
Monitoring CTMCs By Multi-Clock Timed Automata

Yijun Feng1, Joost-Pieter Katoenorcid−0000−0002−6143−1926 2, Haokun Li1, Bican
Xia1, and Naijun Zhanorcid−0000−0003−3298−3817 3,4 ?

1 LMAM & School of Mathematical Sciences, Peking University, Beijing, China
2 RWTH Aachen University, Aachen, Germany

3 State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences, China
4 University of Chinese Academy of Sciences, Beijing, China

Abstract. This paper presents a numerical algorithm to verify continuous-time
Markov chains (CTMCs) against multi-clock deterministic timed automata (DTA).
These DTA allow for specifying properties that cannot be expressed in CSL, the
logic for CTMCs used by state-of-the-art probabilistic model checkers. The core
problem is to compute the probability of timed runs by the CTMC C that are
accepted by the DTA A. These likelihoods equal reachability probabilities in an
embedded piecewise deterministic Markov process (EPDP) obtained as product
of C and A’s region automaton. This paper provides a numerical algorithm to
efficiently solve the PDEs describing these reachability probabilities. The key in-
sight is to solve an ordinary differential equation (ODE) that exploits the specific
characteristics of the product EPDP. We provide the numerical precision of our
algorithm and present experimental results with a prototypical implementation.

1 Introduction
Continuous-time Markov chains (CTMCs) [16] are ubiquitous. They are used to model
safety-critical systems like communicating networks and power management systems,
are key to performance and dependability analysis, and naturally describe chemical re-
action networks. The algorithmic verification of CTMCs has received quite some atten-
tion. Aziz et al. [3] proved that verifying CTMCs against CSL (Continuous Stochastic
Logic) is decidable. CSL is a probabilistic and timed branching-time logic that allows
for expressing properties like “is the probability of a given chemical reaction within
50 time units at least 10−3?”. Baier et al. [5] gave efficient numerical algorithms for
CSL model checking that nowadays provide the basis of CTMC model checking in
PRISM [23], MRMC [22] and Storm [14], as well as GreatSPN [2]. Extensions of
CSL to cascaded timed-until operators [27], conditional probabilities [18], and (simple)
timed regular expressions [4] have been considered.

This paper considers the verification of CTMCs against linear-time real-time prop-
erties. These include relevant properties in the design of a gas burner [28], like “the
probability that the duration of leaking is more than one twentieth over an interval with
a length more than 20 seconds is less than 10−6”. Such real-time properties can be
conveniently expressed by deterministic timed automata (DTA) [1]. The core prob-
lem in the verification of CTMC C against DTA A is to compute the probability of C’s

? Joost-Pieter Katoen, Haokun Li, Bican Xia and Naijun Zhan are the corresponding authors.

timed runs that are accepted byA, i.e. Pr (C |= A). Chen et al. [10,11] showed that this
quantity equals the reachability probability in a piecewise deterministic Markov pro-
cess (PDP) [13]. This PDP is obtained by taking the product of CTMC C and the region
automaton of A . Computing reachability probabilities in PDPs is a challenge.

Practical implementations of verifying CTMCs against DTA specifications are rare.
Barbot et al. [7] showed that for single-clock DTA, the PDP is in fact a Markov regen-
erative process. (This observation is also at the heart of model-checking CSLTA [15].)
This implies that for single-clock DTA, off-the-shelf CSL model-checking algorithms
can be employed resulting in an efficient procedure [7]. Mikeev et al. [24] generalised
these ideas to infinite-state CTMCs obtained from stoichiometric equations, whereas
Chen et al. [12] showed the theory to generalize verifying single-clock DTA to continuous-
time Markov decision processes.

Multi-clock DTA are however much harder to handle. The characterisation of PDP
reachability probabilities as the unique solution of a set of partial differential equations
(PDEs) [10,11] does not give insight into an efficient computational procedure. With the
notable exception of [25], verifying PDPs has not been considered. Fu [17] provided an
algorithm to approximate the probabilities using finite difference methods and gave an
error bound. This method hampers scalability and therefore was never implemented.
The same holds for model-checking using other linear-time real-time formalisms such
as MTL and timed automata [9], linear duration invariants [8], and probabilistic duration
calculus [20]. All these multi-clock approaches suffer from scalability issues due to the
low efficiency of solving PDEs and/or integral equations on which they heavily depend.

This paper presents a numerical technique to approximate the reachability proba-
bility in the product PDP. The DTA A is approximated by DTA A[tf] which extends A
with an additional clock that is never reset and that needs to be at most tf when accept-
ing. By increasing the time-bound tf , DTA A[tf] approximates A arbitrarily closely.
We show that the set of PDPs characterizing the reachability probability in the embed-
ded PDP of C and A[tf] can be reduced to solving an ordinary differential equation
(ODE). The specific characteristics of the product EPDP, in particular the fact that all
clocks run at the same pace, are key to obtain these ODEs. Our numerical algorithm to
solve the ODEs is based on computing the approximations in a backward manner using
tf and the sum of all clocks. The complexity of the resulting procedure is linear in the
EPDP size, and exponential in d tfδ e where δ is the discretization step size. We show the
approximations converges to the real solution of the ODEs at a linear speed of δ. Using
a prototypical tool implementation we present some results on a number of case stud-
ies such as robot navigation with varying number of clocks in their specification. The
experimental results show promising results for checking CTMCs against multi-clock
DTA.

Organization of the paper. Section 2 introduces basic notions including CTMCs,
DTA, and PDPs. Section 3 presents the product of a CTMC and the region graph of
a DTA and shows this is an embedded PDP. Section 4 derives the PDE (fixing some
flaw in [10]), the reduction to the set of ODEs and presents the numerical algorithm to
solve these ODEs. Section 5 presents the experimental results and Section 6 concludes.

2 Preliminaries
In this section, we introduce some basic notions which will be used later.

A probability space is denoted by a triple (Ω,F ,Pr), where Ω is a set of samples,
F is a σ-algebra over Ω, and Pr : F → [0, 1] is a probability measure on F with
Pr(Ω) = 1. Let Pr(Ω) denote the set of all probability measures over Ω. For a random
variable X on the probability space, its expectation is denoted by E(X).

2.1 Continuous-time Markov Chain (CTMC)

Definition 1 (CTMC). A CTMC is a tuple C = (S,P, α,AP, L,E), where

– S is a finite set of states;
– P: S×S → [0, 1] is the transition probability function, which is identified with the

matrix P ∈ [0, 1]|S|×|S| such that
∑
t∈S P(s, t) = 1, for all s ∈ S;

– α ∈ Pr(S) is the initial distribution;
– AP is a finite set of atomic propositions;
– L : S → 2AP is a labeling function; and
– E : S → R>0 is the exit rate function.

We denote by s t−→ s′ a transition from state s to state s′ after residing in state s for
t time units. The probability of the occurrence of this transition within t time units is
P(s, s′)

∫ t
0
E(s) exp−E(s)x dx, where

∫ t
0
E(s) exp−E(s)x dx stands for the probability

to leave state s in t time units, and P(s, s′) for the probability to select the transition
to s′ from all transitions outgoing from s. A state s is called absorbing if P(s, s) = 1.
Given a CTMC C, removing the exit rate function E results in a discrete-time Markov
chain (DMTC), which is called embedded DTMC of C. A CTMC C is called irreducible
if there exists a unique stationary distribution α, such that α(s) > 0 for all s ∈ S, and
weakly irreducible if α(s) may be zero for some s ∈ S.

Definition 2 (CTMC Path). Let C be a CTMC, a path ρ of C starting form s0 with

length n is a sequence ρ = s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn ∈ S × (R>0 × S)n. The

set of paths in C with length n is denoted by PathCn; the set of all finite paths of C is
PathCfin = ∪nPathCn and the set of infinite paths of C is PathCinf = (S × R>0)

ω . We use
PathC = PathCfin ∪ PathCinf to denote all paths in C. As a convention, ε stands for the
empty path.

Note that we assume the time to exit a state is strictly greater than 0. For an infinite
path ρ, we use Pref(ρ) to denote the set of its finite prefixes. For a (finite or infinite)
path ρ with prefix s0

t0−→ s1
t1−→ . . ., the trace of the path is the sequence of states

trace(ρ) = s0s1 Let ρ(n) = sn be the n-th state in the path and ρ[n] = tn be the

corresponding exit time for sn. For a finite path ρ = s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn, we

use T (ρ) =
∑n−1
i=0 ti to denote the total time spent on this path if n ≥ 1, otherwise

T (ρ) = 0. For a time t ≤ T (ρ), ρ(0 . . . t) denotes the prefix of ρ within t time units,

i.e., s0
t0−→ s1

t1−→ . . .
tm−1−−−→ sm if there exists some m ≤ n with

∑m−1
i=0 ρ[m] ≤

t ∧
∑m
i=0 ρ[m] > t, otherwise ε.

A basic cylinder set C(s0, I0, · · · , In−1, sn) consists of all paths ρ ∈ PathC such
that ρ(i) = si for 0 ≤ i ≤ n, and ρ[i] ∈ Ii for 0 ≤ i < n. Then the σ−algebra Fs0(C)

associated with CTMC C and initial state s0 is the smallest σ−algebra that contains all
cylinder sets C(s0, I0, · · · , In−1, sn) with α(s0) > 0, and P(si, si+1) > 0, for 1 ≤
i ≤ n, and I0, . . . , In−1 are non-empty intervals in R≥0. There is a unique probability
measure PrC on the σ−algebra Fs0(C), by which the probability for a cylinder set is
given by

PrC(C(s0, I0, · · · , In, sn)) = α(s0) ·
n∏
i=1

∫
Ii

E(si−1) exp
−E(si−1)x dx ·P(si−1, si)

Example 1. An example of CTMC is shown in Fig. 1, with AP = {a, b, c} and initial
state s0. The exit rate ri, i = 0, 1, 2, 3 and transition probability are shown in the figure.

s0start

{a}

r0

s1

{a}

r1

s2

{b} r2

s3

{c} r3

1 0.2

0.30.5

1

1

Fig. 1. An example of CTMC

2.2 Deterministic Timed Automaton (DTA)

A timed automaton is a finite state graph equipped with a finite set of nonnegative real-
valued clock variables, or clocks for short. Clocks can only be reset to zero, or proceed
with rate 1 as time progresses independently. Let X = {x1, . . . , xn} be a set of clocks.
η(x) : X → R≥0 is a X -valuation which records the amount of time since its last
reset. Let Val(A) be the set of all clock valuations of A. For a subset X ⊆ X , the reset
of X , denoted as η[X := 0], is the valuation η′ such that η′(x) = 0,∀x ∈ X , and
η′(x) = η(x), otherwise. For d ∈ R>0, (η + d)(x) = η(x) + d for any clock x ∈ X .

A clock constraint over X is a formula with the following form

g := x < c | x ≤ c | x > c | x ≥ c | x− y ≥ c | g ∧ g ,

where x, y are clocks, c ∈ N. Let Con(X) denote the set of clock constraints over X .
A valuation η satisfies a guard g, denoted as η |= g, iff η(x) ./ c when g is x ./ c,
where ./∈ {<,≤, >,≥}; and η |= g1 and η |= g2 iff g = g1 ∧ g2.

Definition 3 (DTA). A DTA is a tuple A = (Σ,X , Q, q0, QF , ↪→), where

– Σ is a finite set of actions;
– X is a finite set of clocks;
– Q is a finite set of locations;
– q0 ∈ Q is the initial location;
– QF ⊆ Q is the set of accepting locations;

– ↪→∈ (Q\QF) × Σ × Con(X) × 2X × Q is the transition relation, satisfying if

q
a,g,X
↪−−−→ q′ and q

a,g′,X′

↪−−−−→ q′′ with q′ 6= q′′ then g ∩ g′ = ∅.

Each transition relation, or edge, q ↪→ q′ in A is endowed with (a, g,X), where
a ∈ Σ is an action, g ∈ Con(X) is the guard of the transition, and X ⊆ X is a set of
clocks, which should be reset to 0 after the transition. An intuitive interpretation of the
transition is that A can move from q to q′ by taking action a and resetting all clocks in
X to be 0 only if g is satisfied. There are no outgoing transitions from any accepting
location in QF .

A finite timed path of A is of the form θ = q0
a0,t0
↪−−−→ q1

a1,t1
↪−−−→ . . .

an−1,tn−1

↪−−−−−−→ qn,
where ti ≥ 0, for i = 0, . . . , n − 1. Moreover, there exists a sequence of transitions

qj
aj ,gj ,Xj

↪−−−−−→ qj+1, for 0 ≤ j ≤ n − 1, such that η0 = 0, ηj + tj |= gj and ηj+1 =
ηj [Xj := 0], where ηk denotes the clock valuation when entering qk. θ is said to be
accepted by A if there exists a state qi ∈ QF for some 0 ≤ i ≤ n. As normal, it
is assumed all DTA are non-Zeno [6], that is any circular transition sequence takes
nonzero dwelling time.

A region is a set of valuations, usually represented by a set of clock constraints. Let
Reg(X) be the set of regions overX . GivenΘ,Θ′ ∈ Reg(X),Θ′ is called a successor of
Θ if for all η |= Θ, there exists t > 0 such that η+t |= Θ′ and ∀t′ < t, η+t′ |= Θ∨Θ′.
A region Θ satisfies a guard g, denoted as Θ |= g, iff ∀η |= Θ implies η |= g. The reset
operation on a region Θ is defined as Θ[X := 0] = {η[X := 0] | η |= Θ}. Then the
region graph, viewed as a quotient transition system related to clock equivalence [6]
can be defined as follows:

Definition 4 (Region Graph). The region graph for DTA A = (Σ,X , Q, q0, QF , ↪→)
is a tuple G(A) = (Σ,X , Q, q0, QF , 7→), where

– Q = Q× Reg(X) is the set of states;
– q0 = (q0,0) ∈ Q is the initial state;
– QF ⊆ QF × Reg(X) is the set of final states;
– 7→⊆ Q× ((Σ × 2X) ∪ {λ})×Q is the transition relation satisfying

• (q,Θ)
λ7−→ (q,Θ′) if Θ′ is a successor of Θ;

• (q,Θ)
a,X7−−→ (q′, Θ′′) if there exists g ∈ Con(X) and transition q

a,g,X
↪−−−→ q′

such that Θ |= g and Θ′′ = Θ[X := 0].

Example 2 (Adapted from [10]). Fig. 2 presents an example of DTA and Fig. 3 gives
its region graph, in which double circle and double rectangle stand for final states,
respectively.

2.3 Piecewise-deterministic Markov Process (PDP)

Piecewise-deterministic Markov Processes (PDPs for short) [13] cover a wide range of
stochastic models in which the randomness appears as discrete events at fixed or random
times, whose evolution is deterministically governed by an ODE system between these
times. A PDP consists of a mixture of deterministic motion and random jumps between
a finite set of locations. During staying in a location, a PDP evolves deterministically

q0start q1

{a}, x < 1, ∅

{a}, 1 < x < 2, {x}

{b}, x > 1, ∅

Fig. 2. A DTA A

q0, 0 ≤ x < 1start q0, 0 ≤ x < 1

q0, 1 ≤ x < 2

q0, x ≥ 2

q1, 1 ≤ x < 2

q1, x ≥ 2

{a}, ∅

λ

¬a, ∅

λ

b, ∅
a, {x}

b, ∅

Fig. 3. The region graph of A

following a flow function, which is a solution to an ODE system. A PDP can jump
between locations either randomly, in which case the residence time of a location is
governed by an exponential distribution, or when the location invariant is violated. The
successor state of the jump follows a probability measure depending on the current
state. A PDP is right-continuous and has the strong Markov property [13].

Definition 5 (PDP [13]). A PDP is a tuple Q = (Z,X , Inv, φ, Λ, µ) with

– Z is a finite set of locations;
– X is a finite set of variables;
– Inv : Z → 2R

|X|
is an invariant function;

– φ : Z × R|X | × R≥0 → R|X |, is a flow function, which is a solution of a system of
ODEs with Lipschitz continuous vector fields;

– Λ : S→ R>0 is an exit rate function;
– S → Pr(S), is the transition probability function, where S = {ξ := (z, η) | z ∈
Z, η |= Inv(z)} is the state space for Q, S is the closure of S, So = {(z, η) | z ∈
Z, η |= Inv(z)o} is the interior of S, in which Inv(z)o stands for the interior of
Inv(z), and ∂S = ∪z∈Z{z} × ∂Inv(z) is the boundary of S, in which ∂Inv(z) =
Inv(z)\Invo and Inv(z) is the closure of Inv(z).

For any ξ = (z, η) ∈ S, there is an δ(ξ) > 0 such that Λ(z, φ(z, η, t)) is integrable
on [0, δ(ξ)). µ(ξ)(A) is measurable for any A ∈ F(S), where F(S) is the smallest
σ−algebra generated by {

⋃
z∈Z z ×Az|Az ∈ F(Inv(z))} and µ(ξ)({ξ}) = 0.

There are two ways to take transitions between locations in PDP Q. A PDP Q is
allowed to stay in a current location z only if Inv(z) is satisfied. During its residence,
the valuation η evolves time-dependently according to the flow function. Let ξ ⊕ t =
(z, φ(z, η, t)) be the successor state of ξ = (z, η) after residing t time units in z. Thus,
Q is piecewise-deterministic since its behavior is determined by the flow function φ in
each location. In a state ξ = (z, η) with η |= Inv(z)o, the PDP Q can either evolve to a
state ξ′ = ξ⊕t by delaying t time units, or take a Markovian jump to ξ′′ = (z′′, η′′) ∈ S
with probability µ(ξ)({ξ′′}). When η |= ∂Inv(z), Q is forced to take a boundary jump
to ξ′′ = (z′′, η′′) ∈ S with probability µ(ξ)({ξ′′}).

3 Reduction to the Reachability Probability of EPDP
As proved in [10], model-checking of a given CTMC C against a linear real-time prop-
erty expressed by a DTAA, i.e., determining Pr(C |= A), can be reduced to computing
the reachability probability of the product of C and G(A). This can be further reduced
to computing the reachability probability of the embedded PDP (EPDP) of the product.
But how to efficiently compute the reachability probability of the EPDP still remains
challenging, as existing approaches [10,15,7] can only handle DTA with one clock.
We will attack this challenge in this paper. For self-containedness, we reformulate the
reduction reported in [10] in this section.

A path ρ = s0
t0−→ s1

t1−→ . . . of CTMC C is accepted by DTAA if ρ̂ = q0
L(s0),t0
↪−−−−−→

q1
L(s1),t1
↪−−−−−→ . . .

L(sn−1),tn−1

↪−−−−−−−−→ qn induced by some ρ’s prefix is an accepting path of A.
Then Pr(C |= A) = Pr{ρ ∈ PathC | ρ is accepted by A}.

Definition 6 (Product Region Graph [7]). The product of CTMC C = (S,P, α,AP, L,E)
and the region graph of DTA G(A) = (Σ,X , Q, q0, QF , 7→), denoted by C ⊗ G(A), is
a tuple (X , V, α′, VF ,⇀,Λ), where

– V = S ×Q is the state space;
– α′(s, q0) = α(s) is the initial distribution;
– VF = S ×QF is the set of accepting states;
– ⇀⊆ V × (([0, 1]× 2X) ∪ {λ})× V is the smallest relation satisfying

• (s, q)
λ−⇀ (s, q′) (called delay transition), if q λ7−→ q′;

• (s, q)
p,X7−−→ (s′′, q′′) (called Markovian transition), if P(s, s′′) = p, p > 0 and

q
L(s),X7−−−−→ q′′;

– Λ : V → R>0 is the exit rate function, where

Λ(s, q) =

{
E(s) if there exists a Markovian transition from (s, q)
0 otherwise

Remark 1. Note that the definition of region graph here is slightly different from the
usual one in the sense that Markovian transitions starting from a boundary do not con-
tribute to the reachability probability. Therefore we can merge the boundary into its
unique delay successor.

Example 3 (Adapted from [10]). Fig. 4 shows the product region graph of CTMC C
in Example 1 and DTA A in Example 2. The graph can be split into three subgraphs
in a column-wise manner, where all transitions within a subgraph are probabilistic, all
transitions evolve to the next subgraph are delay transitions, and transitions with reset
lead to a state in the first subgraph. For conciseness, the location v9 stands for all nodes
that may be reached by a Markovian transition yet cannot reach an accepting node.

Proposition 1 ([10]). For CTMC C and DTA A, Pr(C |= A) is measurable and

Pr(C |= A) = PrC⊗G(A){PathC⊗G(A)(♦QF)} .

s0, q0, 0 ≤ x < 1start

v0, r0

s0, q0, 1 ≤ x < 2

v1, r0

s1, q0, 0 ≤ x < 1

v2, r1

s1, q0, 1 ≤ x < 2

v3, r0

s2, q0, 0 ≤ x < 1

v4, r2

s2, q0, 1 ≤ x < 2

v5, r2

s2, q0, x ≥ 2

v6, r2

s2, q1, 1 ≤ x < 2

v7, r2

s2, q1, x ≥ 2

v8, r2

s3, q0, x ≥ 0

v9, r3

λ

1 1reset,10.5

λ

0.2

0.3

reset, 0.2

reset, 0.3

reset, 0.5

λ

1

λ

1 1

λ

Fig. 4. Product region graph C ⊗ G(A) of CTMC C in Example 1 and DTA A in Example 2

When treated as a stochastic process, C ⊗ G(A) can be interpreted as a PDP. In
this way, computing the reachability probability of QF in C ⊗ G(A) can be reduced to
computing the time-unbounded reachability probability in the EPDP of C ⊗ G(A).

Definition 7 (EPDP, [7]). Given C ⊗ G(A) = (X , V, α′, VF ,⇀,Λ), the EPDPQC⊗A
is a tuple (X , V, Inv, φ, Λ, µ) where for any v = (s, (q,Θ)) ∈ V

– Inv(v) = Θ, S = {(v,η) | v ∈ V,η |= Inv(v)} is the state space;
– φ(v,η, t) = η + t for η |= Inv(v);
– Λ(v, η) = Λ(v) is the exit rate of (v, η);

– Boundary jump: for each delay transition v λ−⇀ v′ in C ⊗ G(A), µ(ξ, {ξ′}) = 1
whenever ξ = (v,η), ξ′ = (v′,η) and η |= ∂Inv(v);

– Markovian transition jump: for each Markovian transition v
p,X−−⇀ v′′ in C ⊗G(A),

µ(ξ, {ξ′′}) = p whenever ξ = (v,η), η |= Inv(v) and ξ′′ = (v′′,η[X := 0]).

The flow function here describes that all clocks increase with a uniform rate (i.e., ẋ1 =
1, . . . , ẋn = 1, or simply Ẋ = 1) at all locations. The original reachability problem is
then reduced to the reachability probability of the set {(v,η) | v ∈ VF ,η |= Inv(v)},
given the initial state (v0,0) and the EPDPQC⊗A. Let PrQ

C⊗A

v (η) stand for the proba-
bility to reach the final states (VF × ∗) from (v,η) in QC⊗A. Thus, PrQ

C⊗A

v (η) can be
computed recursively by

PrQ
C⊗A

v (η) =

PrQ

C⊗A

v,λ (η) +
∑
v

p,X−−⇀v′
PrQ

C⊗A

v,v′ (η) if v /∈ VF
1, v ∈ VF ∧ η |= Inv(v)
0, otherwise.

(1)

Let t∗z(v,η) denote the minimal time for QC⊗A to reach ∂Inv(v) from (v,η). More
precisely,

t∗z(v,η) = inf{t | φ(v,η, t) |= Inv(v)}.

PrQ
C⊗A

v,λ (η) is the probability from (v, η) with a delay and then a forced jump to (v′, η+
t∗z(v,η)), onwards evolves to an accepting state, which can be recursively computed by

PrQ
C⊗A

v,λ (η) = exp(−Λ(v)t∗z(v,η)) · PrQ
C⊗A

v′ (η + t∗z(v,η)).

PrQ
C⊗A

v,v′ (η) is the probability that a Markovian transition v
p,X−−⇀ v′ happens within

t∗z(v,η) time units, onwards involves to an accepted state, which can be recursively
computed by

PrQ
C⊗A

v,v′ (η) =

∫ t∗z(v,η)

0

p · Λ(v) exp(−Λ(v)s) · PrQ
C⊗A

v′ (η + s[X := 0]) ds.

Pr(C |= A) is reduced to compute PrQ
C⊗A

v0 (0), equivalent to computing the least fixed
point of the equation (1). That is,

Theorem 1. [10] For CTMC C and DTA A, Pr(C |= A) = PrC⊗A{PathC⊗A(♦QF)}
is the least fixed point of (1).

Remark 2. Generally, it is difficult to solve a recursive equation like (1). As an alterna-
tive, we discuss the augmented EPDP of QC⊗A by replacing A with a bounded DTA
resulting from A. As a consequence, using the extended generator of the augmented
EPDP, we can induce a partial differential equation (PDE) whose solution is the reach-
ability probability. We will elaborate the idea in the subsequent section.

4 Approximating the Reachability Probability of EPDP

In this section, we present a numerical method to approximate PrQ
C⊗A

v0 (0), as we dis-
cussed previously that exactly computing is impossible, at least too expensive, in gen-
eral. We will first introduce the basic idea of our approach in detail, then discuss its time
complexity and convergence property. A key point is that our approach exploits the ob-
servation that the flow function of QC⊗A is linear, only related to time t, and remains
the same at all locations. This enables to reduce computing PrQ

C⊗A

v0 (0) to solving an
ODE system.

4.1 Reduction to a PDE System

In this subsection, we first show that PrQ
C⊗A

v0 (0) can be approximated by that of the
EPDP of C and a bounded DTA derived from A, i.e., the length of all its paths is
bounded. Then show that the latter can be reduced to solving a PDE system.

Given a DTA A, we construct a bounded DTA A[tf] by introducing a new clock y,
adding a timing constraint y < tf to the guard of each transition of A ingoing to an
accepting state inQF , and never resetting y, where tf ∈ N is a parameter. So, the length
of all accepting paths of A[tf] is time-bounded by tf . Obviously, PathC(A[tf]) is a
subset of PathC(A). As Pr(C |= A) is measurable andQC⊗A is Borel right continuous,
we have the following proposition.

Proposition 2. Given a CTMC C, a DTA A, and tf ∈ N,

lim
tf→∞

Pr(C |= A[tf]) = Pr(C |= A). (2)

Moreover, if C is weakly irreducible or satisfies some conditions (please refer to Chapter
4 of [26] for details), then there exist positive constants K,K0 ∈ R≥0 such that

Pr(C |= A)− Pr(C |= A[tf]) ≤ K exp{−K0tf}. (3)

Remark 3. (2) was first observed in [7], thereof the authors pointed out the feasibil-
ity of using a bounded system to approximate the original unbounded system in order
to simplify a verification obligation. (3) further indicates that such approximation is
exponentially convergent w.r.t. −tf if the CTMC is weakly irreducible.

For a path starting in a state (v,η) at time y, we use Pathy(v,η)[t] to denote the set of
its locations at time t, and ~v(y,η) = Pr(Pathy(v,η)[tf] ∈ VF) = E(1Pathy

(v,η)
[tf]∈VF

)

as the probability of a path reaching VF within tf time units, where 1Pathy
(v,η)

[tf]∈VF

is the indicator function of Pathy(v,η)[tf] ∈ VF . Then, ~v0(0,0) = Pr(C |= A[tf]) is
the probability to reach the set of accepting states from the initial state (0,0), which
satisfies the following system of PDEs.

Theorem 2. Given a CTMC C, a bounded DTA A[tf], and the EPDP QC⊗G(A[tf]) =
(X , V, Inv, φ, Λ, µ), ~v0(0,0) is the unique solution of the following system of PDEs:

∂~v(y,η)
∂y

+

|X |∑
i=1

∂~v(y,η)
∂η(i)

+Λ(v)·
∑

v
p,X−−⇀v′

p·(~v′(y,η[X := 0])−~v(y,η)) = 0, (4)

where v ∈ V \VF ,η |= Inv(v),η(i) is the i-th clock variable and y ∈ [0, tf). The
boundary conditions are:

(i) ~v(y,η) = ~v′(y,η), for every η |= ∂Inv(v) and transition v λ−→ v′;
(ii) ~v(y,η) = 1, for every vertex v ∈ VF , η |= Inv(v), and y ∈ [0, tf);

(iii) ~v(tf ,η) = 0, for every vertex v ∈ V \VF and η |= Inv(v) ∪ ∂Inv(v).

Remark 4. Note that the PDE system (4) in Theorem 2 is different from the one pre-
sented in [10] for reducing PrQ

C⊗A

v0 (0). In particular, the boundary condition in [10]
has been corrected here.

4.2 Reduction to an ODE System

There are several classical methods to solve PDEs. Finite element method, which is a
numerical technique for solving PDEs as well as integral equations, is a prominent one,
of which different versions have been established to solve different PDEs with specific
properties. Other numerical methods include finite difference method and finite volume
method and so on, the reader is referred to [21,19] for details. Thanks to the special
form of the equation (4), we are able to obtain a numerical solution in a more efficient
way.

The fact that the flow function (which is the solution to the ODE system
∧
x∈X ẋ =

1 ∧ ẏ = 1) is the same at all locations of the EPDP QC⊗A[tf] suggests that the partial

derivatives of η and y in the left side of (4) evolve with the same pace. Thus, we can
view all clocks as an array, and reformulate (4) as[

∂~v(y,η)
∂y

,
∂~v(y,η)
∂η(1)

, . . . ,
∂~v(y,η)
∂η(|X |)

]
• 1

+ Λ(v) ·
∑

v
p,X−−⇀v′

p · (~v′(y,η[X := 0])− ~v(y,η)) = 0, (5)

where • stands for the inner product of two vectors of the same dimension, e.g., (a1, . . . , an)•

(b1, . . . , bn) =
∑n
i=1 aibi, and 1 for the vector (

n times︷ ︸︸ ︷
1, . . . , 1).

By Theorem 2, there exist v0, y0 and η0 such that v0 ∈ VF , y0 = tf , and η0 |=
Inv(v) ∨ ∂Inv(v). Besides, by the definition of QC⊗A[tf], it follows ∂z

∂t = 1, which
implies dz = dt, for any z ∈ {y} ∪ X . Hence, we can simplify (5) as the following
ODE system:

d~v((y0,η0) + t)

dt
+ Λ(v)·∑
v

p,X−−⇀v′

p · (~v′((y0,η0) + t)[X := 0])− ~v(y0,η0)) = 0, (6)

with the initial condition v0 ∈ VF , y0 = tf , and η0 |= Inv(v) ∨ ∂Inv(v), where v ∈
V \VF . Note that we compute the reachability probability by (6) backwards.

4.3 Numerical Solution

Since ~v((y0,η0)+ t) satisfies an ODE equation, we can apply a discretization method
to (6) and obtain an approximation efficiently. To this end, the remaining obstacle is
how to deal with the reset part ~v′(y0 + t, (η0 + t)[X := 0]). Notice that X 6= ∅ ⇒
sum((η0+t)[X := 0])+(tf−y0−t)) < sum(η0+t)+(tf−t0−t), where sum(η) =∑
x∈X η(x). So we just need to solve the ODE system starting from (tf ,η0) using the

descending order over sum(η) in a backward manner. In this way, all of the reset values
needed for the current iteration have been computed in the previous iterations. Therefore
for each iteration, the derivation is fixed and easy to calculate.

We denote by δ the length of discretization step, the number of total discretization
steps is d tfδ e ∈ N. An approximate solution to (4) can be computed efficiently by the
following algorithm.

Line 4 in Algorithm 1 computes a numerical solution to (6) on [tf − t, tf] by dis-
cretizing d~v((y0,η0)+t)

dt with 1
δ (~v((y0,η0) + (t + δ)) − ~v((y0,η0) + t)). A picto-

rial illustration to Algorithm 1 for the two-dimensional setting is shown in Fig. 5. The
blue polyhedron covers all the points we need to calculate. The algorithm starts from
(0, 0, tf), where sum(η) = x1 + x2 = 0. Then sum(η) is incremented until 2tf in a
stepwise manner. For each fixed sum(η), for example sum(η) = tf , the algorithm cal-
culates all discrete points in the gray plane following the direction (−1,−1,−1), and
finally reaches the two reset lines. The red line reaching the origin provides the final
result.

Algorithm 1 Finding numerical solution to (4)
Input: C ⊗ G(A), the region graph of the product of CTMC C and DTA A; tf , the time bound
Output: A numerical solution for ~v0(0,0), an approximation of Pr(C |= A[tf])
1: for n← 0 to |X | · tf by δ do
2: for each η in {η′ | sum(η′) = n ∧ ∀i ∈ {1, . . . , |X |} 0 ≤ η(i) ≤ tf} do
3: for t from 0 down to −min(tf ,η) do
4: Compute numerical solution to (6) with (y0,η0) = (tf ,η) on [tf − t, tf]
5: end for
6: end for
7: end for
8: return numerical solution for ~v0(0,0)

Fig. 5. Illustrating Algorithm 1 (left) and Algorithm 2 (right) for the 2-dimensional setting

tf

0

x2

x1

t
x1 reset

x2 reset

t decreases from 0

sum(η) = 2 · tf
sum(η) = tf

sum(η) from 0 to |X | · tf

tf

0

x2

x1

t

t decreases from 0

sum(η) = 2 · tf

reset x2 within the same node

The direction to the reset point

Example 4. Consider the product C ⊗ G(A) shown in Example 3 (in page 8). For state
v3 in which clock x is 1 and y is arbitrary, the corresponding PDE is

∂~v3(y, 1)
∂y

+
∂~v3(y, 1)

∂x
+r0[0.5·~v0(y, 0)+0.2·~v4(y, 0)+0.4·~v9(y, 0)−~v3(y, 0)] = 0.

Since sum(y, 0) = y < y + 1 = sum(y, 1), the value for ~v0(y, 0), ~v4(y, 0) and
~v3(y, 0) have been calculated in the previous iterations, thus the value for ~v3(y, 1)
can be computed.

To optimize Algorithm 1 for multi-clock objects, we exploit the idea of “lazy com-
putation”. In Algorithm 1, in order to determine the reset part for (6), we calculate
all discretized points generated by all ODEs. The efficiency is influenced since the
amount of ODEs is quite large (the same as the number of states in product automaton).
However in Algorithm 2, we only compute the reset part that we need for computing
~v0(0,0). If we meet a reset part ~v(y,η[X := 0]) which has not been decided yet,
we suspend the equation we are computing now and switch to compute the equation

leading to the undecided point following the direction of (−1, . . . ,−1). The algorithm
terminates since the number of points it computes is no more than that of Algorithm 1.
A pseudo-code is described in Algorithm 2.

Algorithm 2 The lazy computation to find numerical solution to (4)
Input: C ⊗ G(A), the region graph of the product of CTMC C and DTA A; tf , the time bound
Output: A numerical solution for ~v0(0,0), an approximation of Pr(C |= A[tf])
Procedure dhv(y,η) //Computing numerical solution for (y,η)
1: for t from 0 down to −min(tf ,η) by δ do
2: for v ∈ V do
3: Check if η satisfies initial and boundary condition from Theorem 2

4: for each Markovian transition v
p,X−−⇀ v′ do

5: up = (−t− δ) · 1+ ((t+ δ) · 1)[X := 0]
6: if reset exists and η[X := 0] + up is undecided then
7: call dhv(tf ,η[X := 0] + up)
8: end if
9: comput hv

10: end for
11: end for
12: execute λ−transition according to Theorem 2
13: compute ~v((y0,η0) + t) by equation (6)
14: end for
15: mark η decided
End Procedure
1: Call dhv(v0, tf , (tf))
2: return numerical solution for ~v0(0,0)

4.4 Complexity Analysis

Let |S| be the number of the states of the CTMC, and n the number of the clocks of the
DTA. The worst-case time complexity of Algorithms 1 and 2 lies inO(|V | · d tfδ e

(n+1)),
where |V | is the number of the equations in (4), i.e., the number of the locations in the
product region graph, that are not accepting. The number of states in the region graph
of the DTA is bounded by n! · 2n−1 ·

∏
x∈X (cx + 1), denoted by Cb, where cx is the

maximum constant occurring in the guards that constrain x. Note that Cb differs from
the bound given in [1], since the boundaries of a region do not matter in our setting and
hence can be merged into the region. Thus, the number of states in the product region
graph, as well as the number of PDE equations in Theorem 2, is at most Cb · |S|. So the
total complexity is O(Cb · |S| · d tfδ e

(n+1)).
Let ~v,n(y0,η0) denote the numerical solution to ODE (6) with t = −nδ, and

Λmax = max{Λ(vi) | 0 ≤ i ≤ |S|}. LetN = d tfδ e. By Proposition 2 , lim
tf→+∞

~v(0,0) =

Pr(C |= A) and ~v(0,0) is monotonically increasing for tf . In the following proposi-
tion, for simplicity of discussion, we assume tf equal to Nδ. Then, the error caused by
discretization can be estimated as follows:

Proposition 3. For N ∈ N+ and δ = tf
N ,

|~v0,N (tf , tf · 1)− ~v0(0,0)| = O(δ)

For function f(δ), f is of the magnitudeO(δ) if lim
δ→0

∣∣∣ f(δ)δ ∣∣∣ = C, where C is a constant.

From Proposition 3, if we view Λmax and tf as constants, then the error is O(δ) to
the step length δ. By Proposition 2, the numerical solution generated by Algorithm 1
converges to the reachability probability of C ⊗ A, and the error can be as small as we
expect if we decrease the size of discretization δ, and increase the time bound tf .

5 Experimental results
We implemented a prototype including Algorithm 1&2 in C and a tool taking a CTMC
C and a DTA A as input and generating a .c file to store their product in Python, which
is used as an input to Algorithm 1&2. The first two examples (Examples 5&6) come
from [10] to show the feasibility of our tool. The last case study is an example of
robot navigation from [7]. In order to demonstrate the scalability of our approach, we
revise the example with different real-time requirements, which require DTA with dif-
ferent number of clocks. The examples are executed in Linux 16.04 LTS with Intel(R)
Core(TM) i7-4710HQ 2.50GHz CPU and 16G RAM. The column “time” reports the
running time for Algorithm 1, and “time (lazy)” reports the running time for Algo-
rithm 2. All time is counted in seconds.

Example 5. Consider Example 3 with ri = 1, i = 0, . . . 3 and δ = 0.01, experimental
result is shown in Table 1. The relevant error when tf = 30 and tf = 40 is 5× 10−7.

Table 1. The experimental results for Example 5 and Example 6

tf Example 5 Example 6
~v0(0,0) time time (lazy) ~v0(0,0) time time (lazy)

20 0.110791 0.8070 0.7232 0.999999 0.1685 0.0002
30 0.110792 1.7246 1.6260 0.999999 0.3453 0.0003
40 0.110792 3.0344 2.8760 0.999999 0.6265 0.0003

Example 6. Consider the reachability probability for the product of a CTMC and a
DTA as shown in Fig. 6. A part of its region graph is shown in Fig. 7. Set r0 = r1 = 1,
δ = 0.1, the experimental result is given in Table 1. The relevant error when tf = 30
and tf=40 is 1 × 10−7. Note that even for this simple example, none of existing tools
can handle it.

l0 = (s0, q0)start

r0

l1 = (s1, q1)

r1x2 > 1, {x1}, 1

x1 < 2, {x2}, 1

Fig. 6. The product automaton of Ex-
ample 6

l0,
0 ≤ x1 = x2 < 1

v0, r0

l0,
1 ≤ x1 = x2 < 2

v1, r0

l0,
x1 ≥ 2, x2 ≥ 2

v2, r0

l0,
0 ≤ x1 < 1,
1 ≤ x2 < 2,
x2 > x1 + 1

v3, r0

l0,
0 ≤ x1 < 1,
x2 ≥ 2,

x2 > x1 + 2

v4, r0

λ λ

1, {x1} 1, {x1}

Fig. 7. The reachable product region graph of Figure 6.

Example 7. Consider a robot moves on a N ×N grid as shown in Fig. 8 (adapted from
[7]). It can move up, down, left and right. For each possible direction, the robot moves

with the same probability. The cells are grouped with A, B, C and D. We consider the
following real-time constraints:

P1: The robot is allowed to stay in adjacent C-cells for at most T1 time units, and D-
cells for at most T2 time units;

P2: The total time of the robot continuously resides in adjacent C-cell and D-cell is no
more than T3 time units, with T1 ≤ T3 and T2 ≤ T3;

P3: The total time of the robot continuously resides in adjacent A-cell and C-cell is no
more than T4 time units, with T1 ≤ T4.

In this example, we are verifying whether the CTMC satisfies (i) P1; (ii) P1 ∧ P2; (iii)
P1 ∧ P2 ∧ P3. Obviously, P1 can be expressed by a DTA with one clock, see Fig. 9; to
express P1∧P2, a DTA with two clocks is necessary, see Fig. 10; to express P1∧P2∧P3,
A DTA with three clocks is necessary, see Fig. 11.

A A A A B

A A A C C

D D D C C

D D C C C

A A A C C

Fig. 8. An example grid

qAstart qB

qC

qD

A, true, ∅

C, true, {x}

D, true, {x}

B, true, ∅

C, x < T1, ∅

A, x < T1, ∅

D,x < T1, {x}

B, x < T1, ∅

D,x < T2, ∅

A, x < T2, ∅

C, x < T2, {x}

B, x < T2, ∅

Fig. 9. A DTA with one clock for P1

qAstart qB

qC

qD

B, x < T1 ∧ y < T3, ∅

B, x < T2 ∧ y < T3, ∅

A, true, ∅

C, true, {x, y}

D, true, {x, y}

B, true, ∅

C, x < T1, ∅

A, x < T1 ∧ y < T3, ∅

D, x < T1, {x}

D, x < T2, ∅

A, x < T2 ∧ y < T3, ∅

C, x < T2, {x}

Fig. 10. A DTA with two clocks for P1 ∧ P2

qAstart qB

qC

qD

B, x < T1 ∧ y < T3∧
z < T4, ∅

B, x < T2 ∧ y < T3∧
z < T4, ∅

z < T4, {x}

A, true, ∅

C, true, {x, y}

D, z < T4, {x, y}

B, z < T4, ∅

C, x < T1, ∅

A, x < T1 ∧ y < T3, ∅

D, x < T1∧

D, x < T2, ∅

A, x < T2 ∧ y < T3, {z}

C, x < T2, {x, z}

Fig. 11. A DTA with three clocks forP1∧P2∧P3

The experimental results are summarized in Table 2. The relevant error of tf = 20
and tf = 21 is smaller than 10−2. As can be seen, the running time of our approach

heavily depends on the number of clocks. Compared with the results reported in [7] for
the case of one clock in this case study (when the precision is set to be 10−2), our result
is as fast as theirs, but their tool cannot handle the cases of multiple clocks. In contrast,
our approach can handle DTA with multiple clocks as indicated in the verification of P2

and P3. Algorithm 2 is much more faster than Algorithm 1 when the number of clocks
grows up. To the best of our knowledge, this is the first prototypical tool verifying
CTMCs against multi-clock DTA.

Table 2. Experimental results for the robot example with δ = 0.1, running time longer than
2700s is denoted by ‘TO’ (timeout), the column “#(P)” counts the number of states in the product
automaton C ⊗ G(A), “time([7])” is the running time of prototype in [7] when precision=0.01,
T1 = T2 = 3, T3 = 5, T4 = 7

one clock two clocks three clocks
N tf #(P) time time (lazy) time([7]) #(P) time time (lazy) #(P) time time (lazy)
4 10 39 0.027 0.027 0.011 139 2.583 1.746 733 525.7 141.4

15 0.049 0.043 7.117 3.445 TO 257.35
20 0.070 0.071 12.88 5.49 TO 583.76

10 10 232 0.167 0.164 0.087 968 39.41 25.92 5134 TO 1039.7
15 0.278 0.278 108.48 53.28 TO TO
20 0.417 0.421 226.56 89.50 TO TO

20 10 940 1.142 0.909 1.23 4000 250.1 180.7 TO TO
15 1.65 1.54 672.8 375.6 TO TO
20 2.54 2.41 1326.8 616.1 TO TO

30 10 2125 2.38 2.45 6.84 9120 812.9 380.5 TO TO
15 4.45 5.42 2058.1 770.8 TO TO
20 7.45 7.28 TO 1283.4 TO TO

40 10 3820 5.62 6.52 20.31 16395 1484.3 759.8 TO TO
15 11.97 11.02 TO 1619.9 TO TO
20 15.26 16.17 TO 2661.3 TO TO

6 Concluding Remarks
In this paper, we present a practical approach to verify CTMCs against DTA objectives.
First, the desired probability can be reduced to the reachability probability of the prod-
uct region graph in the form of PDPs. Then we use the augmented PDP to approximate
the reachability probability, in which the reachability probability coincides with the so-
lution to a PDE system at the starting point. We further propose a numerical solution
to the PDE system by reduction it to a ODE system. The experimental results indicate
the efficiency and scalability compared with existing work, as it can handle DTA with
multiple clocks.

As a future work, it deserves to investigate whether our approach also works in the
verification of CTMCs against more complicated real-time properties, either expressed
by timed automata and MTL as considered in [9], or by linear duration invariants as
considered in [8].

Acknowledgements. This research is partly funded by the Sino-German Center for
Research Promotion as part of the project CAP (GZ 1023), from Yijun Feng, Haokun

Li and Bican Xia is partly funded by NSFC under grant No. 61732001 and 61532019,
from Joost-Pieter Katoen is partly funded by the DFG Research Training Group 2236
UnRAVeL, from Naijun Zhan is funded partly by NSFC under grant No. 61625206 and
61732001, by “973 Program” under grant No. 2014CB340701 and by the CAS/SAFEA
International Partnership Program for Creative Research Teams.

References
1. Alur, R., Dill, D. L.: A theory of timed automata. Theoretical Computer Science 126(2),

183–235 (1994)
2. Amparore, E. G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in GreatSPN. In:

Petri Nets. pp. 354–363 (2014)
3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time Markov

chains. ACM Trans. on Comp. Logic 1(1), 162–170 (2000)
4. Baier, C., Cloth, L., Haverkort, B. R., Kuntz, M., Siegle, M.: Model checking Markov chains

with actions and state labels. IEEE Trans. on Softw. Eng. 33(4) (2007)
5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for

continuous-time Markov chains. IEEE Trans. on Softw. Eng. 29(6), 524–541 (2003)
6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT press (2008)
7. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC model checking

of linear real-time objectives. In: TACAS. LNCS, vol. 6605, pp. 128–142 (2011)
8. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Verification of linear duration prop-

erties over continuous-time Markov chains. ACM Trans. on Comp. Logic 14(4), 33 (2013)
9. Chen, T., Diciolla, M., Kwiatkowska, M. Z., Mereacre, A.: Time-bounded verification of

ctmcs against real-time specifications. In: FORMATS. LNCS, vol. 6919, pp. 26–42 (2011)
10. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-

time Markov chains against timed automata specifications. In: LICS. pp. 309–318 (2009)
11. Chen, T., Han, T., Katoen, J., Mereacre, A.: Model checking of continuous-time Markov

chains against timed automata specifications. Logical Methods in Computer Science 7(1)
(2011)

12. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Observing continuous-time MDPs by 1-clock
timed automata. In: RP 2011. LNCS, vol. 6945, pp. 2–25 (2011)

13. Davis, M. H.: Markov Models & Optimization, vol. 49. CRC Press (1993)
14. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern probabilistic

model checker. In: CAV (2). LNCS, vol. 10427, pp. 592–600. Springer (2017)
15. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with

CSLTA. IEEE Trans. on Softw. Eng. 35(2), 224–240 (2009)
16. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 3. John Wiley &

Sons New York (1968)
17. Fu, H.: Approximating acceptance probabilities of CTMC-paths on multi-clock deterministic

timed automata. In: HSCC. pp. 323–332. ACM (2013)
18. Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for continuous-time

Markov chains. Information Processing Letters 113(1-2), 44–50 (2013)
19. Grossmann, C., Roos, H.-G., Stynes, M.: Numerical Treatment of Partial Differential Equa-

tions, vol. 154. Springer (2007)
20. Hung, D. V., Chaochen, Z.: Probabilistic duration calculus for continuous time. Formal Asp.

Comput. 11(1), 21–44 (1999)
21. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element

Method. Courier Corporation (2012)
22. Katoen, J.-P., Zapreev, I. S., Hahn, E. M., Hermanns, H., Jansen, D. N.: The ins and outs of

the probabilistic model checker MRMC. Performance Evaluation 68(2), 90–104 (2011)

23. Kwiatkowska, M. Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: CAV. LNCS, vol. 6806, pp. 585–591. Springer (2011)

24. Mikeev, L., Neuhäußer, M. R., Spieler, D., Wolf, V.: On-the-fly verification and optimization
of DTA-properties for large Markov chains. Formal Methods in System Design 43(2), 313–
337 (2013)

25. Wisniewski, R., Sloth, C., Bujorianu, M. L., Piterman, N.: Safety verification of piecewise-
deterministic Markov processes. In: HSCC. pp. 257–266. ACM (2016)

26. Yin, G. G., Zhang, Q.: Continuous-time Markov Chains and Applications: A Two-time-scale
Approach, vol. 37. Springer Science & Business Media (2012)

27. Zhang, L., Jansen, D. N., Nielson, F., Hermanns, H.: Efficient CSL model checking using
stratification. Logical Methods in Computer Science 8(2:17), 1–18 (2012)

28. Zhou, C., Hoare, C. A. R., Ravn, A. P.: A calculus of durations. Information Processing
Letters 40(5), 269–276 (1991)

	Monitoring CTMCs By Multi-Clock Timed Automata

