested in the probabilistic
bisimilarity distances for a few state pairs, with pre-computation of distance zero
and one we can exclude the state pairs with trivial distances. We can add the
remaining state pairs to a query set and run simple partial policy iteration to
get the distances. Alternatively, we can modify the distance iteration algorithm
to approximate the distances for the predefined state pairs. The details of these
new algorithms will be studied in the future.

Acknowledgements. The authors would like to thank Daniela Petrisan, Eric
Ruppert and Dana Scott for discussions related to this research. The authors
are also grateful to the referees for their constructive feedback.

16

References

1. Luca Aceto, Anna Ingolfsdottir, Kim Larsen, and Jǐŕı Srba. Reactive systems:
Modelling, specification and verification. Cambridge University Press, Cambridge,
UK, 2003.

2. Giorgio Bacci, Giovanni Bacci, Kim Larsen, and Radu Mardare. On-the-fly exact
computation of bisimilarity distances. In Nir Piterman and Scott Smolka, editors,
Proceedings of the 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 7795 of Lecture Notes in Computer
Science, pages 1–15, Rome, Italy, March 2013. Springer-Verlag.

3. Giovanni Bacci, Giorgio Bacci, Kim Larsen, and Radu Mardare. On the metric-
based approximate minimization of Markov chains. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, Proceedings of the 44th
International Colloquium on Automata, Languages, and Programming, volume 80
of Leibniz International Proceedings in Informatics, pages 104:1–104:14, Warsaw,
Poland, July 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

4. Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation
and simulation. In Rajeev Alur and Thomas Henzinger, editors, Proceedings of
the 8th International Conference on Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 50–61, New Brunswick, NJ, USA,
July/August 1996. Springer-Verlag.

5. Richard Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics, 6(5):679–684, 1957.

6. Franck van Breugel. On behavioural pseudometrics and closure ordinals. Informa-
tion Processing Letters, 112(18):715–718, October 2012.

7. Di Chen, Franck van Breugel, and James Worrell. On the complexity of com-
puting probabilistic bisimilarity. In Lars Birkedal, editor, Proceedings of the 15th
International Conference on Foundations of Software Science and Computational
Structures, volume 7213 of Lecture Notes in Computer Science, pages 437–451,
Tallinn, Estonia, March/April 2012. Springer-Verlag.

8. Brian Davey and Hilary Priestley. Introduction to lattices and order. Cambridge
University Press, Cambridge, United Kingdom, 2002.

9. Salem Derisavi, Holger Hermanns, and William Sanders. Optimal state-space
lumping in Markov chains. Information Processing Letters, 87(6):309–315, Septem-
ber 2003.

10. Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labeled Markov systems. In Jos Baeten and Sjouke Mauw, editors,
Proceedings of the 10th International Conference on Concurrency Theory, vol-
ume 1664 of Lecture Notes in Computer Science, pages 258–273, Eindhoven, The
Netherlands, August 1999. Springer-Verlag.

11. Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for
probabilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working
Conference on Programming Concepts and Methods, pages 443–458, Sea of Gallilee,
Israel, April 1990. North-Holland.

12. Leen Helmink, Alex Sellink, and Frits Vaandrager. Proof-checking a data link
protocol. In Henk Barendregt and Tobias Nipkow, editors, Proceedings of the
International Workshop on Types for Proofs and Programs, volume 806 of Lecture
Notes in Computer Science, pages 127–165, Nijmegen, the Netherlands, May 1993.
Springer-Verlag.

17

13. Ted Herman. Probabilistic self-stabilization. Information Processing Letters,
35(2):63–67, June 1990.

14. Aron Itai and Michael Rodeh. Symmetry breaking in distributed networks. Infor-
mation and Computation, 88(1):60–87, September 1990.

15. Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David Jansen. Bisimulation
minimisation mostly speeds up probabilistic model checking. In Orna Grumberg
and Michael Huth, editors, Proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of Lecture Notes in Computer Science, pages 87–101, Braga, Portugal, March/April
2007. Springer-Verlag.

16. Leonid Khachiyan. A polynomial algorithm in linear programming. Soviet Math-
ematics Doklady, 20(1):191–194, 1979.

17. Viktor Klee and Christoph Witzgall. Facets and vertices of transportation poly-
topes. In George Dantzig and Arthur Veinott, editors, Proceedings of 5th Summer
Seminar on the Mathematis of the Decision Sciences, volume 11 of Lectures in Ap-
plied Mathematics, pages 257–282, Stanford, CA, USA, July/August 1967. AMS.

18. Donald Knuth and Andrew Yao. The complexity of nonuniform random number
generation. In Joseph Traub, editor, Proceedings of a Symposium on New Direc-
tions and Recent Results in Algorithms and Complexity, pages 375–428, Pittsburgh,
PA, USA, April 1976. Academic Press.

19. Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of
probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, edi-
tors, Proceedings of the 23rd International Conference on Computer Aided Verifica-
tion, volume 6806 of Lecture Notes in Computer Science, pages 585–591, Snowbird,
UT, USA, July 2011. Springer-Verlag.

20. Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. In Pro-
ceedings of the 16th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 344–352, Austin, TX, USA, January 1989. ACM.

21. Robin Milner. A calculus of communicating systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, Germany, 1980.

22. Abhishek Murthy, Md. Ariful Islam, Ezio Bartocci, Elizabeth Cherry, Flavio Fen-
ton, James Glimm, Scott Smolka, and Radu Grosu. Approximate bisimulations
for sodium channel dynamics. In David Gilbert and Monika Heiner, editors, Pro-
ceedings of 10th International Conference on Computational Methods in Systems
Biology, volume 7605 of Lecture Notes in Computer Science, pages 267–287, Lon-
don, United Kingdom, 2012. Springer-Verlag.

23. James Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Mathematical Programming, 78(2):109–129, August 1997.

24. David Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Proceedings of 5th GI-Conference on Theoretical Computer Science, volume
104 of Lecture Notes in Computer Science, pages 167–183, Karlsruhe, Germany,
March 1981. Springer-Verlag.

25. Prithviraj Sen, Amol Deshpande, and Lise Getoor. Bisimulation-based approxi-
mate lifted inference. In Jeff Bilmes and Andrew Ng, editors, Proceedings of the
25th Conference on Uncertainty in Artificial Intelligence, pages 496–505, Montreal,
QC, Canada, 2009. AUAI Press.

26. Qiyi Tang and Franck van Breugel. Computing probabilistic bisimilarity distances
via policy iteration. In Josée Desharnais and Radha Jagadeesan, editors, Proceed-
ings of the 27th International Conference on Concurrency Theory, volume 59 of
Leibniz International Proceedings in Informatics, pages 22:1–22:15, Quebec City,
QC, Canada, August 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

18

27. Qiyi Tang and Franck van Breugel. Algorithms to compute probabilistic bisimi-
larity distances for labelled Markov chains. In Roland Meyer and Uwe Nestmann,
editors, Proceedings of the 28th International Conference on Concurrency Theory,
volume 85 of Leibniz International Proceedings in Informatics, pages 27:1–27:16,
Berlin, Germany, September 2017. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik.

28. Alfred Tarski. A lattice-theoretic fixed point theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, June 1955.

29. Antti Valmari and Giuliana Franceschinis. Simple O(m logn) time Markov chain
lumping. In Javier Esparza and Rupak Majumdar, editors, Proceedings of the
16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 6015 of Lecture Notes in Computer Science, pages
38–52, Paphos, Cyprus, March 2010. Springer-Verlag.

30. Franck van Breugel. Probabilistic bisimilarity distances. ACM SIGLOG News,
4(4):33–51, November 2017.

31. Xin Zhang and Franck van Breugel. Model checking randomized algorithms with
Java PathFinder. In Proceedings of the 7th International Conference on the Quan-
titative Evaluation of Systems, pages 157–158, Williamsburg, VA, USA, September
2010. IEEE.

19

