
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *
A
E
C

Peregrine: A Tool for the Analysis of
Population Protocols ?

Michael Blondin[0000−0003−2914−2734],
Javier Esparza[0000−0001−9862−4919], and

Stefan Jaax[0000−0001−5789−8091]

Technische Universität München
{blondimi, esparza, jaax}@in.tum.de

Abstract. We introduce Peregrine, the first tool for the analysis and
parameterized verification of population protocols. Population protocols
are a model of computation very much studied by the distributed com-
puting community, in which mobile anonymous agents interact stochas-
tically to achieve a common task. Peregrine allows users to design
protocols, to simulate them both manually and automatically, to gather
statistics of properties such as convergence speed, and to verify correct-
ness automatically. This paper describes the features of Peregrine and
their implementation.

Keywords: population protocols, distributed computing, parameter-
ized verification, simulation.

1 Introduction

Population protocols [4, 1, 3] are a model of distributed computing in which repli-
cated, mobile agents with limited computational power interact stochastically to
achieve a common task. They provide a simple and elegant formalism to model,
e.g., networks of passively mobile sensors [1, 5], trust propagation [13], evolu-
tionary dynamics [14], and chemical systems, under the name chemical reaction
networks [16, 19, 12].

Population protocols are parameterized: the number of agents does not change
during the execution of the protocol, but is a priori unbounded. A protocol is
correct if it behaves correctly for all of its infinitely many initial configurations.
For this reason, it is challenging to design correct and efficient protocols.

In this paper we introduce Peregrine1, the first tool for the parameterized
analysis of population protocols. Peregrine is intended for use by researchers
in distributed computing and systems biology. It allows the user to specify pro-
tocols either through an editor or as simple scripts, and to analyze them via a

? M. Blondin was supported by the Fonds de recherche du Québec – Nature et tech-
nologies (FRQNT).

1 Peregrine can be found at https://peregrine.model.in.tum.de.



graphical interface. The analysis features of Peregrine include manual step-
by-step simulation; automatic sampling; statistics generation of average conver-
gence speed; detection of incorrect executions through simulation; and formal
verification of correctness. The first four features are supported for all protocols,
while verification is supported for silent protocols, a large subclass of proto-
cols [6]. Verification is performed automatically over all of the infinitely many
initial configurations using the recent approach of [6] for solving the so-called
well-specification problem.

Related work. The problem of automatically verifying that a population protocol
conforms to its specification for one fixed initial configuration has been consid-
ered in [10, 11, 17, 20]. In [10], ad hoc search algorithms are used. In [11, 17],
the authors show how to model the problem in the probabilistic model checker
Prism, and under certain conditions in Spin. In [20], the problem is modeled
with the Pat toolkit for model checking under fairness assumptions. All these
tools increase our confidence in the correctness of a protocol. However, compared
to Peregrine, they are not visual tools, they do not offer simulation capabil-
ities, and they can only verify the correctness of a protocol for a finite number
of initial configurations, with typically a small number of agents. Peregrine
proves correctness for all of the infinitely many initial configurations, with an
arbitrarily large number of agents.

As mentioned in the introduction, population protocols are isomorphic to
chemical reaction networks (CRNs), a popular model in natural computing.
Cardelli et al. have recently developed model checking techniques and analy-
sis algorithms for stochastic CRNs [8, 7, 9]. The problems studied therein are
incomparable to the parameterized questions addressed by Peregrine.

The verification algorithm of Peregrine is based on [6], where a novel ap-
proach for the parameterized verification of silent population protocols has been
presented. The command-line tool of [6] only offers support for proving correct-
ness, with no functionality for visualization or simulation. Further, contrary to
Peregrine, the tool cannot produce counterexamples when correctness fails.

2 Population protocols

We introduce population protocols through a simple example and then briefly
formalize the model. We refer the reader to [4] for a more thorough but still
intuitive presentation. Suppose anonymous and mobile agents wish to take a
majority vote. Intuitively, anonymous means that agents have no identity, and
mobile that agents are “wandering around”, and can only interact whenever they
bump into each other. In order to vote, all agents conduct the following protocol.
Each agent is in one out of four states {Y,N, y, n}. Initially all agents are in the
states Y or N , corresponding to how they want to vote (states y, n are auxiliary
states). Agents repeatedly interact pairwise according to the following rules:

a : Y N 7→ yn b : Y n 7→ Y y c : Ny 7→ Nn d : yn 7→ yy



For example, if the population initially has two agents of opinion “yes” and one
agent of opinion “no”, then a possible execution is:

HY , Y,NI a−→ Hy, Y , nI b−→ Hy, Y, yI, (1)

where e.g. HY, Y,NI denotes the multiset with two agents in state Y and one
agent in state N .

The goal of every population protocol is to ensure that the agents eventually
reach a lasting consensus, i.e., a multiset in which (1) either all agents are in
“yes”-states, or all agents are in “no”-states, and (2) further interactions do
not destroy the consensus. On top of this universal specification, each protocol
has an individual goal, determining which initial configurations should reach the
“yes” and the “ no” lasting consensus. In the majority protocol above, the agents
should reach a “yes”-consensus iff 50% or more agents vote “yes”.

Execution (1) above leads to a lasting “yes”-consensus; further, the consensus
is the right one, since 2 out of 3 agents voted “yes”. In fact, assuming agents
interact uniformly and independently at random, the above protocol is correct:
executions almost surely reach a correct lasting consensus.

More formally, a population protocol is a tuple (Q,T, I,O) where Q is a
finite set of states, T ⊆ Q2 × Q2 is a set of transitions, I ⊆ Q are the initial
states and O : Q→ {0, 1} is the output mapping. A configuration is a non-empty
multiset over Q, an initial configuration is a non-empty multiset over I, and a
configuration is terminal if it cannot be altered by any transition. A configuration
is in a consensus if all of its states map to the same output under O.

An execution is a finite or infinite sequence C0
t1−→ C1

t2−→ · · · such that Ci is
obtained from applying transition ti to Ci−1. A fair execution is either a finite
execution that reaches a terminal configuration, or an infinite execution such
that if {i ∈ N : Ci

∗−→ D} is infinite, then {i ∈ N : Ci = D} is infinite for any
configuration D. In other words, fairness ensures that a configuration cannot be
avoided forever if it is reachable infinitely often. Fairness is an abstraction of
the random interactions occurring within a population. A configuration C is in
a lasting consensus if every execution from C only leads to configurations of the
same consensus.

If for every initial configuration C, all fair executions from C lead to a last-
ing consensus ϕ(C) ∈ {0, 1}, then we say that the protocol computes the pred-
icate ϕ. For example, the above majority protocol with O(Y ) = O(y) = 1 and
O(N) = O(n) = 0 computes the predicate C[Y ] ≥ C[N ], where C[x] denotes the
number of occurrences of state x in C. A protocol does not necessarily compute a
predicate. For example, if we alter the majority protocol by removing transition
d, then HY,NI a−→ Hy, nI is a fair execution, but Hy, nI is not in a consensus. In
other words, transition d acts as a tie-breaker which allows to reach the con-
sensus configuration Hy, yI. A protocol that computes a predicate is said to be
well-specified. It is well-known that well-specified population protocols compute
precisely the predicates definable in Presburger arithmetic [3]. On top of differ-
ent majority protocols for the predicate C[x] ≥ C[y], the literature contains, e.g.,
different families of so-called flock-of-birds protocols for the predicates C[x] ≥ c,



Fig. 1. Simulation of the majority protocol from the initial configuration H5 ·Y, 10 ·NI.

where c is an integer constant, and families of threshold protocols for the pred-
icates a1 · C[x1] + · · ·+ an · C[xn] ≥ c, where a1, . . . , an, c are integer constants
and x1, . . . , xn are initial states.

3 Analyzing population protocols

Peregrine is a web tool with a JavaScript frontend and a Haskell backend.
The backend makes use of the SMT solver Z3 [15] to test satisfiability of Pres-
burger arithmetic formulas. The user has access to four main features through
the graphical frontend. We present these features in the remainder of the section.

Protocol description. Peregrine offers a description language for both sin-
gle protocols and families of protocols depending on some parameters. Single
protocols are described either through a graphical editor or as simple Python
scripts. Families of protocols (called parametric protocols) can only be specified
as scripts, but Peregrine assists the user by generating a code skeleton.

Simulation. Population protocols can be simulated through a graphical player
depicted in Figure 1. The user can pick an initial configuration and simulate
the protocol by either manual selection of interactions, or by letting a scheduler
pick interactions uniformly at random. The simulator keeps a history of the
execution which can be rewound at any time, making it easy to experiment with
the different behaviours of a protocol. Configurations can be displayed in two
ways: either as explicit populations, as illustrated in Figure 1, or as bar charts
of the states count, more convenient for large populations.

Statistics. Peregrine can generate statistics from batch simulations. The user
provides four parameters: smin, smax,m and n. Peregrine generates n random
executions as follows. For each execution, a number s is picked uniformly at
random from [smin, smax], and an initial configuration of size s is then picked
uniformly at random. Each step of an execution is picked uniformly at random
among enabled interactions. If no terminal configuration is reached within m



Fig. 2. Statistics for 5000 random executions of the approximate majority protocol
of [2], of length at most 40, from initial configurations of size at most 25. The left plot
shows the percentage of executions reaching a consensus (dark green: lasting correct,
light green: correct, light red: incorrect, dark red: lasting incorrect) and no consensus
(orange). In this example the occurrences of light red are negligible. The right plot
shows the average number of steps to convergence.

steps, then the simulation halts. In the end, n executions of length at most m
are gathered. Peregrine classifies the generated executions according to their
consensus, and computes statistics on the convergence speed (see the next two
paragraphs). The results can be visualized in different ways, and the raw data
can be exported as a JSON file.

Consensus. For each random execution, Peregrine checks whether the last
configuration of an execution is in a consensus and, if so, whether the consensus
corresponds to the expected output of the protocol. Peregrine reports which
percentage of the executions reach a consensus, and whether the consensus is
correct and/or lasting. In normal mode, Peregrine only classifies an execution
as lasting consensus if it ends in a terminal configuration. In the increased ac-
curacy mode, if the execution ends in a configuration C of consensus b ∈ {0, 1},
then the model checker LoLA [18] is used to determine whether there exists a

configuration C ′ such that C
∗−→ C ′ and C ′ is not of consensus b. If it is not

the case, then Peregrine concludes that C is in a lasting consensus. Pere-
grine plots the percentage of executions in each category as a function of the
population size, as illustrated on the left of Figure 2.

Average convergence speed. Peregrine also provides statistics on the conver-

gence speed of a protocol. Let C0
t1−→ C1

t2−→ · · · t`−→ C` be an execution such
that C` is in a consensus b ∈ {0, 1}. The number of steps to convergence of the
execution is defined as 0 if all configurations are of consensus b, and otherwise as
i+1, where i is the largest index such that Ci is not in consensus b. For each pop-
ulation size, Peregrine computes the average number of steps to convergence
of all consensus executions of that population size, and plots the information as
illustrated on the right of Figure 2.

Verification. Peregrine can automatically verify that a population proto-
col computes a given predicate. Predicates can be specified by the user in



Fig. 3. Verification of the majority protocol of Section 2 without transition d : yn 7→ yy.

quantifier-free Presburger arithmetic extended with the family of predicates
{x ≡ y (mod c)}c≥2, which is equivalent to Presburger arithmetic. For example,
for the majority protocol of Section 2, the user simply specifies C[Y] >= C[N].

Peregrine implements the approach of [6] to verify correctness of protocols
which are silent. A protocol is said to be silent if from every initial configuration,
every fair execution leads to a terminal configuration. The majority protocol of
Section 2 and most existing protocols from the literature are silent [6]. We briefly
describe the approach of [6] and how it is integrated into Peregrine.

Suppose we are given a population protocol P and we wish to determine
whether it computes a predicate ϕ. The procedure first tries to prove that P
is silent. This is done by verifying a more restricted condition called layered
termination. Verifying the latter property reduces to testing satisfiability of a
Presburger arithmetic formula. If this formula holds, then the protocol is silent,
otherwise no conclusion is derived. However, essentially all existing silent proto-
cols satisfy layered termination [6].

Once P is proven to be silent, the procedure attempts to prove that no “bad
execution” exists. More precisely, it checks whether there exist configurations C0

and C1 such that C0
∗−→ C1, C0 is initial, C1 is terminal, and C1 is not in consensus

ϕ(C0) ∈ {0, 1}. Since reachability is not definable in Presburger arithmetic, a

Presburger-definable over-approximation
∗−⇁ of reachability, borrowed from Petri

net theory, is used instead. We obtain the following formula Φbad-exec:

∃C0, C1 : C0
∗−⇁ C1∧

∧
q 6∈I

C0[q] = 0∧
∧
t∈T

succ(C1, t) ⊆ {C1}∧
∨

q∈C1

(O(q) = ¬ϕ(C0)).

If Φbad-exec is unsatisfiable, then P is correct. Otherwise, no conclusion is reached,
and Φbad-exec is iteratively strengthened by enriching the over-approximation

∗−⇁.
Whenever Φbad-exec is satisfied by (C0, C1), Peregrine calls the model-checker
LoLA to test whether C1 is indeed reachable from C0. If so, then Peregrine
reports P to be incorrect, and generates a counter-example execution, which can
be replayed or exported as a JSON file (see Figure 3).



Currently Peregrine can verify protocols with up to a hundred states and
a few thousands transitions. The bottleneck is the size of the constraint system.
Due to lack of space, we refer the reader to [6] for detailed experimental results.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. In: Proc. 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC). pp. 290–299 (2004).
https://doi.org/10.1145/1011767.1011810

2. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast
robust approximate majority. Distributed Computing 21(2), 87–102 (2008).
https://doi.org/10.1007/s00446-008-0059-z

3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational
power of population protocols. Distributed Computing 20(4), 279–304 (2007).
https://doi.org/10.1007/s00446-007-0040-2

4. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Middle-
ware for Network Eccentric and Mobile Applications, pp. 97–120. Springer-Verlag
(2009). https://doi.org/10.1007/978-3-540-89707-1 5

5. Beauquier, J., Blanchard, P., Burman, J., Delaët, S.: Tight complexity analysis of
population protocols with cover times - the ZebraNet example. Theoretical Com-
puter Science 512, 15–27 (2013). https://doi.org/10.1016/j.tcs.2012.10.032

6. Blondin, M., Esparza, J., Jaax, S., Meyer, P.J.: Towards efficient ver-
ification of population protocols. In: Proc. 36th ACM Symposium on
Principles of Distributed Computing (PODC). pp. 423–430 (2017).
https://doi.org/10.1145/3087801.3087816

7. Cardelli, L., Ceska, M., Fränzle, M., Kwiatkowska, M.Z., Laurenti, L., Paoletti,
N., Whitby, M.: Syntax-guided optimal synthesis for chemical reaction networks.
In: Proc. 29th International Conference Computer Aided Verification (CAV). pp.
375–395 (2017). https://doi.org/10.1007/978-3-319-63390-9 20

8. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical re-
action networks using linear noise approximation. Biosystems 149, 26–33 (2016).
https://doi.org/10.1016/j.biosystems.2016.09.004

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Syntactic Markovian
bisimulation for chemical reaction networks. In: Models, Algorithms, Logics and
Tools. vol. 10460, pp. 466–483 (2017). https://doi.org/10.1007/978-3-319-63121-
9 23

10. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic verification of
population protocols. In: Proc. 12th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS). pp. 221–235 (2010).
https://doi.org/10.1007/978-3-642-16023-3 19

11. Clément, J., Delporte-Gallet, C., Fauconnier, H., Sighireanu, M.: Guidelines for
the verification of population protocols. In: ICDCS. pp. 215–224. IEEE Computer
Society (2011). https://doi.org/10.1109/ICDCS.2011.36

12. Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with
chemical reaction networks. Natural Computing 15(2), 245–261 (2016).
https://doi.org/10.1007/s11047-015-9501-x

13. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed
systems. Wuhan University Journal of Natural Sciences 6(1), 72–82 (2001).
https://doi.org/10.1007/BF03160228



14. Moran, P.A.P.: Random processes in genetics. Mathematical Proceed-
ings of the Cambridge Philosophical Society 54(1), 60–71 (1958).
https://doi.org/10.1017/S0305004100033193

15. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. 14th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-
3 24, z3 is available at https://github.com/Z3Prover/z3

16. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological
and computational systems. Communications of the ACM 58(1), 94–102 (2014).
https://doi.org/10.1145/2678280

17. Pang, J., Luo, Z., Deng, Y.: On automatic verification of self-stabilizing
population protocols. In: Proc. 2nd IEEE/IFIP International Symposium on
Theoretical Aspects of Software Engineering (TASE). pp. 185–192 (2008).
https://doi.org/10.1109/TASE.2008.8

18. Schmidt, K.: LoLA: A low level analyser. In: Proc. 21st International Confer-
ence on Application and Theory of Petri Nets (ICATPN). pp. 465–474 (2000).
https://doi.org/10.1007/3-540-44988-4 27, LoLA is available at http://service-
technology.org/lola/

19. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite
stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008).
https://doi.org/10.1007/s11047-008-9067-y

20. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under
fairness. In: Proc. 21st International Conference on Computer Aided Verification
(CAV). pp. 709–714 (2009). https://doi.org/10.1007/978-3-642-02658-4 59


