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Maximilian Weininger

Technical University of Munich

Abstract. Simple stochastic games can be solved by value iteration
(VI), which yields a sequence of under-approximations of the value of
the game. This sequence is guaranteed to converge to the value only in
the limit. Since no stopping criterion is known, this technique does not
provide any guarantees on its results. We provide the first stopping cri-
terion for VI on simple stochastic games. It is achieved by additionally
computing a convergent sequence of over-approximations of the value,
relying on an analysis of the game graph. Consequently, VI becomes an
anytime algorithm returning the approximation of the value and the cur-
rent error bound. As another consequence, we can provide a simulation-
based asynchronous VI algorithm, which yields the same guarantees, but
without necessarily exploring the whole game graph.

1 Introduction

Simple stochastic game (SG) [Con92] is a zero-sum two-player game played
on a graph by Maximizer and Minimizer, who choose actions in their respective
vertices (also called states). Each action is associated with a probability distri-
bution determining the next state to move to. The objective of Maximizer is
to maximize the probability of reaching a given target state; the objective of
Minimizer is the opposite.

Stochastic games constitute a fundamental problem for several reasons. From
the theoretical point of view, the complexity of this problem1 is known to be
in UP ∩ coUP [HK66] , but no polynomial-time algorithm is known. Further,
several other important problems can be reduced to SG, for instance parity
games, mean-payoff games, discounted-payoff games and their stochastic exten-
sions [CF11]. The task of solving SG is also polynomial-time equivalent to solv-
ing perfect information Shapley, Everett and Gillette games [AM09]. Besides,
the problem is practically relevant in verification and synthesis. SG can model
reactive systems, with players corresponding to the controller of the system and

? This research was funded in part by the German Excellence Initiative and the Eu-
ropean Union Seventh Framework Programme under grant agreement No. 291763
for TUM – IAS, the Studienstiftung des deutschen Volkes project “Formal meth-
ods for analysis of attack-defence diagrams”, the Czech Science Foundation grant
No. 18-11193S, TUM IGSSE Grant 10.06 (PARSEC), and the German Research
Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded Verification”.

1 Formally, the problem is to decide, for a given p ∈ [0, 1] whether Maximizer has a
strategy ensuring probability at least p to reach the target.



to its environment, where quantified uncertainty is explicitly modelled. This is
useful in many application domains, ranging from smart energy management
[CFK+13b] to autonomous urban driving [CKSW13], robot motion planning
[LaV00] to self-adaptive systems [CMG14]; for various recent case studies, see
e.g. [SK16]. Finally, since Markov decision processes (MDP) [Put14] are a special
case with only one player, SG can serve as abstractions of large MDP [KKNP10].

Solution techniques There are several classes of algorithms for solving SG,
most importantly strategy iteration (SI) algorithms [HK66] and value iteration
(VI) algorithms [Con92]. Since the repetitive evaluation of strategies in SI is
often slow in practice, VI is usually preferred, similarly to the special case of
MDPs [KM17]. For instance, the most used probabilistic model checker PRISM
[KNP11] and its branch PRISM-Games [CFK+13a] use VI for MDP and SG
as the default option, respectively. However, while SI is in principle a precise
method, VI is an approximative method, which converges only in the limit. Un-
fortunately, there is no known stopping criterion for VI applied to SG. Conse-
quently, there are no guarantees on the results returned in finite time. Therefore,
current tools stop when the difference between the two most recent approxima-
tions is low, and thus may return arbitrarily imprecise results [HM17].

Value iteration with guarantees In the special case of MDP, in order to
obtain bounds on the imprecision of the result, one can employ a bounded variant
of VI [MLG05,BCC+14] (also called interval iteration [HM17]). Here one com-
putes not only an under-approximation, but also an over-approximation of the
actual value as follows. On the one hand, iterative computation of the least fix-
point of Bellman equations yields an under-approximating sequence converging
to the value. On the other hand, iterative computation of the greatest fixpoint
yields an over-approximation, which, however, does not converge to the value.
Moreover, it often results in the trivial bound of 1. A solution suggested for
MDPs [BCC+14,HM17] is to modify the underlying graph, namely to collapse
end components. In the resulting MDP there is only one fixpoint, thus the least
and greatest fixpoint coincide and both approximating sequences converge to
the actual value. In contrast, for general SG no procedure where the greatest
fixpoint converges to the value is known. In this paper we provide one, yielding
a stopping criterion. We show that the pre-processing approach of collapsing is
not applicable in general and provide a solution on the original graph. We also
characterize SG where the fixpoints coincide and no processing is needed. The
main technical challenge is that states in an end component in SG can have
different values, in contrast to the case of MDP.

Practical efficiency using guarantees We further utilize the obtained guar-
antees to practically improve our algorithm. Similar to the MDP case [BCC+14],
the quantification of the error allows for ignoring parts of the state space, and
thus a speed up without jeopardizing the correctness of the result. Indeed, we
provide a technique where some states are not explored and processed at all, but
their potential effect is still taken into accountThe information is further used
to decide the states to be explored next and to be analyzed in more detail. To
this end, simulations and learning are used as tools. While for MDP this idea
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has already demonstrated speed ups in orders of magnitude [BCC+14,ACD+17],
this paper provides the first technique of this kind for SG. Our contribution
is summarized as follows
– We introduce a VI algorithm yielding both under- and over-approximation

sequences, both of which converge to the value of the game. Thus we present
the first stopping criterion for VI on SG and the first anytime algorithm
with guaranteed precision. We also characterize when a simpler solution is
sufficient.

– We provide a learning-based algorithm, which preserves the guarantees, but
is in some cases more efficient since it avoids exploring the whole state space.

– We evaluate the running times of the algorithms experimentally, concluding
that obtaining guarantees requires an overhead that is either negligible or
mitigated by the learning-based approach.

Related work The works closest to ours are the following. As mentioned
above, [BCC+14,HM17] describe the solution to the special case of MDP. While
[BCC+14] also provides a learning-based algorithm, [HM17] discusses the con-
vergence rate and the exact solution. The basic algorithm of [HM17] is imple-
mented in PRISM [BKL+17] and the learning approach of [BCC+14] in Storm
[DJKV17a]. The extension for SG where the interleaving of players is severely
limited (every end component belongs to one player only) is discussed in [Ujm15].

Further, in the area of probabilistic planning, bounded real-time dynamic
programming [MLG05] is related to our learning-based approach. However, it
is limited to the setting of stopping MDP where the target sink or the non-
target sink is reached almost surely under any pair of strategies and thus the
fixpoints coincide. Our algorithm works for general SG, not only for stopping
ones, without any blowup.

For SG, the tools implementing the standard SI and/or VI algorithms are
PRISM-games [CFK+13a], GAVS+ [CKLB11] and GIST [CHJR10]. The latter
two are, however, neither maintained nor accessible via the links provided in
their publications any more.

Apart from fundamental algorithms to solve SG, there are various practically
efficient heuristics that, however, provide none or weak guarantees, often based
on some form of learning [BT00,LL08,WT16,TT16,AY17,BBS08]. Finally, the
only currently available way to obtain any guarantees through VI is to perform
γ2 iterations and then round to the nearest multiple of 1/γ, yielding the value
of the game with precision 1/γ [CH08]; here γ cannot be freely chosen, but it
is a fixed number, exponential in the number of states and the used probability
denominators. However, since the precision cannot be chosen and the number of
iterations is always exponential, this approach is infeasible even for small games.
Organization of the paper Section 2 introduces the basic notions and revises
value iteration. Section 3 explains the idea of our approach on an example.
Section 4 provides a full technical treatment of the method as well as the learning-
based variation. Section 5 discusses experimental results and Section 6 concludes.
The appendix (available in [KKKW18]) gives technical details on the pseudocode
as well as the conducted experiments and provides more extensive proofs to the
theorems and lemmata; in this paper, there are only proof sketches and ideas.
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2 Preliminaries

2.1 Basic definitions

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted

by D(X). Now we define stochastic games, in literature often referred as simple
stochastic games or stochastic two-player games with a reachability objective.

Definition 1 (SG). A stochastic game (SG) is a tuple (S ,S�,S©, s0,A,Av, δ, 1, 0),
where S is a finite set of states partitioned into the sets S� and S© of states of
the player Maximizer and Minimizer, respectively, s0, 1, 0 ∈ S is the initial state,
target state, and sink state, respectively, A is a finite set of actions, Av : S → 2A

assigns to every state a set of available actions, and δ : S ×A → D(S ) is a tran-
sition function that given a state s and an action a ∈ Av(s) yields a probability
distribution over successor states.

A Markov decision process (MDP) is a special case of SG where S© = ∅.
We assume that SGs are non-blocking, so for all states s we have Av(s) 6= ∅.
Further, 1 and 0 only have one action and it is a self-loop with probability 1.
Additionally, we can assume that the SG is preprocessed so that all states with
no path to 1 are merged with 0.

For a state s and an available action a ∈ Av(s), we denote the set of successors
by Post(s, a) := {s′ | δ(s, a, s′) > 0}. Finally, for any set of states T ⊆ S , we use
T� and T© to denote the states in T that belong to Maximizer and Minimizer,
whose states are drawn in the figures as � and ©, respectively.

The semantics of SG is given in the usual way by means of strategies and the
induced Markov chain and the respective probability space, as follows. An infi-
nite path ρ is an infinite sequence ρ = s0a0s1a1 . . . ∈ (S×A)ω, such that for every
i ∈ N, ai ∈ Av(si) and si+1 ∈ Post(si, ai). Finite paths are defined analogously as
elements of (S ×A)∗× S . Since this paper deals with the reachability objective,
we can restrict our attention to memoryless strategies, which are optimal for this
objective. We still allow randomizing strategies, because they are needed for the
learning-based algorithm later on. A strategy of Maximizer or Minimizer is a
function σ : S� → D(A) or S© → D(A), respectively, such that σ(s) ∈ D(Av(s))
for all s. We call a strategy deterministic if it maps to Dirac distributions only.
Note that there are finitely many deterministic strategies. A pair (σ, τ) of strate-
gies of Maximizer and Minimizer induces a Markov chain Gσ,τ where the transi-
tion probabilities are defined as δ(s, s′) =

∑
a∈Av(s) σ(s, a) ·δ(s, a, s′) for states of

Maximizer and analogously for states of Minimizer, with σ replaced by τ . The
Markov chain induces a unique probability distribution Pσ,τs over measurable
sets of infinite paths [BK08, Ch. 10].

We write ♦1 := {ρ | ∃i ∈ N. ρ(i) = 1} to denote the (measurable) set of all
paths which eventually reach 1. For each s ∈ S , we define the value in s as

V(s) := sup
σ

inf
τ
Pσ,τs (♦1) = inf

τ
sup
σ

Pσ,τs (♦1),

where the equality follows from [Mar75]. We are interested not only in V(s0),
but also its ε-approximations and the corresponding (ε-)optimal strategies for
both players.
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Now we recall a fundamental tool for analysis of MDP called end components.
We introduce the following notation. Given a set of states T ⊆ S , a state s ∈ T
and an action a ∈ Av(s), we say that (s, a) exitsT if Post(s, a) 6⊆ T . We define
an end component of a SG as the end component of the underlying MDP with
both players unified.

Definition 2 (EC). A non-empty set T ⊆ S of states is an end component
(EC) if there is a non-empty set B ⊆

⋃
s∈T Av(s) of actions such that

1. for each s ∈ T, a ∈ B ∩ Av(s) we do not have (s, a) exitsT ,
2. for each s, s′ ∈ T there is a finite path w = sa0 . . . ans

′ ∈ (T × B)∗ × T , i.e.
the path stays inside T and only uses actions in B.

Intuitively, ECs correspond to bottom strongly connected components of the
Markov chains induced by possible strategies, so for some pair of strategies all
possible paths starting in the EC remain there. An end component T is a maximal
end component (MEC) if there is no other end component T ′ such that T ⊆ T ′.
Given an SG G, the set of its MECs is denoted by MEC(G) and can be computed
in polynomial time [CY95].

2.2 (Bounded) value iteration

The value function V satisfies the following system of equations, which is
referred to as the Bellman equations:

V(s) =


maxa∈Av(s) V(s, a) if s ∈ S�

mina∈Av(s) V(s, a) if s ∈ S©
1 if s = 1

0 if s = 0

(1)

where2

V(s, a) :=
∑
s′∈S

δ(s, a, s′) · V(s′) (2)

Moreover, V is the least solution to the Bellman equations, see e.g. [CH08].
To compute the value of V for all states in an SG, one can thus utilize the
iterative approximation method value iteration (VI) as follows. We start with a
lower bound function L0 : S → [0, 1] such that L0(1) = 1 and, for all other s ∈ S ,
L0(s) = 0. Then we repetitively apply Bellman updates (3) and (4)

Ln(s, a) :=
∑
s′∈S

δ(s, a, s′) · Ln−1(s′) (3)

Ln(s) :=

{
maxa∈Av(s) Ln(s, a) if s ∈ S�

mina∈Av(s) Ln(s, a) if s ∈ S©
(4)

2 Throughout the paper, for any function f : S → [0, 1] we overload the notation and
also write f(s, a) meaning

∑
s′∈S δ(s, a, s′) · f(s′).
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until convergence. Note that convergence may happen only in the limit even for
such a simple game as in Figure 1 on the left. The sequence is monotonic, at all
times a lower bound on V , i.e. Li(s) ≤ V(s) for all s ∈ S , and the least fixpoint
satisfies L∗ := limn→∞ Ln = V.

Unfortunately, there is no known stopping criterion, i.e. no guarantees how
close the current under-approximation is to the value [HM17]. The current tools
stop when the difference between two successive approximations is smaller than
a certain threshold, which can lead to arbitrarily wrong results [HM17].

For the special case of MDP, it has been suggested to also compute the
greatest fixpoint [MLG05] and thus an upper bound as follows. The function
G : S → [0, 1] is initialized for all states s ∈ S as G0(s) = 1 except for G0(0) = 0.
Then we repetitively apply updates (3) and (4), where L is replaced by G. The
resulting sequence Gn is monotonic, provides an upper bound on V and the
greatest fixpoint G∗ := limn Gn is the greatest solution to the Bellman equations
on [0, 1]S .

This approach is called bounded value iteration (BVI) (or bounded real-
time dynamic programming (BRTDP) [MLG05,BCC+14] or interval iteration
[HM17]). If L∗ = G∗ then they are both equal to V and we say that BVI con-
verges. BVI is guaranteed to converge in MDP if the only ECs are those of
1 and 0 [BCC+14]. Otherwise, if there are non-trivial ECs they have to be
“collapsed”3. Computing the greatest fixpoint on the modified MDP results in
another sequence Ui of upper bounds on V, converging to U∗ := limn Un. Then
BVI converges even for general MDPs, U∗ = V [BCC+14], when transformed
this way. The next section illustrates this difficulty and the solution through
collapsing on an example.

In summary, all versions of BVI discussed so far and later on in the paper
follow the pattern of Algorithm 1. In the naive version, UPDATE just performs
the Bellman update on L and U according to Equations (3) and (4).4 For a
general MDP, U does not converge to V, but to G∗, and thus the termination
criterion may never be met if G∗(s0) − V(s0) > 0. If the ECs are collapsed in
pre-processing then U converges to V.

For the general case of SG, the collapsing approach fails and this paper pro-
vides another version of BVI where U converges to V, based on a more detailed
structural analysis of the game.

3 Example

In this section, we illustrate the issues preventing BVI convergence and our
solution on a few examples. Recall that G is the sequence converging to the
greatest solution of the Bellman equations, while U is in general any sequence
over-approximating V that one or another BVI algorithm suggests.

Firstly, we illustrate the issue that arises already for the special case of MDP.
Consider the MPD of Figure 1 on the left. Although V(s) = V(t) = 0.5, we have

3 All states of an EC are merged into one, all leaving actions are preserved and all
other actions are discarded. For more detail see [KKKW18, Appendix A.1.]

4 For the straightforward pseudocode, see [KKKW18, Appendix A.2.].
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Algorithm 1 Bounded value iteration algorithm

1: procedure BVI(precision ε > 0)
2: for s ∈ S do \* Initialization * \
3: L(s) = 0 \* Lower bound * \
4: U(s) = 1 \* Upper bound * \
5: L(1) = 1 \* Value of sinks is determined a priori * \
6: U(0) = 0

7: repeat
8: UPDATE(L,U) \* Bellman updates or their modification * \
9: until U(s0)− L(s0) < ε \* Guaranteed error bound * \

Gi(s) = Gi(t) = 1 for all i. Indeed, the upper bound for t is always updated
as the maximum of Gi(t, c) and Gi(t, b). Although Gi(t, c) decreases over time,
Gi(t, b) remains the same, namely equal to Gi(s), which in turn remains equal to
Gi(s, a) = Gi(t). This cyclic dependency lets both s and t remain in an “illusion”
that the value of the other one is 1.

The solution for MDP is to remove this cyclic dependency by collapsing all
MECs into singletons and removing the resulting purely self-looping actions.
Figure 1 in the middle shows the MDP after collapsing the EC {s, t}. This turns
the MDP into a stopping one, where 1 or 0 is under any strategy reached with
probability 1. In such MDP, there is a unique solution to the Bellman equations.
Therefore, the greatest fixpoint is equal to the least one and thus to V.

Secondly, we illustrate the issues that additionally arise for general SG. It
turns out that the collapsing approach can be extended only to games where
all states of each EC belong to one player only [Ujm15]. In this case, both
Maximizer’s and Minimizer’s ECs are collapsed the same way as in MDP.

However, when both players are present in an EC, then collapsing may not
solve the issue. Consider the SG of Figure 2. Here α and β represent the values
of the respective actions.5 There are three cases:

First, let α < β. If the bounds converge to these values we eventually observe
Gi(q, e) < Li(r, f) and learn the induced inequality. Since p is a Minimizer’s state
it will never pick the action leading to the greater value of β. Therefore, we can
safely merge p and q, and remove the action leading to r, as shown in the second
subfigure.

Second, if α > β, p and r can be merged in an analogous way, as shown in
the third subfigure.

Third, if α = β, both previous solutions as well as collapsing all three states
as in the fourth subfigure is possible. However, since the approximants may only
converge to α and β in the limit, we may not know in finite time which of these
cases applies and thus cannot decide for any of the collapses.

Consequently, the approach of collapsing is not applicable in general. In or-
der to ensure BVI convergence, we suggest a different method, which we call

5 Precisely, we consider them to stand for a probabilistic branching with probability
α (or β) to 1 and with the remaining probability to 0. To avoid clutter in the figure,
we omit this branching and depict only the value.
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deflating. It does not involve changing the state space, but rather decreasing
the upper bound Ui to the least value that is currently provable (and thus still
correct). To this end, we analyze the exiting actions, i.e. with successors outside
of the EC, for the following reason. If the play stays in the EC forever, the target
is never reached and Minimizer wins. Therefore, Maximizer needs to pick some
exiting action to avoid staying in the EC.

s t
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Fig. 1: Left: An MDP (as special case of SG) where BVI does not converge due
to the grayed EC. Middle: The same MDP where the EC is collapsed, making
BVI converge. Right: The approximations illustrating the convergence of the
MDP in the middle.
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Fig. 2: Left: Collapsing ECs in SG may lead to incorrect results. The Greek
letters on the leaving arrows denote the values of the exiting actions. Right
three figures: Correct collapsing in different cases, depending on the relationship
of α and β. In contrast to MDP, some actions of the EC exiting the collapsed
part have to be removed.

For the EC with the states s and t in Figure 1, the only exiting action is c.
In this example, since c is the only exiting action, Ui(t, c) is the highest possible
upper bound that the EC can achieve. Thus, by decreasing the upper bound of
all states in the EC to that number6, we still have a safe upper bound. Moreover,
with this modification BVI converges in this example, intuitively because now
the upper bound of t depends on action c as it should.

For the example in Figure 2, it is correct to decrease the upper bound to
the maximal exiting one, i.e. max{α̂, β̂}, where α̂ := Ui(a), β̂ := Ui(b) are the

6 We choose the name “deflating” to evoke decreasing the overly high “pressure” in
the EC until it equalizes with the actual “pressure” outside.
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current approximations of α and of β. However, this itself does not ensure BVI
convergence. Indeed, if for instance α̂ < β̂ then deflating all states to β̂ is not
tight enough, as values of p and q can even be bounded by α̂. In fact, we have
to find a certain sub-EC that corresponds to α̂, in this case {p, q} and set all its
upper bounds to α̂. We define and compute these sub-ECs in the next section.

In summary, the general structure of our convergent BVI algorithm is to
produce the sequence U by application of Bellman updates and occasionally find
the relevant sub-ECs and deflate them. The main technical challenge is that
states in an EC in SG can have different values, in contrast to the case of MDP.

4 Convergent Over-approximation

In Section 4.1, we characterize SGs where Bellman equations have more solu-
tions. Based on the analysis, subsequent sections show how to alter the procedure
computing the sequence Gi over-approximating V so that the resulting tighter
sequence Ui still over-approximates V, but also converges to V. This ensures that
thus modified BVI converges. Section 4.4 presents the learning-based variant of
our BVI.

4.1 Bloated end components cause non-convergence

As we have seen in the example of Fig. 2, BVI generally does not converge
due to ECs with a particular structure of the exiting actions. The analysis of
ECs relies on the extremal values that can be achieved by exiting actions (in
the example, α and β). Given the value function V or just its current over-
approximation Ui, we define the most profitable exiting action for Maximizer
(denoted by �) and Minimizer (denoted by ©) as follows.

Definition 3 (bestExit). Given a set of states T ⊆ S and a function f : S →
[0, 1] (see footnote 2), the f -value of the best T -exiting action of Maximizer and
Minimizer, respectively, is defined as

bestExit�f (T ) = max
s∈T�

(s,a) exitsT

f(s, a)

bestExit©f (T ) = min
s∈T©

(s,a) exitsT

f(s, a)

with the convention that max∅ = 0 and min∅ = 1.

Example 1. In the example of Fig. 2 on the left with T = {p, q, r} and α < β,

we have bestExit�V (T ) = β, bestExit©V (T ) = 1. It is due to β < 1 that BVI does
not converge here. We generalize this in the following lemma. 4

Lemma 1. Let T be an EC. For every m satisfying bestExit�V (T ) ≤ m ≤
bestExit©V (T ), there is a solution f : S → [0, 1] to the Bellman equations, which
on T is constant and equal to m.

9



Proof (Idea). Intuitively, such a constant m is a solution to the Bellman equa-
tions on T for the following reasons. As both players prefer getting m to exiting
and getting “only” the values of their respective bestExit, they both choose to
stay in the EC (and the extrema in the Bellman equations are realized on non-
exiting actions). On the one hand, Maximizer (Bellman equations with max)
is hoping for the promised m, which is however not backed up by any actions
actually exiting towards the target. On the other hand, Minimizer (Bellman
equations with min) does not realize that staying forever results in her optimal
value 0 instead of m. ut

Corollary 1. If bestExit©V (T ) > bestExit�V (T ) for some EC T , then G∗ 6= V.

Proof. Since there arem1,m2 such that bestExit�V (T ) < m1 < m2 < bestExit©V (T ),
by Lemma 1 there are two different solutions to the Bellman equations. In par-
ticular, G∗ > L∗ = V, and BVI does not converge. ut

In accordance with our intuition that ECs satisfying the above inequality
should be deflated, we call them bloated.

Definition 4 (BEC). An EC T is called a bloated end component (BEC), if

bestExit©V (T ) > bestExit�V (T ).

Example 2. In the example of Fig. 2 on the left with α < β, the ECs {p, q} and
{p, q, r} are BECs. 4

Example 3. If an EC T has no exiting actions of Minimizer (or no Minimizer’s

states at all, as in an MDP), then bestExit©V (T ) = 1 (the case with min∅). Hence

all numbers between bestExit�V (T ) and 1 are a solution to the Bellman equations
and G∗(s) = 1 for all states s ∈ T .

Analogously, if Maximizer does not have any exiting action in T , then it
holds that bestExit�V (T ) = 0 (the case with max∅), T is a BEC and all numbers

between 0 and bestExit©V (T ) are a solution to the Bellman equations.
Note that in MDP all ECs belong to one player, namely Maximizer. Conse-

quently, all ECs are BECs except for ECs where Maximizer has an exiting action
with value 1; all other ECs thus have to be collapsed (or deflated) to ensure BVI
convergence in MDPs. Interestingly, all non-trivial ECs in MDPs are a problem,
while in SGs through the presence of the other player some ECs can converge,
namely if both players want to exit (See e.g. [KKKW18, Appendix A.3.]). 4

We show that BECs are indeed the only obstacle for BVI convergence.

Theorem 1. If the SG contains no BECs except for {0} and {1}, then G∗ = V.

Proof (Sketch). Assume, towards a contradiction, that there is some state s
with a positive difference G∗(s) − V(s) > 0. Consider the set D of states with
the maximal difference. D can be shown to be an EC. Since it is not a BEC
there has to be an action exiting D and realizing the optimum in that state.
Consequently, this action also has the maximal difference, and all its successors,
too. Since some of the successors are outside of D, we get a contradiction with
the maximality of D. ut
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In Section 4.2, we show how to eliminate BECs by collapsing their “core”
parts, called below MSECs (maximal simple end components). Since MSECs can
only be identified with enough information about V, Section 4.3 shows how to
avoid direct a priori collapsing and instead dynamically deflate candidates for
MSECs in a conservative way.

4.2 Static MSEC decomposition

Now we turn our attention to SG with BECs. Intuitively, since in a BEC
all Minimizer’s exiting actions have a higher value than what Maximizer can
achieve, Minimizer does not want to use any of his own exiting actions and prefers
staying in the EC (or steering Maximizer towards his worse exiting actions).
Consequently, only Maximizer wants to take an exiting action. In the MDP case
he can pick any desirable one. Indeed, he can wait until he reaches a state where
it is available. As a result, in MDP all states of an EC have the same value
and can all be collapsed into one state. In the SG case, he may be restricted
by Minimizer’s behaviour or even not given any chance to exit the EC at all.
As a result, a BEC may contain several parts (below denoted MSECs), each
with different value, intuitively corresponding to different exits. Thus instead of
MECs, we have to decompose into finer MSECs and only collapse these.

Definition 5 (Simple EC). An EC T is called simple (SEC), if for all s ∈ T
we have V(s) = bestExit�V (T ).

A SEC C is maximal (MSEC) if there is no SEC C ′ such that C ( C ′.

Intuitively, an EC is simple, if Minimizer cannot keep Maximizer away from
his bestExit. Independently of Minimizer’s decisions, Maximizer can reach the
bestExit almost surely, unless Minimizer decides to leave, in which case Maxi-
mizer could achieve an even higher value.

Example 4. Assume α < β in the example of Figure 2. Then {p, q} is a SEC
and an MSEC. Further observe that action c is sub-optimal for Minimizer and
removing it does not affect the value of any state, but simplifies the graph struc-
ture. Namely, it destructs the whole EC into several (here only one) SECs and
some non-EC states (here r). 4

Algorithm 2, called FIND MSEC, shows how to compute MSECs. It returns
the set of all MSECs if called with parameter V. However, later we also call this
function with other parameters f : S → [0, 1]. The idea of the algorithm is the
following. The set X consists of Minimizer’s sub-optimal actions, leading to a
higher value. As such they cannot be a part of any SEC and thus should be
ignored when identifying SECs. (The previous example illustrates that ignoring
X is indeed safe as it does not change the value of the game.) We denote the
game G where the available actions Av are changed to the new available actions
Av′ (ignoring the Minimizer’s sub-optimal ones) as G[Av/Av′]. Once removed,

Minimizer has no choices to affect the value and thus each EC is simple.
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Algorithm 2 FIND MSEC

1: function FIND MSEC(f : S → [0, 1])
2: X ← {(s, {a ∈ Av(s) | f(s, a) > f(s)}) | s ∈ S©}
3: Av′ ← Av \X \* Minimizer’s f -suboptimal actions removed * \
4: return MEC(G[Av/Av′]) \* MEC(G[Av/Av′]) are MSECs of the original G * \

Lemma 2 (Correctness of Algorithm 2). T ∈ FIND MSEC(V) if and only
if T is a MSEC.

Proof (Sketch). “If”: As T is an MSEC, all states in T have the value bestExit�V (T ),
and hence also all actions that stay inside T have this value. Thus, no action
that stays in T is removed by Line 3 and it is still a MEC in the modified game.

“Only if”: If T ∈ FIND MSEC(V), then T is a MEC of the game where
the suboptimal available actions (those in X) of Minimizer have been removed.

Hence for all s ∈ T : V(s) = bestExit�V (T ), because intuitively Minimizer has
no possibility to influence the value any further, since all actions that could do
so were in X and have been removed. Since T is a MEC in the modified game,
it certainly is an EC in the original game. Hence T is a SEC. The inclusion
maximality follows from the fact that we compute MECs in the modified game.
Thus T is an MSEC. ut

Remark 1 (Algorithm with an oracle). In Section 3, we have seen that collapsing
MECs does not ensure BVI convergence. Collapsing does not preserve the values,
since in BECs we would be collapsing states with different values. Hence we want
to collapse only MSECs, where the values are the same. If, moreover, we remove
X in such a collapsed SG, then there are no (non-sink) ECs and BVI converges
on this SG to the original value.

The difficulty with this algorithm is that it requires an oracle to compare
values, for instance a sufficiently precise approximation of V. Consequently, we
cannot pre-compute the MSECs, but have to find them while running BVI.
Moreover, since the approximations converge only in the limit we may never be
able to conclude on simplicity of some ECs. For instance, if α = β in Figure 2,
and if the approximations converge at different speeds, then Algorithm 2 always
outputs only a part of the EC, although the whole EC on {p, q, r} is simple.

In MDPs, all ECs are simple, because there is no second player to be resolved
and all states in an EC have the same value. Thus for MDPs it suffices to collapse
all MECs, in contrast to SG.

4.3 Dynamic MSEC decomposition

Since MSECs cannot be identified from approximants of V for sure, we re-
frain from collapsing7 and instead only decrease the over-approximation in the
corresponding way. We call the method deflating, by which we mean decreas-
ing the upper bound of all states in an EC to its bestExit�U , see Algorithm 3.

7 Our subsequent method can be combined with local collapsing whenever the lower
and upper bounds on V are conclusive.
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The procedure DEFLATE (called on the current upper bound Ui) decreases this
upper bound to the minimum possible value according to the current approxi-
mation and thus prevents states from only depending on each other, as in SECs.
Intuitively, it gradually approximates SECs and performs the corresponding ad-
justments, but does not commit to any of the approximations.

Algorithm 3 DEFLATE

1: function DEFLATE(EC T , f : S → [0, 1])
2: for s ∈ T do
3: f(s)← min(f(s), bestExit�f (T )) \* Decrease the upper bound * \
4: return f

Lemma 3 (DEFLATE is sound). For any f : S → [0, 1] such that f ≥ V and
any EC T , DEFLATE(T, f) ≥ V.

This allows us to define our BVI algorithm as the naive BVI with only the
additional lines 3-4, see Algorithm 4.

Algorithm 4 UPDATE procedure for bounded value iteration on SG

1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: L,U get updated according to Eq. (3) and (4) \* Bellman updates * \
3: for T ∈ FIND MSEC(L) do \* Use lower bound to find ECs * \
4: U ← DEFLATE(T,U) \* and deflate the upper bound there * \

Theorem 2 (Soundness and completeness). Algorithm 1 (calling Algorithm 4)
produces monotonic sequences L under- and U over-approximating V, and ter-
minates.

Proof (Sketch). The crux is to show that U converges to V. We assume towards
a contradiction, that there exists a state s with limn→∞ Un(s)−V(s) > 0. Then
there exists a nonempty set of states X where the difference between limn→∞ Un
and V is maximal. If the upper bound of states in X depends on states outside of
X, this yields a contradiction, because then the difference between upper bound
and value would decrease in the next Bellman update. SoX must be an EC where
all states depend on each other. However, if that is the case, calling DEFLATE
decreases the upper bound to something depending on the states outside of X,
thus also yielding a contradiction. ut

Summary of our approach:

1. We cannot collapse MECs, because we cannot collapse BECs with non-
constant values.

2. If we remove X (the sub-optimal actions of Minimizer) we can collapse MECs
(now actually MSECs with constant values).

3. Since we know neitherX nor SECs we gradually deflate SEC approximations.
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4.4 Learning-based algorithm

Asynchronous value iteration selects in each round a subset T ⊆ S of states
and performs the Bellman update in that round only on T . Consequently, it
may speed up computation if “important” states are selected. However, using
the standard VI it is even more difficult to determine the current error bound.
Moreover, if some states are not selected infinitely often the lower bound may
not even converge.

In the setting of bounded value iteration, the current error bound is known
for each state and thus convergence can easily be enforced. This gave rise to
asynchronous VI, such as BRTDP (bounded real time dynamic programing) in
the setting of stopping MDPs [MLG05], where the states are selected as those
that appear on a simulation run. Very similar is the adaptation for general MDP
[BCC+14]. In order to simulate a run, the transition probabilities determine how
to resolve the probabilistic choice. In order to resolve the non-deterministic choice
of Maximizer, the “most promising action” is taken, i.e., with the highest U. This
choice is derived from a reinforcement algorithm called delayed Q-learning and
ensures convergence while practically performing well [BCC+14].

In this section, we harvest our convergence results and BVI algorithm for SG,
which allow us to trivially extend the asynchronous learning-based approach of
BRTDP to SGs. On the one hand, the only difference to the MDP algorithm
is how to resolve the choice for Minimizer. Since the situation is dual, we again
pick the “most promising action”, in this case with the lowest L. On the other
hand, the only difference to Algorithm 1 calling Algorithm 4 is that the Bellman
updates of U and L are performed on the states of the simulation run only, see
lines 2-3 of Algorithm 5.

Algorithm 5 Update procedure for the learning/BRTDP version of BVI on SG

1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: ρ ← path s0, s1, . . . , s` of length ` ≤ k, obtained by simulation where the

successor of s is s′ with probability δ(s, a, s′) and a is sampled randomly from
arg maxa U(s, a) and arg mina L(s, a) for s ∈ S� and s ∈ S©, respectively

3: L,U get updated by Eq. (3) and (4) on states s`, s`−1, . . . , s0 \* all s ∈ ρ * \
4: for T ∈ FIND MSEC(L) do
5: DEFLATE(T,U)

If 1 or 0 is reached in a simulation, we can terminate it. It can happen
that the simulation cycles in an EC. To that end, we have a bound k on the
maximum number of steps. The choice of k is discussed in detail in [BCC+14]
and we use 2·|S | to guarantee the possibility of reaching sinks as well as exploring
new states. If the simulation cycles in an EC, the subsequent call of DEFLATE
ensures that next time there is a positive probability to exit this EC. Further
details can be found in [KKKW18, Appendix A.4.].
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5 Experimental results

We implemented both our algorithms as an extension of PRISM-games [CFK+13a],
a branch of PRISM [KNP11] that allows for modelling SGs, utilizing previous
work of [BCC+14,Ujm15] for MDP and SG with single-player ECs. We tested the
implementation on the SGs from the PRISM-games case studies [gam] that have
reachability properties and one additional model from [CKJ12] that was also
used in [Ujm15]. We compared the results with both the explicit and the hybrid
engine of PRISM-games, but since the models are small both of them performed
similar and we only display the results of the hybrid engine in Table 1.

Furthermore we ran experiments on MDPs from the PRISM benchmark
suite [KNP12]. We compared our results there to the hybrid and explicit engine
of PRISM, the interval iteration implemented in PRISM [HM17], the hybrid
engine of Storm [DJKV17b] and the BRTDP implementation of [BCC+14].

Recall that the aim of the paper is not to provide a faster VI algorithm, but
rather the first guaranteed one. Consequently, the aim of the experiments is not
to show any speed ups, but to experimentally estimate the overhead needed for
computing the guarantees.

For information on the technical details of the experiments, all the models
and the tables for the experiments on MDPs we refer to [KKKW18, Appendix
B]. Note that although some of the SG models are parametrized they could
only be scaled by manually changing the model file, which complicates extensive
benchmarking.

Although our approaches compute the additional upper bound to give the
convergence guarantees, for each of the experiments one of our algorithms per-
formed similar to PRISM-games. Table 1 shows this result for three of the
four SG models in the benchmarking set. On the fourth model, PRISM’s pre-
computations already solve the problem and hence it cannot be used to compare
the approaches. For completeness, the results are displayed in [KKKW18, Ap-
pendix B.5].

Table 1: Experimental results for the experiments on SGs. The left two columns
denote the model and the given parameters, if present. Columns 3 to 5 display
the verification time in seconds for each of the solvers, namely PRISM-games
(referred as PRISM), our BVI algorithm (BVI) and our learning-based algorithm
(BRTDP). The next two columns compare the number of states that BRTDP
explored (#States B) to the total number of states in the model. The rightmost
column shows the number of MSECs in the model.

Model Parameters PRISM BVI BRTDP #States B #States #MSECs

mdsm
prop=1 8 8 17 767 62,245 1

prop=2 4 4 29 407 62,245 1

cdmsn 2 2 3 1,212 1,240 1

cloud
N=5 3 7 15 1,302 8,842 4,421

N=6 6 59 4 570 34,954 17,477
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Whenever there are few MSECs, as in mdsm and cdmsn, BVI performs like
PRISM-games, because only little time is used for deflating. Apparently the ad-
ditional upper bound computation takes very little time in comparison to the
other tasks (e.g. parsing, generating the model, pre-computation) and does not
slow down the verification significantly. For cloud, BVI is slower than PRISM-
games, because there are thousands of MSECs and deflating them takes over
80% of the time. This comes from the fact that we need to compute the ex-
pensive end component decomposition for each deflating step. BRTDP performs
well for cloud, because in this model, as well as generally often if there are many
MECs [BCC+14], only a small part of the state space is relevant for convergence.
For the other models, BRTDP is slower than the deterministic approaches, be-
cause the models are so small that it is faster to first construct them completely
than to explore them by simulation.

Our more extensive experiments on MDPs compare the guaranteed approaches
based on collapsing (i.e. learning-based from [BCC+14] and deterministic from
[HM17]) to our guaranteed approaches based on deflating (so BRTDP and BVI).
Since both learning-based approaches as well as both deterministic approaches
perform similarly (see Table 2 in [KKKW18, Appendix B]), we conclude that
collapsing and deflating are both useful for practical purposes, while the latter is
also applicable to SGs. Furthermore we compared the usual unguaranteed value
iteration of PRISM’s explicit engine to BVI and saw that our guaranteed ap-
proach did not take significantly more time in most cases. This strengthens the
point that the overhead for the computation of the guarantees is negligible

6 Conclusions

We have provided the first stopping criterion for value iteration on simple
stochastic games and an anytime algorithm with bounds on the current error
(guarantees on the precision of the result). The main technical challenge was
that states in end components in SG can have different values, in contrast to
the case of MDP. We have shown that collapsing is in general not possible, but
we utilized the analysis to obtain the procedure of deflating, a solution on the
original graph. Besides, whenever a SEC is identified for sure it can be collapsed
and the two techniques of collapsing and deflating can thus be combined.

The experiments indicate that the price to pay for the overhead to compute
the error bound is often negligible. For each of the available models, at least one
of our two implementations has performed similar to or better than the standard
approach that yields no guarantees. Further, the obtained guarantees open the
door to (e.g. learning-based) heuristics which treat only a part of the state space
and can thus potentially lead to huge improvements. Surprisingly, already our
straightforward adaptation of such an algorithm for MDP to SG yields inter-
esting results, palliating the overhead of our non-learning method, despite the
most naive implementation of deflating. Future work could reveal whether other
heuristics or more efficient implementation can lead to huge savings as in the
case of MDP [BCC+14].
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