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Abstract. We address the problem of analyzing the reachable set of
a polynomial nonlinear continuous system by over-approximating the
�owpipe of its dynamics. The common approach to tackle this problem
is to perform a numerical integration over a given time horizon based
on Taylor expansion and interval arithmetic. However, this method re-
sults to be very conservative when there is a large di�erence in speed
between trajectories as time progresses. In this paper, we propose to use
combinations of barrier functions, which we call piecewise barrier tube
(PBT), to over-approximate �owpipe. The basic idea of PBT is that for
each segment of a �owpipe, a coarse box which is big enough to con-
tain the segment is constructed using sampled simulation and then in
the box we compute by linear programming a set of barrier functions
(called barrier tube or BT for short) which work together to form a tube
surrounding the �owpipe. The bene�t of using PBT is that 1) BT is
independent of time and hence can avoid being stretched and deformed
by time; and 2) a small number of BTs can form a tight over-approxi-
mation for the �owpipe, which means that the computation required to
decide whether the BTs intersect the unsafe set can be reduced signi�-
cantly. We implemented a prototype called PBTS in C++. Experiments
on some benchmark systems show that our approach is e�ective.

1 Introduction

Hybrid systems [17] are widely used to model dynamical systems which exhibit
both discrete and continuous behaviors. The reachability analysis of hybrid sys-
tems has been a challenging problem over the last few decades. The hard core of
this problem lies in dealing with the continuous behavior of systems that are de-
scribed by ordinary di�erential equations (ODEs). Although there are currently
several quite e�cient and scalable approaches for reachability analysis of linear
systems [9,8,10,26,16,34,14,20,19], nonlinear ODEs are much harder to handle
and the current approaches can be characterized into the following groups.
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Invariant generation [22,28,39,27,18,21,36,37] An invariant I for a system S
is a set such that any trajectory of S originating from I never escapes from I.
Therefore, �nding an invariant I such that the initial set I0 ⊆ I and the unsafe
set U ∩ I = ∅ indicates the safety of the system. In this way, there is no need to
compute the �owpipe. The main problem with invariant generation is that it is
hard to de�ne a set of high quality constraints which can be solved e�ciently.

Abstraction and hybridization [35,11,24,2,31] The basic idea of the abstraction-
based approach is �rst constructing a linear model which over-approximates the
original nonlinear dynamics and then applying techniques for linear systems to
the abstraction model. However, how to construct an abstraction with the fewest
discrete states and su�ciently high accuracy is still a challenging issue.

Satis�ability Modulo Theory (SMT) over reals [6,7,23] This approach encodes
the reachability problem for nonlinear systems as �rst-order logic formulas over
the real numbers. These formulas can be solved using for example δ−complete
decision procedures that overcome the theoretical limits in nonlinear theories
over the reals, by choosing a desired precision δ. An SMT implementing such
procedures can return either unsat if the reachability problem is unsatis�able or
δ-sat if the problem is satis�able given the chosen precision. The δ-sat verdict
does not guarantee that the dynamics of the system will reach a particular region.
It may happens that by increasing the precision the problem would result unsat.
In general the limit of this approach is that it does not provide as a result a
complete and comprehensive description of the reachability set.

Bounded time �owpipe computation [4,5,1,3,32,25] The common technique to
compute a bounded �owpipe is based on interval method or Taylor model.
Interval-based approach is quite e�cient even for high dimensional systems [29],
but it su�ers the wrapping e�ect of intervals and can quickly accumulate over-
approximation errors. In contrast, the Taylor-model-based approach is more pre-
cise in that it uses a vector of polynomials plus a vector of small intervals to sym-
bolically represent the �owpipe. However, for the purpose of safety veri�cation
or reachability analysis, the Taylor model has to be further over-approximated
by intervals, which may bring back the wrapping e�ect. In particular, the wrap-
ping e�ect can explode easily when the �owpipe segment over a time interval
is stretched drastically due to a large di�erence in speed between individual
trajectories. This case is demonstrated by the following example.

Example 1 (Running example). Consider the 2D system [30] described by ẋ = y
and ẏ = x2. Let the initial set X0 be a line segment x ∈ [1.0, 1.0] and y ∈
[−1.05,−0.95], Figure 1a shows the simulation result on three points in X0 over
time interval [0, 6.6]. The reachable set at t = 6.6s is a smooth curve connecting
the end points of the three trajectories. As can be seen, the trajectory originating
from the top is left far behind the one originating from the bottom, which means
that the tiny initial line segment is being stretched into a huge curve very quickly,
while the width of the �owpipe is actually converging to 0. As a result, the
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Fig. 1: (a) Simulation for Example 1 showing �owpipe segment being extremely
stretched and deformed, (b) Interval over-approximation of the Taylor model
computed by Flow* [3].

interval over-approximation of this huge curve can be extremely conservative
even if its Taylor model representation is precise, and reducing the time step
size is not helpful. To prove this point, we computed with Flow* [3] a Taylor
model series for the time horizon of 6.6s which consists of 13200 Taylor models.
Figure 1b shows the interval approximation of the Taylor model series, which
apparently starts exploding.

In this paper, we propose to use piecewise barrier tubes (PBTs) to over-
approximate �owpipes of polynomial nonlinear systems, which can avoid the is-
sue caused by the excessive stretching of a �owpipe segment. The idea of PBT is
inspired from barrier certi�cate [33,22]. A barrier certi�cate B(x) is a real-valued
function such that 1) B(x) ≥ 0 for all x in the initial set X0 ; 2) B(x) < 0 for all
x in the unsafe set XU ; 3) no trajectory can escape from {x ∈ Rn | B(x) ≥ 0}
through the boundary {x ∈ Rn | B(x) = 0}. A su�cient condition for this con-
straint is that the Lie derivative of B(x) w.r.t the dynamics ẋ = f is positive all
over the invariant region, i.e., LfB(x) > 0, which means that all the trajectories
must move in the increasing direction of the level sets of B(x).

Barrier certi�cates can be used to verify safety properties without computing
the �owpipe explicitly. The essential idea is to use the zero level set of B(x) as
a barrier to separate the �owpipe from the unsafe set. Moreover, if the unsafe
set is very close to the boundary of the �owpipe, the barrier has to �t the shape
of the �owpipe to make sure that all components of the constraint are satis�ed.
However, the zero level set of a polynomial of �xed degree may not have the
power to mimic the shape of the �owpipe, which means that there may exist no
solution for the above constraints even if the system is safe. This problem might
be addressed using piecewise barrier certi�cate, i.e., cutting the �owpipe into
small pieces so that every piece is straight enough to have a barrier certi�cate
of simple form. Unfortunately, this is infeasible because we know nothing about
the �owpipe locally. Therefore, we have to �nd another way to proceed.

Instead of computing a single barrier certi�cate, we propose to compute bar-
rier tubes to piecewise over-approximate the �owpipe. Concretely, in the begin-
ning, we �rst construct a containing box, called enclosure, for the initial set
using interval approach [29] and simulation, then, using linear programming, we
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compute a group of barrier functions which work together to form a tight tube
(called barrier tube) around the �owpipe. Similarly, taking the intersection of
the barrier tube and the boundary of the box as the new initial set, we repeat
the previous operations to obtain successive barrier tubes step by step. The key
point here is how to compute a group of tightly enclosing barriers around the
�owpipe without a constraint on the unsafe set inside the box. Our basic idea
is to construct a group of auxiliary state sets U around the �owpipe and then,
for each Ui ∈ U , we compute a barrier certi�cate between Ui and the �owpipe.
If a barrier certi�cate is found, we expand Ui towards the �owpipe iteratively
until no more barrier certi�cate can be found; otherwise, we shrink Ui away
from the �owpipe until a barrier certi�cate is found. Since the auxiliary sets
are distributed around the �owpipe, so is the barrier tube. The bene�t of such
piecewise barrier tubes is that they are time independent, and hence can avoid
the issue of stretched �owpipe segments caused by speed di�erences between
trajectories. Moreover, usually a small number of BTs can form a tight over-
approximation of the �owpipe, which means that less computation is needed to
decide the intersection of PBT and the unsafe set.

The main contributions of this paper are as follows:

1. We transform the constraint-solving problem for barrier certi�cates into a
linear programming problem using Handelman representation [15];

2. We introduce PBT to over-approximate the �owpipe of nonlinear systems,
thus dealing with �owpipes independent of time and hence avoiding the error
explosion caused by stretched �owpipe segments;

3. We implement a prototype in C++ to compute PTB automatically and
we show the e�ectiveness of our approach by providing a comparison with
the state-of-the-art tools for reachability analysis of polynomial nonlinear
systems such as CORA [1] and Flow* [3].

The paper is organized as follows. Section 2 is devoted to the preliminaries.
Section 3 shows how to compute barrier certi�cates using Handelman repre-
sentation, while in Section 4 we present a method to compute Piecewise Barrier
Tubes. Section 5 provides our experimental results and we conclude in Section 6.

2 Preliminaries

In this section, we recall some concepts used throughout the paper. We �rst
clarify some notation conventions. If not speci�ed otherwise, we use boldface
lower case letters to denote vectors, we use R for the real number �eld and
N for the set of natural numbers, and we consider multivariate polynomials in
R[x], where the components of x act as indeterminates. In addition, for all the
polynomials B(u,x), we denote by u the vector composed of all the ui and
denote by x the vector composed of all the remaining variables xi that occur in
the polynomial. We use R≥0 and R>0 to denote the domain of nonnegative real
number and positive real number respectively.
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Let P ⊆ Rn be a convex and compact polyhedron with non-empty interior,
bounded by linear polynomials p1, · · · , pm ∈ R[x]. Without lose of generality,
we may assume P = {x ∈ Rn | pi(x) ≥ 0, i = 1, · · · ,m}.

Next, we present the notation of the Lie derivative, which is widely used in
the discipline of di�erential geometry. Let f : Rn → Rn be a continuous vector
�eld such that ẋi = fi(x) where ẋi is the time derivative of xi(t).

De�nition 1 (Lie derivative). For a given polynomial p ∈ R[x] over x =
(x1, . . . , xn) and a continuous system ẋ = f , where f = (f1, . . . , fn), the Lie

derivative of p ∈ R[x] along f of order k is de�ned as follows.

Lkfp
def
=

{
p, k = 0∑n
i=1

∂Lk−1
f p

∂xi
· fi, k ≥ 1

Essentially, the k-th order Lie derivative of p is the k-th derivative of p w.r.t.
time, i.e., re�ects the change of p over time. We write Lfp for L1

fp.

In this paper, we focus on semialgebraic nonlinear systems, which are de�ned
as follows.

De�nition 2 (Semialgebraic system). A semialgebraic system is a triple

M
def
= 〈X,f ,X0 , I〉, where

1. X ⊆ Rn is the state space of the system M ,

2. f ∈ R[x]n is locally Lipschitz continuous vector function,

3. X0 ⊆ X is the initial set, which is semialgebraic [40],

4. I is the invariant of the system.

The local Lipschitz continuity guarantees the existence and uniqueness of
the di�erential equation ẋ = f locally. A trajectory of a semialgebraic system is
de�ned as follows.

De�nition 3 (Trajectory). Given a semialgebraic system M , a trajectory

originating from a point x0 ∈ X0 to time T > 0 is a continuous and di�erentiable
function ζ(x0, t) : [0, T ) → Rn such that 1) ζ(x0, 0) = x0, and 2) ∀τ ∈ [0, T ):
dζ
dt

∣∣
t=τ

= f(ζ(x0, τ)). T is assumed to be within the maximal interval of existence
of the solution from x0.

For ease of readability, we also use ζ(t) for ζ(x0, t). In addition, we use
Flowf (X0 ) to denote the �owpipe of initial set X0 , i.e.,

Flowf (X0 )
def
= {ζ(x0, t) | x0 ∈ X0 , t ∈ R≥, ζ̇ = f(ζ)} (1)

De�nition 4 (Safety). Given an unsafe set XU ⊆ X, a semialgebraic system
M = 〈X,f ,X0 , I〉 is said to be safe if no trajectory ζ(x0, t) of M satis�es that
∃τ ∈ R≥0 : x(τ) ∈ XU , where x0 ∈ X0 .
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3 Computing Barrier Certi�cates

Given a semialgebraic system M , a barrier certi�cate is a real-valued function
B(x) such that 1) B(x) ≥ 0 for all x in the initial set; 2) B(x) < 0 for all x in
the unsafe set; 3) no trajectory can escape from the region of B(x) ≥ 0. Then,
the hyper-surface {x ∈ Rn | B(x) = 0} forms a barrier separating the �owpipe
from the unsafe set. To compute such a barrier certi�cate, the most common
approach is template based constraint solving, i.e., �rstly �gure out a su�cient
condition for the above condition and then, set up a template polynomial B(u,x)
of �xed degree, and �nally solve the constraint on u derived from the su�cient
condition on B(u,x). There are a couple of su�cient conditions available for
this purpose [22,27,13]. In order to have an e�cient constraint solving method,
we adopt the following condition [33].

Theorem 1. Given a semialgebraic system M , let X0 and U be the initial set
and the unsafe set respectively, the system is guaranteed to be safe if there exists
a real-valued function B(x) such that

∀x ∈ X0 : B(x) > 0 (2)

∀x ∈ I : LfB > 0 (3)

∀x ∈ XU : B(x) < 0 (4)

In Theorem 1, the condition (3) means that all the trajectories of the system
always point in the increasing direction of the level sets of B(x) in the region I.
Therefore, no trajectory starting from the initial set would cross the zero level
set. The bene�t of this condition is that it can be solved more e�ciently than
other existing conditions [13,22] although it is relatively conservative. The most
widely used approach is to transform the constraint-solving problem into a sum-
of-squares (SOS ) programming problem [33], which can be solved in polynomial
time. However, a serious problem with SOS programming based approach is
that automatic generation of polynomial templates is very hard to perform. We
now show an example to demonstrate the reason. For simplicity, we assume that
the initial set, the unsafe set and the invariant are de�ned by the polynomial
inequalities X0 (x) ≥ 0, XU (x) ≥ 0 and I(x) ≥ 0 respectively, then the SOS
relaxation of Theorem 1 is that the following polynomials are all SOS

B(x)− µ1(x)X0 (x) + ε1 (5)

LfB − µ2(x)I(x) + ε2 (6)

−B(x)− µ3(x)XU (x) + ε3 (7)

where µi(x), i = 1, · · · , 3 are SOS polynomials as well and εi > 0, i = 1, · · · , 3.
Suppose the degrees of X0 (x), I(x) and XU (x) are all odd numbers. Then, the
degree of the template for B(x) must be an odd number too. The reason is that,
if deg(B) is an even number, in order for the �rst and third polynomials to be
SOS polynomials, deg(B)must be greater than both deg(µ3XU ) and deg(µ1X0 ),
which are odd numbers. However, since the �rst and third condition contain B(x)
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and −B(x) respectively, their leading monomials must have the opposite sign,
which means that they cannot be SOS polynomial simultaneously. Moreover, the
degrees of the templates for the auxiliary polynomials µ1(x), µ3(x) must also be
chosen properly so that deg(µ1X0 ) = deg(µ3XU ) = deg(B), because only in this
way the leading monomials (which has an odd degree) of (5) and (7) have the
chance to be resolved so that the resultant polynomial can be a SOS . Similarly,
in order to make the second polynomial a SOS as well, one has to choose an
appropriate degree for µ2(x) according to the degree of LfB and I(x). As a
result, the tangled constraints on the relevant template polynomials reduce the
power of SOS programming signi�cantly.

Due to the above reason, inspired by the work [38], we use Handelman repre-
sentation to relax Theorem 1. We assume that the initial set X0 , the unsafe set
XU and the invariant I are all convex and compact polyhedra, i.e., X0 = {x ∈
Rn | p1(x) ≥ 0, · · · , pm1

(x) ≥ 0}, I = {x ∈ Rn | q1(x) ≥ 0, · · · , qm2
(x) ≥ 0}

and XU = {x ∈ Rn | r1(x) ≥ 0, · · · , rm3
(x) ≥ 0}, where pi(x), qj(x), rk(x) are

linear polynomials. Then, we have the following theorem.

Theorem 2. Given a semialgebraic system M , let X0 , XU and I be de�ned as
above, the system is guaranteed to be safe if there exists a real-valued polynomial
function B(x) such that

B(x) ≡
∑
|α|≤M1

λαp
α1
1 · · · p

αm1
m1 + ε1 (8)

LfB ≡
∑
|β|≤M2

λβq
β1

1 · · · q
βm2
m2 + ε2 (9)

−B(x) ≡
∑
|γ|≤M3

λγr
γ1
1 · · · r

γm3
m3 + ε3 (10)

where λα, λβ, λγ ∈ R≥0, εi ∈ R>0 and Mi ∈ N, i = 1, · · · , 3.

Theorem 2 provides us with an alternative to SOS programming to �nd
barrier certi�cate B(x) by transforming it into a linear programming problem.
The basic idea is that we �rst set up a template B(u,x) of �xed degree as well as
the appropriate Mi, i = 1, · · · , 3 that make the both sides of the three identities
(8)�(10) have the same degree. Since (8)�(10) are identities, the coe�cients of
the corresponding monomials on both sides must be identical as well. Thus,
we derive a system S of linear equations and inequalities over u, λα, λβ, λγ .
Now, �nding a barrier certi�cate is just to �nd a feasible solution for S, which
can be solved by linear programming. Compared to SOS programming based
approach, this approach is more �exible in choosing the polynomial template as
well as other parameters. We consider now a linear system to show how it works.

Example 2. Given a 2D system de�ned by ẋ = 2x + 3y, ẏ = −4x + 2y, let
X0 = {(x, y) ∈ R2 | p1 = x + 100 ≥ 0, p2 = −90 − x ≥ 0, p3 = y + 45 ≥ 0, p4 =
−40−y ≥ 0}, I = {(x, y) ∈ R2 | q1 = x+110 ≥ 0, q2 = −80−x ≥ 0, q3 = y+45 ≥
0, q4 = −20− y ≥ 0} and XU = {(x, y) ∈ R2 | r1 = x+ 98 ≥ 0, r2 = −90− x ≥
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(a) (b) (c) (d)

Fig. 2: (a) Linear barrier certi�cate (straight red line) for Example 2. Rectangle in
green: initial set, rectangle in red: unsafe set. (b) PBT for the running Example 5,
consisting of 45 BTs. (c) Enclosure (before bloating) for �owpipe of Example 3
(green shadow region). (d) Enclosure (after bloating) for �owpipe of Example 3.

0, r3 = y + 24 ≥ 0, r4 = −20 − y ≥ 0}. Assume B(u,x) = u1 + u2x + u3y,
Mi = εi = 1 for i = 1, · · · , 3, then we obtain the following polynomial identities
according to Theorem 2

u1 + u2x+ u3y −
4∑
i=1

λ1ipi − ε1 ≡ 0

u2(2x+ 3y) + u3(−4x+ 2y)−
4∑
j=1

λ2jqj − ε2 ≡ 0

− (u1 + u2x+ u3y)−
4∑
k=1

λ3krk − ε3 ≡ 0

where λij ≥ 0 for i = 1, · · · , 3, j = 1, · · · , 4. By collecting the coe�cients of x, y
in the above polynomials, we obtain a system S of linear polynomial equations
and inequalities over ui, λjk. By solving S using linear programming, we obtain
a feasible solution and Figure 2a shows the computed linear barrier certi�cate.
Note that, for the aforementioned reason, it is impossible to �nd a linear barrier
certi�cate using SOS programming for this example.

4 Piecewise Barrier Tubes

In this section, we introduce how to construct PBTs for nonlinear polynomial
systems. The basic idea of constructing PBT is that, for each segment of the
�owpipe, an enclosure box is �rst constructed and then, a BT is constructed to
form a tighter over-approximation for the �owpipe segment inside the box.

4.1 Constructing an enclosure box

Given an initial set, the �rst task is to construct an enclosure box for the initial
set and the following segment of the �owpipe. As pointed out in Section 1, one
principle to construct an enclosure box is to simplify the shape of the �owpipe
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segment, or in other words, to approximately bound the twisting of trajectories
by some θ in the box, where the twisting of a trajectory is de�ned as follows.

De�nition 5 (Twisting of a trajectory). Let M be a continuous system and
ζ(t) be a trajectory of M . Then, ζ(t) is said to have a twisting of θ on the
time interval I = [T1, T2], written as ξI(ζ), if it satis�es that ξI(ζ) = θ, where

ξI(ζ)
def
= supt1,t2∈I arccos

(
〈ζ̇(t1),ζ̇(t2)〉
‖ζ(t1)‖‖ζ(t2)‖

)
.

The basic idea to construct an enclosure box is depicted in Algorithm 1.

Algorithm 1: Algorithm to construct an enclosure box

input : M : dynamics of the system; n: dimension of system; X0 : initial set
θ1: twisting of simulation; d: maximum distance of simulation;

output: E: an enclosure box containing X0 ; P: plane where �owpipe exits ;
G: range of intersection of Flowf (X0 ) with plane P by simulation

1 sample a set S0 of points from X0 ;
2 select a point x0 ∈ S0;
3 �nd a time step size ∆T0 by (θ, d)-bounded simulation for x0;
4 ∆T ←− ∆T0;
5 while ∆T > ε do

6 [found,E]←− �nd an enclosure box by interval arithmetic using ∆T ;
7 if found then

8 do a simulation for all xi ∈ S0, select the plane P which intersects
with the most of simulations; generate G;

9 bloat E s.t Flowf (X0 ) gets out of E only through the facet in P;
10 break;
11 else

12 ∆T ←− 1/2 ∗∆T ;

Remark 1. In Algorithm 1, we use interval arithmetic [29] and simulation to
construct an enclosure box E for a given initial set and its following �owpipe
segment. Meanwhile, we obtain a coarse range of the intersection of the �owpipe
and the boundary of the enclosure, which helps to accelerate the construction of
barrier tube. To be simple, the enclosure is constructed in a way such that the
�owpipe gets out of the box through a single facet. Given an initial set X0 , we
�rst sample a set S0 of points from X0 for simulation. Then, we select a point
x0 from S0 and do (θ, d)-simulation on x0 to obtain a time step ∆T . A (θ, d)-
simulation is a simulation that stops either when the twisting of the simulation
reaches θ or when the distance between x0 and the end point reaches d. On the
one hand, by using a small θ, we aim to achieve a straight �owpipe segment.
On the other hand, by specifying a maximal distance d, we make sure that the
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simulation can stop for a long and straight �owpipe. At each iteration of the while
loop in line 5, we �rst try to construct an enclosure box by interval arithmetic
over ∆T . If such an enclosure box is created, we then perform a simulation (see
line 8) for all the points in S0 to �nd out the plane P of facet which intersects
with the most of the simulations. The idea behind line 9 is that in order to better
over-approximate the intersection of the �owpipe with the boundary of the box
using intervals, we push the other planes outwards to make P the only plane
where the �owpipe get out of the box. Certainly, simply by simulation we cannot
guarantee that the �owpipe does not intersect the other facets. Therefore, we
have the following theorem for the decision.

Theorem 3. Given a semialgebraic system M and an initial set X0 , a box E
is an enclosure of X0 and Fi is a facet of E. Then, (Flowf (X0 ) ∩ E) ∩ Fi = ∅
if there exists a barrier certi�cate Bi(x) for X0 and Fi inside E.

Remark 2. According to the de�nition of barrier certi�cate, the proof of Theo-
rem 3 is straightforward, which is ignored here. Therefore, to make sure that the
�owpipe does not intersect the facet Fi, we only need to �nd a barrier certi�cate,
which can be done using the approach presented in Section 3. Moreover, if no
barrier certi�cate can be found, we further bloat the facet. Next, we still use the
running Example 1 to demonstrate the process of constructing an enclosure.

Example 3 (running example). Consider the system in Example 1 and the initial
set x = 1.0,−1.05 ≤ y ≤ −0.95, let the bounding twisting of simulation be
θ = π/18, then the time step size we computed for interval evaluation is ∆T =
0.2947. The corresponding enclosure computed by interval arithmetic is shown
in Figure 2c. Furthermore, by simulation, we know that the �owpipe can reach
both left facet and top facet. Therefore, we have two options to bloat the facet:
bloat the left facet to make the �owpipe intersects the top facet only or bloat
the top facet to make the �owpipe intersects left facet only. In this example, we
choose the latter option and the bloated enclosure is shown in Figure 2d. In this
way, we can over-approximate the intersection of the �owpipe and the facet by
intervals if we can obtain its boundary on every side. This can be achieved by
�nding barrier tube.

4.2 Compute a barrier tube inside a box

An important fact about the �owpipe of continuous system is that it tends to
be straight if it is short enough, given that the initial set is straight as well
(otherwise, we can split it). Suppose there is a small box E around a straight
�owpipe, it will be easy to compute a barrier certi�cate for a given initial set
and unsafe set inside E. A barrier tube for the �owpipe in E is a group of barrier
certi�cates which form a tube around a �owpipe inside E. Formally,

De�nition 6 (Barrier Tube). Given a semialgebraic system M , a box E and
an initial set X0 ⊆ E, a barrier tube is a set of real-valued functions BT =
{Bi(x), i = 1, · · · ,m} such that for all Bi(x) ∈ BT : 1) ∀x ∈ X0 : Bi(x) > 0
and, 2) ∀x ∈ E : LfBi > 0.
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According to De�nition 6, a barrier tube BT is de�ned by a set of real-valued
functions and every function inequality Bi(x) > 0 is an invariant of M in E and
so do their conjunction. The property of a barrier tube BT is formally described
in the following theorem.

Theorem 4. Given a semialgebraic system M , a box E and an initial set X0 ⊆
E, let BT = {Bi(x) : i = 1, · · · ,m} be a barrier tube of M and Ω = {x ∈ Rn |∧
Bi(x) > 0, Bi ∈ BT}, then Flowf (X0 ) ∩ E ⊆ Ω ∩ E.

Remark 3. Theorem 4 states that an arbitrary barrier tube is able to form an
over-approximation for the reach pipe in the box E. Compared to a single barrier
certi�cate, multiple barrier certi�cates could over-approximate the �owpipe more
precisely. However, since there is no constraint on unsafe sets in De�nition 6,
a barrier tube satisfying the de�nition could be very conservative. In order to
obtain an accurate approximation for the �owpipe, we choose to create additional
auxiliary constraints.

Auxiliary Unsafe Set (AUS) To obtain an accurate barrier tube, there are
two main questions to be answered: 1) How many barrier certi�cates are needed?
and 2) How do we control their positions to make the tube well-shaped to better
over-approximate the �owpipe? The answer for the �rst question is quite simple:
the more, the better. This will be explained later on. For the second question,
the answer is to construct a group of properly distributed auxiliary state sets
(AUSs). Each set of the AUSs is used as an unsafe set Ui for the system and
then we compute a barrier certi�cate Bi for Ui according to Theorem 2. Since
the zero level set of Bi serves as a barrier between the �owpipe and Ui, the
space where a barrier could appear is fully determined by the position of Ui.
Roughly speaking, when Ui is far away from the �owpipe, the space for a barrier
to exist is wide as well. Correspondingly, the barrier certi�cate found would
usually locate far away from the �owpipe as well. Certainly, as Ui gets closer to
the �owpipe, the space for barrier certi�cates also contracts towards the �owpipe
accordingly. Therefore, by expanding Ui towards the �owpipe, we can get more
precise over-approximations for the �owpipe.

Why multiple AUS ? Although the accuracy of the barrier certi�cate over-
approximation can be improved by expanding the AUS towards the �owpipe,
the capability of a single barrier certi�cate is very limited because it can erect a
barrier which only matches a single pro�le of the �ow pipe. However, if we have
a set U of AUSs which are distributed evenly around the �owpipe and there is a
barrier certi�cate Bi for each Ui ∈ U , these barrier certi�cates would be able to
over-approximate the �owpipe from a number of pro�les. Therefore, increasing
the number of AUSs can increase the quality of the over-approximation as well.
Furthermore, if all these auxiliary sets are connected, all the barriers would form
a tube surrounding the �owpipe. Therefore, if we can create a series of boxes
piecewise covering the �owpipe and then construct a barrier tube for every piece
of the �owpipe, we obtain an over-approximation for the �owpipe by PBT.

Based on the above idea, we provide Algorithm 2 to compute barrier tube.
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Algorithm 2: Algorithm to compute barrier tube

input : M : dynamics of the system; X0 : Initial set;
E: interval enclosure of initial set;
G: interval approx. of (∂E ∩ Flowf (X0 )) by simulation;
P: plane where �owpipe exits from box;
D: candidate degree list for template polynomial;
ε: di�erence in size between AUS (auxiliary unsafe set)

output: BT: barrier tube; X ′
0: interval over-approximation of (BT ∩ E)

1 foreach Gij: an facet of G do

2 found←− false ;
3 foreach d ∈ D do

4 AUS ←− CreateAUS(G,P, Gij);
5 while true do

6 [found,Bij ]←− ComputeBarrierCert(X0 ,E,AUS, d) ;
7 if found then AUS

′ ←− Expand (AUS);
8 else AUS

′ ←− Contract (AUS) ;
9 if Diff(AUS′,AUS) ≤ ε then break;
10 else AUS' ←− AUS;

11 if found then BT←− Push(BT, Bij); break;
12 else return FAIL;

13 return SUCCEED;

Remark 4. In Algorithm 2, for an n-dimensional �owpipe segment, we aim to
build a barrier tube composed of 2(n − 1) barrier certi�cates, which means we
need to construct 2(n − 1) AUSs. According to Algorithm 1, we know that the
plane P is the only exit of the �owpipe from the enclosure E and G is roughly
the region where they intersect. Let FG be the facet of E that contains G, then
for every facet FGij of FG, we can take an (n− 1)-dimensional rectangle between

FGij and Gij as an AUS, where Gij is the facet of G adjacent to F ijG . Therefore,
enumerating all the facets of G in line 1 would produce 2(n − 1) positions for
AUS. The loop in line 3 is attempting to �nd a polynomial barrier certi�cate
of di�erent degrees in D. In the while loop 5, we iteratively compute the best
barrier certi�cate by adjusting the width of AUS through binary search until
the di�erence in width between two successive AUSs is less than the speci�ed
threshold ε.

Example 4 (Running example). Consider the initial set and the enclosure com-
puted in Example 3, we use Algorithm 2 to compute a barrier tube. The ini-
tial set is X0 = [1.0, 1.0] × [−1.05,−0.95] and the enclosure of X0 is E =
[0.84, 1.01] × [−1.1,−0.75], G = [0.84, 0.84] × [−0.91,−0.80], the plane P is
x = 0.84, D = {2} and ε = 0.001. The barrier tube consists of two barrier
certi�cates. As shown in Figure 3, each of the barrier certi�cates is derived from
an AUS (red line segment) which is located respectively on the bottom-left and
top-left boundary of E.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 3: Computing process of BT for Example 4. blue line segment: initial set,
red line segment: AUS. Figure 3a�3l show how intermediate barrier certi�cates
changed with the width of the AUSs and Figure 3l shows the �nal BT (shadow
region in green).

4.3 Compute Piecewise Barrier Tube

During the computation of a barrier tube by Algorithm 2, we create a series
of AUSs around the �owpipe, which build up a rectangular enclosure for the
intersection of the �owpipe and the facet of the enclosure box. As a result, such
a rectangular enclosure can be taken as an initial set for the following �owpipe
segment and then Algorithm 2 can be applied repeatedly to compute a PBT.
The basic procedure to compute PBT is presented in Algorithm 3.

Remark 5. In Algorithm 3, initially a box that contains the initial set X0 is
constructed using Algorithm 1. The loop in line 2 consists of 3 major parts:
1) In lines 3�6, a barrier tube BT is �rstly computed using Algorithm 2. The
while loop keeps shrinking the box until a barrier tube is found; 2) In line 8, the
initial set X0 is updated for the next box; 3) In line 9, a new box is constructed
to contain X0 and the process is repeated.

Example 5 (Running example). Let us consider again the running example. We
set the length of PBT to 45 and the PBT we obtained is shown in Figure 2b.
Compared to the interval over-approximation of the Taylor model obtained using
Flow*, the computed PBT consists of a signi�cantly reduced number of segments
and is more precise for the absence of stretching.

Safety veri�cation based on PBT The idea of safety veri�cation based on
PBT is straightforward. Given an unsafe set XU , for each intermediate initial set
X0 and the corresponding enclosure box E, we �rst check whether XU ∩E = ∅.
If not empty, we would further �nd a barrier certi�cate between XU and the
�owpipe of X0 inside E. If empty or barrier found, we continue to compute
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Algorithm 3: Algorithm to compute PBT

input : M : dynamics of the system; X0 : Initial set;
N : length of piecewise barrier tube

output: PBT: piecewise barrier tube

1 E ← construct an initial box containing X0 ;
2 for i← 1 to N do

3 [Found,BT]← findBarrierTube (E,X0 ) ;
4 while not Found do

5 E ← Shrink (E) ;
6 [Found,BT]← findBarrierTube (E,X0 ) ;

7 if Found then

8 X0 ← OverApprox(BT ∩ Facet(E)) ;
9 E ← construct the next box containing X0 ;

Table 1: Model De�nitions
Model Dynamics Initial Set X0 Time Horizon(TH)

Controller 2D ẋ = xy + y3 + 2 x ∈ [29.9, 30.1] 0.0125
ẏ = x2 + 2x− 3y y ∈ [−38,−36]

Van der Pol ẋ = y x ∈ [1, 1.5] 6.74
Oscillator ẏ = y − x− x2y y ∈ [2.0, 2.45]

Lotka-Volterra ẋ = x(1.5− y) x ∈ [4.5, 5.2] 3.2
ẏ = −y(3− x) y ∈ [1.8, 2.2]

ẋ = 10(y − x) x ∈ [1.79, 1.81] 0.51
Controller 3D ẏ = x3 y ∈ [1.0, 1.1]

ż = xy − 2.667z y ∈ [0.5, 0.6]

longer PBT. The re�nement of PBT computation can be achieved by using
smaller E and higher d for template polynomial.

5 Implementation and Experiments

We have implemented the proposed approach as a C++ prototype called Piece-
wise Barrier Tube Solver (PBTS ), choosing Gurobi [12] as our internal linear
programming solver. We have also performed some experiments on a benchmark
of four nonlinear polynomial dynamical systems (described in Table 1) to com-
pare the e�ciency and the e�ectiveness of our approach w.r.t. other tools. Our
experiments were performed on a desktop computer with a 3.6GHz Intel Core
i7-7700 8 Core CPU and 32 GB memory. The results are presented in Table 2.

Remark 6. There are a number of outstanding tools for �owpipe computation
[4,5,1,3]. Since our approach is to perform �owpipe computation for polynomial
nonlinear systems, we pick two of the most relevant state-of-the-art tools for
comparison: CORA [1] and Flow* [3]. Note that a big di�erence between our
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Table 2: Tool Comparison on Nonlinear Systems. #var: number of variables; T:
computing time; NFS: number of �owpipe segments; DEG: candidate degrees
for template polynomial (only for PBTS ); TH: time horizon for �owpipe (only
for Flow* and CORA). FAIL: failed to terminate under 30min.

PBTS Flow* CORA
Model #var T NFS DEG TH T NFS T NFS

Controller 2D 2 5.62 46 2 0.0125 22.17 6250 FAIL -
Van der Pol 2 13.38 110 2,3 6.74 15.28 337 212.51 12523

Lotka-Volterra 2 6.65 30 3,4 3.2 10.59 3200 35.84 2903
Controller 3D 3 83.65 15 4 0.51 11.61 5100 65.18 6767

approach and the other two approaches is that PBTS is time-independent, which
means that we cannot compare PBTS with CORA or Flow* over the exactly
same time horizon. To be fair enough, for Flow* and CORA, we have used
the same time horizon for the �owpipe computation, while we have computed
a slightly longer �owpipe using PBTS. To guide the reader, we have also used
di�erent plotting colors to visualize the di�erence between the �owpipes obtained
from the three di�erent tools.

EvaluationAs pointed out in Section 1, a common problem with the bounded-
time integration based approaches is that the �owpipe segment of a dynamics sys-
tem can be extremely stretched with time so that the interval over-approximation
of the �owpipe segment is very conservative and usually the solver has to stop
prematurely due to the error explosion. This fact can be found easily from the
�gures Fig. 4� 7. In particular, for Controller 2D, Flow* can give quite nice re-
sult in the beginning but started producing an exploding �owpipe very quickly
(Note that Flow* o�ers options to produce better plotting which however is
expensive and was not used for safety veri�cation. CORA even failed to give
a result after over 30 minutes of running). This phenomenon reappeared with
both Flow* and CORA for Controller 3D. Notice that most of the time horizons
used in the experiment are basically the time limits that Flow* and CORA can
reach, i.e., a slightly larger value for the time horizon would cause the solvers to
fail. In comparison, our tool has no such problem and can survive a much longer
�owpipe before exploding or even without exploding as shown in Fig. 4a.

Another important factor of the approaches is the e�ciency. As is shown in
Table 2, our approach is more e�cient on the �rst three examples but slower on
the last example than the other two tools. The reason for this phenomenon is
that the degree d of the template polynomial used in the last example is higher
than the others and increasing d led to an increase in the number of decision
variables in the linear constraint. This suggests that using smaller d on shorter
�owpipe segment would be better. In addition, we can also see in Table 2 that
the number of the �owpipe segments produced by PBTS is much fewer than that
produced by Flow* and CORA. In this respect, PBTS would be more e�cient
on safety veri�cation.
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Fig. 4: Flowpipe for Controller 2D.
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Fig. 5: Flowpipe for Van der Pol Oscillator.

(a) PBTS (b) CORA

−10

−5

 0

 5

 10

 15

−10 −5  0  5  10  15  20

y

x

(c) Flow*

Fig. 6: Flowpipe for Lotka-Volterra.
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Fig. 7: Flowpipe (projection) for Controller 3D.

6 Conclusion

We have presented PBTS, a novel approach to over-approximate �owpipes of
nonlinear systems with polynomial dynamics. The bene�t of using BTs is that
they are time-independent and hence cannot be stretched or deformed by time.
Moreover, this approach only results in a small number of BTs which are suf-
�cient to form a tight over-approximation for the �owpipe, hence the safety
veri�cation with PBT can be very e�cient.
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