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Abstract. We present Rabinizer 4, a tool set for translating formulae of
linear temporal logic to different types of deterministic ω-automata. The
tool set implements and optimizes several recent constructions, including the
first implementation translating the frequency extension of LTL. Further,
we provide a distribution of PRISM that links Rabinizer and offers model
checking procedures for probabilistic systems that are not in the official
PRISM distribution. Finally, we evaluate the performance and in cases with
any previous implementations we show enhancements both in terms of the
size of the automata and the computational time, due to algorithmic as well
as implementation improvements.

1 Introduction

Automata-theoretic approach [VW86] is a key technique for verification and
synthesis of systems with linear-time specifications, such as formulae of linear tempo-
ral logic (LTL) [Pnu77]. It proceeds in two steps: first, the formula is translated into
a corresponding automaton; second, the product of the system and the automaton
is further analyzed. The size of the automaton is important as it directly affects
the size of the product and thus largely also the analysis time, particularly for
deterministic automata and probabilistic model checking in a very direct propor-
tion. For verification of non-deterministic systems, mostly non-deterministic Büchi
automata (NBA) are used [EH00,SB00,GO01,GL02,BKŘS12,DLLF+16] since they
are typically very small and easy to produce.
Probabilistic LTL model checking cannot profit directly from NBA. Even
the qualitative question, whether a formula holds with probability 0 or 1, requires
automata with at least a restricted form of determinism. The prime example are the
limit-deterministic (also called semi-deterministic) Büchi automata (LDBA) [CY88]
and the generalized LDBA (LDGBA). However, for the general quantitative ques-
tions, where the probability of satisfaction is computed, general limit-determinism
is not sufficient. Instead, deterministic Rabin automata (DRA) have been mostly
used [KNP11] and recently also deterministic generalized Rabin automata (DGRA)
[CGK13]. In principle, all standard types of deterministic automata are applicable
? This work has been partially supported by the Czech Science Foundation grant
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Fig. 1. LTL translations to different types of automata. Translations implemented in Rabinizer 4 are in-
dicated with a solid line. The traditional approaches are depicted as dotted arrows. The determinization
of NBA to DRA is implemented in ltl2dstar [Kle], to LDBA in Seminator [BDK+17] and to (mostly)
DPA in spot [DLLF+16].

here except for deterministic Büchi automata (DBA), which are not as expressive as
LTL. However, other types of automata, such as deterministic Muller and determin-
istic parity automata (DPA) are typically larger than DGRA in terms of acceptance
condition or the state space, respectively.1 Recently, several approaches with specific
LDBA were proved applicable to the quantitative setting [HLS+15,SEJK16] and
competitive with DGRA. Besides, model checking MDP against LTL properties in-
volving frequency operators [BDL12] also allows for an automata-theoretic approach,
via deterministic generalized Rabin mean-payoff automata (DGRMA) [FKK15].
LTL synthesis can also be solved using the automata-theoretic approach. Although
DRA and DGRA transformed into games can be used here, the algorithms for the
resulting Rabin games [PP06] are not very efficient in practice. In contrast, DPA
may be larger, but in this setting they are the automata of choice due to the good
practical performance of parity-game solvers [FL09,ML16,JBB+17].
Types of translations. The translations of LTL to NBA, e.g., [VW86], are typi-
cally “semantic” in the sense that each state is given by a set of logical formulae
and the language of the state can be captured in terms of semantics of these
formulae. In contrast, the determinization of Safra [Saf88] or its improvements
[Pit06,Sch09,TD14,FL15] are not “semantic” in the sense that they ignore the
structure and produce trees as the new states that, however, lack the logical inter-
pretation. As a result, if we apply Safra’s determinization on semantically created
NBA, we obtain DRA that lack the structure and, moreover, are unnecessarily large
since the construction cannot utilize the original structure. In contrast, the recent
works [KE12,KLG13,EK14,KV15,SEJK16,EKRS17,MS17,KV17] provide “seman-
tic” constructions, often producing smaller automata. Furthermore, various trans-
formations such as degeneralization [KE12], index appearance record [KMWW17]
or determinization of limit-deterministic automata [EKRS17] preserve the semantic
description, allowing for further optimizations of the resulting automata.
Our contribution. While all previous versions of Rabinizer [GKE12,KLG13,KK14]
featured only the translation LTL→DGRA→DRA, Rabinizer 4 now implements
all the translations depicted by the solid arrows in Fig. 1. It improves all these
1 Note that every DGRA can be written as a Muller automaton on the same state space

with an exponentially-sized acceptance condition, and DPA are a special case of DRA
and thus DGRA.
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translations, both algorithmically and implementation-wise, and moreover, features
the first implementation of the translation of a frequency extension of LTL [FKK15].

Further, in order to utilize the resulting automata for verification, we provide
our own distribution2 of the PRISM model checker [KNP11], which allows for
model checking MDP against LTL using not only DRA and DGRA, but also
using LDBA and against frequency LTL using DGRMA. Finally, the tool can turn
the produced DPA into parity games between the players with input and output
variables. Therefore, when linked to parity-game solvers, Rabinizer 4 can be also
used for LTL synthesis.

Rabinizer 4 is freely available at http://rabinizer.model.in.tum.de together
with an on-line demo, visualization, usage instructions and examples.

2 Functionality
We recall that the previous version Rabinizer 3 has the following functionality:

– It translates LTL formulae into equivalent DGRA or DRA.
– It is linked to PRISM, allowing for probabilistic verification using DGRA

(previously PRISM could only use DRA).

2.1 Translations

Rabinizer 4 inputs formulae of LTL and outputs automata in the standard HOA
format [BBD+15], which is used, e.g., as the input format in PRISM. Automata in
the HOA format can be directly visualized, displaying the “semantic” description of
the states. Rabinizer 4 features the following command-line tools for the respective
translations depicted as the solid arrows in Fig. 1:

ltl2dgra and ltl2dra correspond to the original functionality of Rabinizer 3, i.e.,
they translate LTL (now with the extended syntax, including all common
temporal operators) to DGRA and DRA [EK14], respectively.

ltl2ldgba and ltl2ldba translate LTL to LDGBA using the construction of [SEJK16]
and to LDBA, respectively. The latter is our modification of the former, which
produces smaller automata than chaining the former with the standard degen-
eralization.

ltl2dpa translates LTL to DPA using two modes:
– The default mode uses the translation to LDBA, followed by a LDBA-

to-DPA determinization [EKRS17] specially tailored to LDBA with the
“semantic” labelling of states, avoiding additional exponential blow-up of the
resulting automaton.

– The alternative mode uses the translation to DRA, followed by our improve-
ment of the index appearance record of [KMWW17].

fltl2dgrma translates the frequency extension of LTL\GU, i.e. LTL\GU [KLG13]
with G∼ρ operator3, to DGRMA using the construction of [FKK15].

2 Merging these features into the public release of PRISM as well as linking the new
version of Rabinizer is subject to current collaboration with the authors of PRISM.

3 The frequential globally construct [BDL12,BMM14] G∼ρϕ with ∼ ∈ {≥, >,≤, <}, ρ ∈
[0, 1] intuitively means that the fraction of positions satisfying ϕ satisfies ∼ρ. Formally,
the fraction on an infinite run is defined using the long-run average [BMM14].
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2.2 Verification and synthesis

The resulting automata can be used for model checking probabilistic systems and
for LTL synthesis. To this end, we provide our own distribution of the probabilistic
model checker PRISM as well as a procedure transforming automata into games to
be solved.

Model checking: PRISM distribution For model checking Markov chains and
Markov decision processes, PRISM [KNP11] uses DRA and recently also more
efficient DGRA [CGK13,KK14]. Our distribution, which links Rabinizer, ad-
ditionally features model checking using the LDBA [SEJK16,SK16] that are
created by our ltl2ldba.

Further, the distribution provides an implementation of frequency LTL\GU
model checking, using DGRMA. To the best of our knowledge, there are no
other implemented procedures for logics with frequency. Here, techniques of
linear programming for multi-dimensional mean-payoff satisfaction [CKK15]
and the model-checking procedure of [FKK15] are implemented and applied.

Synthesis: Games The automata-theoretic approach to LTL synthesis requires
to transform the LTL formula into a game of the input and output players.
We provide this transformer and thus an end-to-end LTL synthesis solution,
provided a respective game solver is linked. Since current solutions to Rabin
games are not very efficient we implemented a transformation of DPA into
parity games and a serialization to the format of PG Solver [FL09]. Due to the
explicit serialization, we foresee the main use in quick prototyping.

3 Optimizations, Implementation, and Evaluation

Compared to the theoretical constructions and previous implementations, there are
numerous improvements, heuristics, and engineering enhancements. We evaluate
the improvements both in terms of the size of the resulting automaton as well as the
running time. When comparing with respect to the original Rabinizer functionality,
we compare our implementation ltl2dgra to the previous version Rabinizer 3.1,
which is already a significantly faster [EKS16] re-implementation of the official
release Rabinizer 3 [KK14]. All of the benchmarks have been executed on a host
with i7-4700MQ CPU (4x2.4 GHz), running Linux 4.9.0-5-amd64 and the Oracle
JRE 9.0.4+11 JVM. Due to the start-up time of JVM, all times below 2 seconds
are denoted by <2 and not specified more precisely. All experiments were given a
time-out of 900 seconds and mem-out of 4GB, denoted by −.

Algorithmic improvements and heuristics for each of the translations:
ltl2dgra and ltl2dra These translations create a master automaton monitoring

the satisfaction of the given formula and a dedicated slave automaton for each
subformula of the form Gψ [EK14]. We (i) simplify several classes of slaves and
(ii) “suspend” (in the spirit of [BBDL+13]) some so that they appear in the
final product only in some states. The effect on the size of the state space is
illustrated in Table 1 on a nested formula. Further, (iii) the acceptance condition
is considered separately for each strongly connected component (SCC) and then
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Table 1. Effect of simplifications and suspension for ltl2dgra on the formulae ψi = Gφi where φ1 =
a1, φ(i) = (aiU(Xφi−1)), and ψ′i = Gφ′i where φ′1 = a1, φ′1 = (φ′i−1U(Xiai), displaying execution
time in seconds / #states.

ψ2 ψ3 ψ4 ψ5 ψ6

Rabinizer 3.1 [EKS16] <2 / 4 <2 / 16 <2 / 73 3 / 332 60 / 1463
ltl2dgra <2 / 3 <2 / 7 <2 / 35 3 / 199 13 / 1155

ψ′2 ψ′3 ψ′4 ψ′5 ψ′6

Rabinizer 3.1 [EKS16] <2 / 4 <2 / 16 2 / 104 128 / 670 −
ltl2dgra <2 / 3 <2 / 10 <2 / 38 7 / 175 239 / 1330

Table 2. Effect of computing acceptance sets per SCC on formulae ψ1 = x1∧φ1, ψ2 = (x1∧φ1)∨(¬x1∧
φ2), ψ3 = (x1 ∧ x2 ∧ φ1) ∨ (¬x1 ∧ x2 ∧ φ2) ∨ (x1 ∧ ¬x2 ∧ φ3), . . . , where φi = XG((aiUbi) ∨ (ciUdi)),
displaying execution time in seconds / #acceptance sets.

ψ1 ψ2 ψ3 ψ4 ψ5 . . . ψ8

Rabinizer 3.1 [EKS16] <2 / 2 <2 / 7 <2 / 19 − − −
ltl2dgra <2 / 1 <2 / 1 <2 / 1 <2 / 1 <2 / 1 <2 / 1

Table 3. Effect of break-point elimination for ltl2ldba on safety formulae s(n,m) =
∧n

i=1
G(ai∨Xmbi)

and for ltl2ldgba on liveness formulae l(n,m) =
∧n

i=1
GF(ai ∧ Xmbi), displaying #states (#Büchi

conditions)

s(1, 3) s(2, 3) s(3, 3) s(4, 3) s(1, 4) s(2, 4) s(3, 4) s(4, 4)

[SEJK16] 20 (1) 400 (2) 8 · 103(3) 16 · 104(4) 48 (1) 2304 (2) 110592 (3) −
ltl2ldba 8 (1) 64 (1) 512 (1) 4096 (1) 16 (1) 256 (1) 4096 (1) 65536 (1)

l(1, 1) l(2, 1) l(3, 1) l(4, 1) l(1, 4) l(2, 4) l(3, 4) l(4, 4)

[SEJK16] 3 (1) 9 (2) 27 (3) 81 (4) 10 (1) 100 (2) 103 (3) 104 (4)
ltl2ldgba 3 (1) 5 (2) 9 (3) 17 (4) 3 (1) 5 (2) 9 (3) 17 (4)

Table 4. Effect of non-determinism of the initial component for ltl2ldba on formulae f(i) = F(a ∧
XiGb), displaying #states (#Büchi conditions)

f(1) f(2) f(3) f(4) f(5) f(6)

[SEJK16] 4 (1) 6 (1) 10 (1) 18 (1) 34 (1) 66 (1)
ltl2ldba 2 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1)

combined. On a concrete example of Table 2, the automaton for i = 8 has 31
atomic propositions, whereas the number of atomic propositions relevant in
each component of the master automaton is constant, which we utilize and thus
improve performance on this family both in terms of size and time.

ltl2ldba This translation is based on breakpoints for subformulae of the form Gψ.
We provide a heuristic that avoids breakpoints when ψ is a safety or co-safety
subformula, see Table 3.

Besides, we add an option to generate a non-deterministic initial component
for the LDBA instead of a deterministic one. Although the LDBA is then
no more suitable for quantitative probabilistic model checking, it still is for
qualitative model checking. At the same time, it can be much smaller, see Table
4 which shows a significant improvement on the particular formula.
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Table 5. Comparison of the average performance with the previous version of Rabinizer. The statistics
are taken over a set of 200 standard formulae [KMS18] used, e.g., in [BKS13,EKS16], run in a batch
mode for both tools to eliminate the effect of the JVM start-up overhead.

Tool Avg # states Avg #
acc. sets

Avg runtime

Rabinizer 3.1 [EKS16] 6.3 6.7 0.23
ltl2dgra 6.2 4.4 0.12

ltl2dpa Both modes inherit the improvements of the respective ltl2ldba and
ltl2dgra translations. Further, since complementing DPA is trivial, we can
run in parallel both the translation of the input formula and of its negation,
returning the smaller of the two results. Finally, we introduce several heuristics
to optimize the treatment of safety subformulae of the input formula.

dra2dpa The index appearance record of [KMWW17] keeps track of a permutation
(ordering) of Rabin pairs. To do so, all ties between pairs have to be resolved.
In our implementation, we keep a pre-order instead, where irrelevant ties are
not resolved. Consequently, it cannot happen that an irrelevant tie is resolved
in two different ways like in [KMWW17], thus effectively merging such states.

Implementation The main performance bottleneck of the older implementations
is that explicit data structures for the transition system are not efficient for larger
alphabets. To this end, Rabinizer 3.1 provided symbolic (BDD) representation of
states and edge labels. On the top, Rabinizer 4 represents the transition function
symbolically, too.

Besides, there are further engineering improvements on issues such as storing
the acceptance condition only as a local edge labelling, caching, data-structure
overheads, SCC-based divide-and-conquer constructions, or the introduction of
parallelization for batch inputs.
Average performance evaluation We have already illustrated the improvements
on several hand-crafted families of formulae. In Tables 1 and 2 we have even seen
the respective running-time speed-ups. As the basis for the overall evaluation of the
improvements, we use some established datasets from literature, see [KMS18], alto-
gether two hundred formulae. The results in Table 5 indicate that the performance
improved also on average among the more realistic formulae.

4 Conclusion
We have presented Rabinizer 4, a tool set to translate LTL to various deterministic
automata and to use them in probabilistic model checking and in synthesis. The tool
set extends the previous functionality of Rabinizer, improves on previous translations,
and also gives the very first implementations of frequency LTL translation as well
as model checking. Finally, the tool set is also more user-friendly due to richer input
syntax, its connection to PRISM and PG Solver, and the on-line version with direct
visualization, which can be found at http://rabinizer.in.tum.de.
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