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Abstract. We address the problem of synthesizing provably correct
controllers for linear systems with reach-avoid specifications. Our so-
lution uses a combination of an open-loop controller and a tracking
controller, thereby reducing the problem to smaller tractable problems.
We show that, once a tracking controller is fixed, the reachable states
from an initial neighborhood, subject to any disturbance, can be over-
approximated by a sequence of ellipsoids, with sizes that are indepen-
dent of the open-loop controller. Hence, the open-loop controller can
be synthesized independently to meet the reach-avoid specification for
an initial neighborhood. Exploiting several techniques for tightening the
over-approximations, we reduce the open-loop controller synthesis prob-
lem to satisfiability over quantifier-free linear real arithmetic. The overall
synthesis algorithm, computes a tracking controller, and then iteratively
covers the entire initial set to find open-loop controllers for initial neigh-
borhoods. The algorithm is sound and, for a class of robust systems, is
also complete. We present RealSyn, a tool implementing this synthesis
algorithm, and we show that it scales to several high-dimensional systems
with complex reach-avoid specifications.

1 Introduction

The controller synthesis question asks whether an input can be generated for a
given system (or a plant) so that it achieves a given specification. Algorithms
for answering this question hold the promise of automating controller design.
They have the potential to yield high-assurance systems that are correct-by-
construction, and even negative answers to the question can convey insights
about unrealizability of specifications. This is not a new or a solved problem,
but there has been resurgence of interest with the rise of powerful tools and com-
pelling applications such as vehicle path planning [11], motion control [10,23],
circuits design [30] and various other engineering areas.

In this paper, we study synthesis for linear, discrete-time, plant models with
bounded disturbance — a standard view of control systems [17,3]. We will con-
sider reach-avoid specifications which require that starting from any initial state
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Θ, the controller has to drive the system to a target set G, while avoiding cer-
tain unsafe states or obstacles O. Reach-avoid specifications arise naturally in
many domains such as autonomous and assisted driving, multi-robot coordina-
tion, and spacecraft autonomy, and have been studied for linear, nonlinear, as
well as stochastic models [7,18,14,9].

Textbook control design methods address specifications like stability, distur-
bance rejection, asymptotic convergence, but they do not provide formal guar-
antees about reach-avoid specifications. Another approach is based on discrete
abstraction, where a discrete, finite-state, symbolic abstraction of the original
control system is computed, and a discrete controller is synthesized by solving
a two-player game on the abstracted game graph. Theoretically, these methods
can be applied to systems with nonlinear dynamics and they can synthesize
controllers for a general class of LTL specifications. However, in practice, the
discretization step leads to a severe state space explosion for higher dimensional
models. Indeed, we did not find any reported evaluation of these tools (see related
work) on benchmarks that go beyond 5-dimensional plant models.

In this paper, the controller we synthesize, follows a natural paradigm for
designing controllers. The approach is to first design an open-loop controller for
a single initial state x0 ∈ Θ to meet the reach-avoid specification. This is called
the reference trajectory. For the remaining states in the initial set, a tracking
controller is combined, that drives these other trajectories towards the trajectory
starting from x0.

However, designing such a combined controller can be computationally ex-
pensive [32] because of the interdependency between the open-loop controller
and the tracking controller. Our secret sauce in making this approach feasible, is
to demonstrate that the two controllers can be synthesized in a decoupled way.
Our strategy is as follows. We first design a tracking controller using a standard
control-theoretical method called LQR (linear quadratic regulator) [5]. The cru-
cial observation that helps decouple the synthesis of the tracking and open-loop
controller, is that for such a combined controller, once the tracking controller is
fixed, the set of states reached from the initial set is contained within a sequence
of ellipsoidal sets [24] centered around the reference trajectory. The size of these
ellipsoidal sets is solely dependent on the tracking controller, and is independent
of the reference trajectory or the open-loop controller. On the flip side, the open-
loop controller and the resulting reference trajectory can be chosen independent
of the fixed tracking controller. Based on this, the problem of synthesizing the
open-loop controller can be completely decoupled from synthesizing the track-
ing controller. Our open-loop controller is synthesized by encoding the problem
in logic. The straightforward encoding of the synthesis problem results in a ∃∀
formula in the theory of linear arithmetic. Unfortunately, solving large instances
of such formulas using current SMT solvers is challenging. To overcome this, we
exploit special properties of polytopes and hyper-rectangles, and reduce the orig-
inal ∃∀-formula into the quantifier-free fragment of linear arithmetic (QF-LRA).

Our overall algorithm (Algorithm 1), after computing an initial tracking con-
troller, iteratively synthesizes open-loop controllers by solving QF-LRA formulas
for smaller subsets that cover the initial set. The algorithm will automatically
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identify the set of initial states for which the combined tracking+open-loop con-
troller is guaranteed to work. Our algorithm is sound (Theorem 1), and for a
class of robust linear systems, it is also complete (Theorem 2).

We have implemented the synthesis algorithm in a tool called RealSyn. Any
SMT solver can be plugged-in for solving the open-loop problem; we present ex-
perimental results with Z3, CVC4 and Yices. We report the performance on 24
benchmark problems (using all three solvers). Results show that our approach
scales well for complex models — including a system with 84-dimensional dynam-
ics, another system with 3 vehicles (12-dimensional) trying to reach a common
goal while avoiding collision with the obstacles and each other, and yet another
system with 10 vehicles (20 dimensional) trying to maintain a platoon. Real-
Syn usually finds a controller within 10 minutes with the fastest SMT solver.
The closest competing tool, Tulip [39,13], does not return any result even for
some of the simpler instances.

Related Work We briefly review related work on formal controller synthesis
according to the plant model type, specifications, and approaches.

Plants and specifications. In increasing order of generality, the types of
plant models that have been considered for controller synthesis are double-
integrator models [10], linear dynamical models [28,20,38,34], piecewise affine
models [18,40], and nonlinear (possibly switched) models [31,7,33,25]. There is
also a line of work on synthesis approaches for stochastic plants (see [1], and
the references therein). With the exceptions noted below, most of these papers
consider continuous time plant models, unlike our work.

There are three classes of specifications typically used for synthesis. In the
order of generality, they are: (1) pure safety or invariance specifications [33,15,2],
(2) reach-avoid [14,33,15,7,18], and (3) more general LTL and GR(1) [26,20,39]
[38,40,16]. For each of these classes both bounded and unbounded-time variants
have been considered.

Synthesis tools. There is a growing set of controller synthesis algorithms
that are available as implemented tools and libraries. This includes tools like
CoSyMa [27], Pessoa [30], LTLMop [37,22], Tulip [39,13], SCOTS [31], that
rely on the computation of some sort of a discrete (or symbolic) abstraction.
Our trial with a 4-dimensional example on Tulip [39,13] did not finish the dis-
cretization step in one hour. LTLMop [37,22] handles GR(1) LTL specifications,
which are more general than reach-avoid specifications considered in this pa-
per, but it is designed for 2-dimensional robot models working in the Euclidean
plane. An alternative synthesis approach generates mode switching sequences
for switched system models [29,21,35,19,41] to meet the specifications. This line
of work focuses on a finite input space, instead of the infinite input space we are
considering in this paper. Abate et. al. [2] use a controller template similar to
the one considered in this paper for invariant specifications. A counter-example
guided inductive synthesis (CEGIS) approach is used to first find a feedback
controller for stabilizing the system. Since this feedback controller may not be
safe for all initial states of the system, a separate verification step is employed
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to verify safety, or alternatively find a counter-example. In the latter case, the
process is repeated until a valid controller is found. This is different from our
approach, where any controller found needs no further verification. Several of
the benchmarks are adopted from [2].

2 Preliminaries and Problem Statement

Notation For a set A and a finite sequence σ in A∗, we denote the tth element
of σ by σ[t]. Rn is the n-dimensional Euclidean space. Given a vector x ∈ Rn,
x(i) is the ith component of x. We will use boldfaced letters (for example, x,d,u,
etc.,) to denote a sequence of vectors.

For a vector x, xᵀ is its transpose. Given an invertible matrix M ∈ Rn×n,

‖x‖M
∆
=
√
xᵀMᵀMx is called the M -norm of x. For M = I, ‖x‖M is the familiar

2-norm. Alternatively, ‖x‖M = ‖Mx‖2. For a matrix A, A � 0 means A is
positive definite. Given two symmetric matrices A and B, A � B means A−B is
negative semi-definite. Given a matrix A and an invertible matrix M of the same
dimension, there exists an α ≥ 0 such that AᵀMᵀMA � αMᵀM . Intuitively, α
is the largest scaling factor that can be achieved by the linear transformation
from x to Ax when using M for computing the norm, and can be found as the
largest eigenvalue of the symmetric matrix (MAM−1)ᵀ(MAM−1).

Given a vector c ∈ Rn, an invertible matrix M , and a scalar value r ≥ 0,

we define Er(c,M)
∆
= {x | ‖x − c‖M ≤ r} to be the ellipsoid centered at c with

radius r and shape M . Br(c)
∆
= Er(c, I) is the ball of radius r centered at c.

Given two vectors c, v ∈ Rn, Rv(c)
∆
= {x | ∧ni=1 c(i)− v(i) ≤ x(i) ≤ c(i) + v(i)}

is the rectangle centered at c with the length vector v. For a set S ⊆ Rn, a

vector v ∈ Rn, and a matrix M ∈ Rn×n we define v ⊕ S ∆
= {x+ v | x ∈ S} and

M ⊗ S ∆
= {Mx | x ∈ S}. We say a set S ⊆ Rn is a polytope if there is a matrix

Am×n and a vector b ∈ Rm such that S = {x | Ax ≤ b}, and denote by vert(S)
the set of vertices of S.

2.1 Discrete time linear control systems

An (n,m)-dimensional discrete-time linear system A is a 5-tuple 〈A,B,Θ,U,D〉,
where (i) A ∈ Rn×n is called the dynamic matrix, (ii) B ∈ Rn×m is called the
input matrix, (iii) Θ ⊆ Rn is a set of initial states (iv) U ⊆ Rm is the space of
inputs, (v) D ⊆ Rn is the space of disturbances.

A control sequence for an (n,m)-dimensional system A is a (possibly infi-
nite) sequence u = u[0],u[1], . . ., where each u[t] ∈ U . Similarly, a disturbance
sequence for A is a (possibly infinite) sequence d = d[0],d[1], . . ., where each
d[t] ∈ D. Given control u and disturbance d, and an initial state x[0] ∈ Θ, the
execution of A is uniquely defined as the (possibly infinite) sequence of states
x = x[0],x[1], . . . , where for each t > 0,

x[t+ 1] = Ax[t] +Bu[t] + d[t]. (1)

A (state feedback) controller for A is a function g : Θ × Rn → Rm, that maps
an initial state and a (current) state to an input. That is, given an initial state
x0 ∈ Θ and state x ∈ Rn at time t, the control input to the plant at time t is:
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u[t] = g(x0, x). (2)

This controller is allowed to use the memory of some initial state x0 (not necessar-
ily the current execution’s initial state) for deciding the current state-dependent
feedback. Thus, given an initial state x[0], a disturbance d, and a state feedback
controller g, Equations (1) and (2) define a unique execution x of A. A state x
is reachable in t-steps if there exists an execution x of A such that x[t] = x. The
set of all reachable states from S ⊆ Θ in exactly T steps using the controller g is
denoted by ReachA,g(S, T ). When A and g are clear from the context, we write
Reach(S, T ).

2.2 Bounded controller synthesis problem

Given a (n,m)-dimensional discrete-time linear system A, a sequence O of ob-
stacles or unsafe sets (with O[t] ⊆ Rn, for each t), a goal G ⊆ Rn, and a time
bound T , the bounded time controller synthesis problem is to find, a state feed-
back controller g such that for every initial state θ ∈ Θ and disturbance d ∈ DT ,
the unique execution x of A with g, starting from x[0] = θ satisfies (i) for all
t ≤ T , u[t] ∈ U , (ii) for all t ≤ T , x[t] 6∈ O[t], and (iii) x[T ] ∈ G.

For the rest of the paper, we will assume that each of the sets in {O[t]}t∈N,
G and U are closed polytopes. Moreover, we assume that the pair (A,B) is
controllable [3].

Example Consider a mobile robot that needs to reach the green area of an

apartment starting from the entrance
area, while avoiding the gray areas (Fig-
ure 1). The robot’s dynamics is de-
scribed by a linear model (for example
the navigation model from [12]). The
obstacle sequence O here is static, that
is, O[t] = O[0] for all t ≥ 0. Both
Θ and G are rectangles. Although these
sets are depicted in 2D, the dynamics of
the robot may involve a higher dimen-
sional state space.

Fig. 1: The settings for controller syn-
thesis of a mobile robot with reach-avoid
specification.

In this example, there is no disturbance, but a similar problem can be for-
mulated for an drone flying outdoors, in which case, the disturbance input would
model the effect of wind. Time-varying obstacle sets are useful for modeling safety
requirements of multi-robot systems.

3 Synthesis Algorithm

3.1 Overview

The controller synthesis problem requires one to find a state feedback controller
that ensures that the trajectory starting from any initial state in Θ will meet
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the reach-avoid specification. Since the set of initial states Θ will typically be an
infinite set, this requires the synthesized feedback controller g to have an effective
representation. Thus, an “enumerative” representation, where a (separate) open-
loop controller is constructed for each initial state, is not feasible — by an open-
loop controller for initial state x0 ∈ Θ, we mean a control sequence u such that
the corresponding execution x with x[0] = x0 and 0 disturbance satisfies the
reach-avoid constraints. We, therefore, need a useful template that will serve as
the representation for the feedback controller.

In control theory, one natural controller design paradigm is to first find a
reference execution xref which uses an open-loop controller, then add a tracking
controller which tries to force other executions x starting from different initial
states x[0] to get close to xref by minimizing the distance between xref and x.
This form of controller combining open-loop control with tracking control is also
proposed in [32] for reach-avoid specifications. The resulting trajectory under a
combination of tracking controller plus reference trajectory can be described by
the following system of equations.

u[t] = uref[t] +K(x[t]− xref[t]),with

xref[t+ 1] = Axref[t] +Buref[t]
(3)

The tracking controller is given by the matrix K that determines the additive
component of the input based on the difference between the current state and
the reference trajectory. Once xref[0] and the open-loop control sequence uref is
fixed, the value of xref[t] is determined at each time step t ∈ N. Therefore, the
controller g is uniquely defined by the tuple 〈K,xref[0],uref〉. We could rewrite
the linear system in (3) as an augmented system[

x
xref

]
[t+ 1] =

[
A+BK −BK

0 A

] [
x
xref

]
[t] +

[
B 0
0 B

] [
uref

uref

]
[t],+

[
d
0

]
[t].

This can be rewritten as x̂[t + 1] = Âx̂[t] + B̂û[t] + d̂[t]. The closed-form

solution is x̂[t] = Âtx̂[0] +
∑t−1
i=0 Â

t−1−i(B̂û[i] + d̂[i]). To synthesize a controller
g of this form, therefore, requires finding K,xref[0],uref such that the closed-form
solution meets the reach-avoid specification. This is indeed the approach followed
in [32], albeit in the continuous time setting. Observe that in the closed-form

solution, Â, û, and x̂[0] all depend on parameters that we need to synthesize.
Therefore, solving such constraints involves polynomials whose degrees grow with
the time bound. This is very expensive, and unlikely to scale to large dimensions
and time bounds.

In this paper, to achieve scalability, we take a slightly different approach
than the one where K,xref[0], and uref are simultaneously synthesized. We first
synthesize a tracking controller K, independent of xref[0] and uref, using the stan-
dard LQR method. Once K is synthesized, we show that, no matter what xref[0],
and uref are, the state of the system at time t starting from x0 is guaranteed to
be contained within an ellipsoid centered at xref[t] and of radius that depends
only on K, the initial distance between x0 and xref[0], time t, and disturbance.
Moreover, this radius is only a linear function of the initial distance (Lemma 1).
Thus, if we can synthesize an open-loop controller uref starting from some state
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xref[0], such that ellipsoids centered around xref satisfy the reach-avoid specifi-
cation, we can conclude that the combined controller will work correctly for all
initial states in some ball around the initial state xref[0]. The radius of the ball
around xref[0] for which the controller is guaranteed to work, will depend on the
radii of the ellipsoids around xref that satisfy the reach-avoid specification. This
decoupled approach to synthesis is the first key idea in our algorithm.

Following the above discussion, crucial to the success of the decoupled ap-
proach is to obtain a tight characterization of the radius of the ellipsoid around
xref[t] that contains the reach set, as a function of the initial distance — too
conservative a bound will imply that the combined controller only works for a
tiny set of initial states. The ellipsoid’s shape and direction, which is charac-
terized by a coordinate transformation matrix M , also affect the tightness of
the over-approximations. We determine the shape and direction of the ellipsoids
that give us the tightest over-approximation using an SDP solver (Section 3.4).

Synthesizing the tracking controller K, still leaves open the problem of syn-
thesizing an open-loop controller for an initial state xref[0]. A straightforward
encoding of the problem of synthesizing a open-loop controller, that works for
all initial states in some ball around xref[0], results in a ∃∀-formula in the theory
of real arithmetic. Unfortunately solving such formulas does not scale to large di-
mensional systems using current SMT solvers. The next key idea in our algorithm
is to simplify these constraints. By exploiting special properties of polytopes and
hyper-rectangles, we reduce the original ∃∀-formula into the quantifier-free frag-
ment of linear real arithmetic (QF-LRA) (Section 3.5).

Putting it all together, the overall algorithm (Algorithm 1) works as follows.
After computing an initial tracking controller K, coordinate transformation M
for optimal ellipsoidal approximation of reach-sets, it synthesizes open-loop con-
trollers for different initial states by solving QF-LRA formulas. After each open-
loop controller is synthesized, the algorithm identifies the set of initial states for
which the combined tracking+open-loop controller is guaranteed to work, and
removes this set from Θ. In each new iteration, it picks a new initial state not
covered by previous combined controllers, and the process terminates when all
of Θ is covered. Our algorithm is sound (Theorem 1)—whenever a controller
is synthesized, it meets the specifications. Further, for robust systems (defined
later in the paper), our algorithm is guaranteed to terminate when the system
has a combined controller for all initial states (Theorem 2).

3.2 Synthesizing the tracking controller K

Given any open-loop controller uref and the corresponding reference execution
xref, by replacing in Equation (1) the controller of Equation (3) we get:

x[t+ 1] = (A+BK)x[t]−BKxref[t] +Buref[t] + d[t]. (4)

Subtracting xref[t+1] from both sides, we have that for any execution x starting
from the initial states x[0] and with disturbance d, the distance between x and
xref changes with time as:

x[t+ 1]− xref[t+ 1] = (A+BK)(x[t]− xref[t]) + d[t]. (5)
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With Ac
∆
= A+BK, y[t]

∆
= x[t+ 1]−xref[t+ 1], Equation (5) becomes y[t+ 1] =

Acy[t] + d[t]. We want x[t] to be as close to xref[t] as possible, which means
K should be designed to make |y[t]| converge to 0. Equivalently, K should be
designed as a linear feedback controller such that Ac is stable1. Such a matrix
K can be computed using classical control theoretic methods. In this work, we
compute K as a linear (stable) feedback controller using LQR as stated in the
following proposition.

Proposition 1 (LQR). For linear system A with (A,B) to be controllable and 0

disturbance, fix any Q,R � 0 and let J
∆
= xᵀ[T ]Qx[T ] +

∑T−1
i=0 (xᵀ[i]Qx[i] +uᵀ[i]Ru[i])

be the corresponding quadratic cost. Let X be the unique positive definite solution to
the discrete-time Algebraic Riccati Equation (ARE): AᵀXA − X − AᵀXB(BᵀXB +

R)−1BᵀXA+Q = 0, and K
∆
= −(BᵀXB +R)−1BᵀXA. Then A+BK is stable, and

the corresponding feedback input minimizes J .

Methods for choosing Q and R are outside the scope of this paper. We fix Q
and R to be identity matrices for most examples. Roughly, for a given R, scaling
up Q results in a K that makes an execution x converge faster to the reference
execution xref.

3.3 Reachset over-approximation with tracking controller

We present a method for over-approximating the reachable states of the system
for a given tracking controller K (computed as in Proposition 1) and an open-
loop controller uref (to be computed in Section 3.5).

Lemma 1. Consider any K ∈ Rm×n, any initial set S ⊆ Er0(xref[0],M) and
disturbance D ⊆ Eδ(0,M), where r0, δ ≥ 0 and M ∈ Rn×n is invertible. For any
open-loop controller uref and the corresponding reference execution xref,

Reach(S, t) ⊆ Ert(xref[t],M),∀ t ≤ T, (6)

where rt = α
t
2 r0+

∑t−1
i=0 α

i
2 δ, and α ≥ 0 is such that (A+BK)ᵀMᵀM(A+BK) �

αMᵀM .

Lemma 1 can be proved using the triangular inequality for the norm of
Equation (5). From Lemma 1, it follows that given a open-loop controller uref

and the corresponding reference trajectory xref, the reachable states from S ⊆
Er0(xref[0],M) at time t can be over-approximated by an ellipsoid centered at

xref[t] with size rt
∆
= α

t
2 r0 +

∑t−1
i=0 α

i
2 δ. Here M is any invertible matrix that

defines the shape of the ellipsoid and it influences the value of α. As the over-
approximation (rt) grows exponentially with t, it makes sense to choose M in a
way that makes α small. In next section, we discuss how M and α are chosen to
achieve this.

3.4 Shaping ellipsoids for tight over-approximating hyper-rectangles

The choice of M and the resulting α may seem like a minor detail, but a bad
choice here can doom the rest of the algorithm to be impractical. For exam-
ple, if we fix M to be the identity matrix I, the resulting value of α may give

1 A+BK has spectral radius ρ(A+BK) < 1
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over-approximations that are too conservative. Even if the actual executions are
convergent to xref the resulting over-approximation can exponentially blow up.

We find the smallest exponential convergence/divergence rate (α) by solving
for P in the following semi-definite program (SDP):

min
P�0,α∈R

α

s.t (A+BK)ᵀP (A+BK) � αP.
(7)

This gives M as the unique matrix such that P = MTM .
In the rest of the paper, the reachset over-approximations will be represented

by hyper-rectangles to allow us to efficiently use the existing SMT solvers. That
is, the ellipsoids given by Lemma 1 have to be bounded by hyper-rectangles. For
any coordinate transformation matrix M , the ellipsoid with unit size E1(0,M) ⊆
Rv(0), with v(i) = min

x∈E1(0,M)
x(i). This v(i) is also computed by solving an

SDP. Similarly, Er(0,M) ⊆ Rrv(0). Therefore, from Lemma 1, it follows that

Reach(S, t) ⊆ Rrtv(xref[t]) with rt = α
t
2 r0 +

∑t−1
i=0 α

i
2 δ and v is the size vector

of the rectangle bounding E1(0,M). These optimization problems for computing
M,α, and v have to be solved once per synthesis problem.

Example Continuing the previous example.
Suppose robot is asked to reach the tar-
get set in 20 steps. Figure 2 shows the
projection of the reachset on the robot’s
position with synthesized controller. The
curves are the references executions xref

from 2 initials cover and the rectangles
are reachset over-approximations such
that every execution of the system start-
ing from each initial cover is guaranteed
to be inside the rectangles at each time
step.

Fig. 2: Robot’s position with the
synthesized controllers using Algo-
rithm 1.

3.5 Synthesis of open-loop controller

In this section, we will discuss the synthesis of the open-loop controller uref in
〈K,xref[0],uref〉. From the previous section, we know that given an initial set S, a
tracking controller K, and an open-loop controller uref, the reachable set (under
any disturbance) at time t is over-approximated by Rrtv(xref[t]). Thus, once we
fix K and xref[0], the problem of synthesizing a controller reduces to the problem
of synthesizing an appropriate uref such that the reachset over-approximations
meet the reach-avoid specification. Indeed, for the rest of the presentation, we
will assume a fixed K.

For synthesizing uref, we would like to formalize the problem in terms of con-
straints that will allow us to use SMT solvers. In the following, we describe the
details of how this problem can be formalized as a quantifier-free first order for-
mula over the theory of reals. We will then lay out specific assumptions and/or
simplifications required to reduce the problem to QF-LRA theory, which is im-
plemented efficiently in existing state-of-the-art SMT solvers. Most SMT solvers
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also provide the functionality of explicit model generation, and the concrete con-
troller values can be read-off from the models generated when the constraints
are satisfiable.

Constraints for synthesizing uref. Let us fix an initial state x0 and a radius
r, defining a set of initial states S = Br(x0). The uref synthesis problem can be
stated as finding satisfying solutions for the formula φsynth(x0, r).

φsynth(x0, r)
∆
= ∃uref[0],uref[1], . . .uref[T−1],
∃xref[0],xref[1], . . .xref[T ],
φcontrol(uref) ∧ φexecution(uref,xref, x0)
∧φavoid(x0, r,uref,xref) ∧ φreach(x0, r,uref,xref)

(8)

where φcontrol constrains the space of inputs, φexecution states that the sequence
xref is a reference execution following Equation (3), φavoid specifies the safety
constraint, φreach specifies that the system reaches G:

φcontrol(uref)
∆
=

T−1∧
t=0

uref[t]⊕
(
K ⊗Rrtv(0)

)
⊆ U

φexecution(uref,xref, x0)
∆
= (xref[0] = x0) ∧

T−1∧
t=0

(xref[t+ 1] = Axref[t] +Buref[t])

φavoid(x0, r,uref,xref)
∆
=

T∧
t=0

Rrtv(xref[t]) ∩O[t] = ∅

φreach(x0, r,uref,xref)
∆
= RrT v(xref[T ]) ⊆ G.

(9)

As discussed in Section 3.2, the vector v and the constants r0, . . . , rT are pre-
computed using the radius r of the initial ball.

We make a few remarks about this formulation. First, each of the formulas
φcontrol, φavoid and φreach represent sufficient conditions to check for the existence
of uref. Second, the constraints stated above belong to the (decidable) theory
of reals. However, φcontrol, φavoid and φreach, and thus φsynth, are not quantifier
free as they use subset and disjointness checks. This is because for sets S, T
expressed as predicates ϕS(·) and ϕT (·), S ∩ T = ∅ corresponds to the formula
∀x · ¬(ϕS(x) ∧ ϕT (x)) and S ⊆ T (or equivalently S ∩ T c = ∅) corresponds to
the formula ∀x · ϕS(x) =⇒ ϕT (x).

Reduction to QF-LRA. Since the sets G and U are bounded polytopes, Gc and
U c can be expressed as finite unions of (possibly unbounded) polytopes. Thus,
the subset predicates uref[t]⊕

(
K⊗Rrtv(0)

)
⊆ U in φcontrol and Rrtv(xref[t]) ⊆ G

in φreach can be expressed as a disjunction over finitely many predicates, each
expressing the disjointness of two polytopes.

The central idea behind eliminating the universal quantification in the dis-
jointness predicates in φavoid or in the inferred disjointness predicates in φreach
and φcontrol, is to find a separating hyperplane that witnesses the disjointness
of two polytopes. Let P1 = {x | A1x ≤ b1} and P2 = {x | A2x ≤ b2} be two
polytopes such that P1 is closed and bounded. Then, if there is an i for which

each vertex v of P1 satisfies A
(i)
2 v > b2(i), we must have that P1∩P2 = ∅, where

A
(i)
2 is the ith row vector of the matrix A2. That is, such a check is sufficient to

ensure disjointness. Thus, in the formula φavoid, in order to check if Rrtv(xref[t])
does not intersect with O[t], we check if there is a face of the polytope O[t]
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such that all the vertices of Rrtv(xref[t]) lie on the other side of the face. The
same holds for each of the inferred predicates in φreach and φcontrol. Eliminating
quantifiers is essential to scale our analysis to large high dimensional systems.

Further, when the set G has a hyper-rectangle representation, the contain-
ment check Rrtv(xref[T ]) ⊆ G can directly be encoded as the conjunction of
O(n) linear inequalities, stating that for each dimension i, the lower and the
upper bounds of Rrtv(xref[t]) in the ith dimension, satisfy l′i ≤ li ≤ ui ≤ u′i,
where l′i and r′i represent the bounds for G in the ith dimension. Similarly, when
O[t] has a rectangle representation, we can formulate the emptiness constraint

Rrtv(xref[t])∩O[t] = ∅ as
n∨
i=1

(ui < l′i ∨ li > u′i), where li and ui (resp. l′i and u′i)

are the lower and upper bounds of Rrtv(xref[t]) (resp. O[t]) in the ith dimension.
Since such simplifications can exponentially reduce the number of constraints
generated, they play a crucial for the scalability.

The constraints for checking emptiness and disjointness, as discussed above,
only give rise to linear constraints, do not have the ∀ quantification over states,
and is a sound transformation of φsynth into QF-LRA. In Section 3.6 we will see
that the reach set over-approximation can be made arbitrarily small when the
disturbance is 0 by arbitrarily shrinking the size of the initial cover. Thus, these
checks will also turn out to be sufficient to ensure that if there exists a controller,
φsynth is satisfiable.

Lemma 2. Let v ∈ Rn and r0, . . . , rT ∈ R be such that for any execution xref

starting at x0, we have ∀t ≤ T · Reach(Br(x0), t) ⊆ Rrtv(xref[t]). If the formula
φsynth(x0, r) is satisfiable, then there is a control sequence uref such that for every
x ∈ Br(x0) and for every d ∈ DT , the unique execution x defined by the controller
〈K,x0,uref〉 and d, starting at x satisfies x[T ] ∈ G ∧ ∀t ≤ T · x[t] 6∈ O[t].

We remark that a possible alternative for eliminating the ∀ quantifier is the
use of Farkas’ Lemma, but this gives rise to nonlinear constraints2. Indeed, in
our experimental evaluation, we observed the downside of resorting to Farkas’
Lemma in this problem.

3.6 Synthesis algorithm putting it all together

The presentation in Section 3.5 describes how to formalize constraints to generate
a control sequence that works for a subset of the initial set Θ. The overall
synthesis procedure (Algorithm 1), first computes a tracking controller K, then
generates open-loop control sequences and reference executions in order to cover
the entire set Θ.

The procedure bloatParams, computes a tracking controller K, a vector
v and real valued parameters {c1[t]}t≤T , {c2[t]}t≤T , for the system A and time
bound T with Q,R for the LQR method. Given any reference execution xref and
an initial set Br(xref[0]), the parameters computed by bloatParams can be used

2 Farkas’ Lemma introduces auxiliary variables that get multiplied with existing vari-
ables xref[0], . . . ,xref[T ], leading to nonlinear constraints.
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Algorithm 1 Algorithm for Synthesizing Combined Controller

1: Input: A, T,O[0], . . . ,O[T ], G,Q,R
2: r∗ ← diameter(Θ)/2
3: K, v, c1, c2 ← bloatParams(A, T,Q,R)
4: cover← ∅
5: controllers← ∅
6: while Θ 6⊆ cover do
7: ψsynth ← getConstraints(A, T,O[0], . . . ,O[T ], G, v, c1, c2, r

∗, cover)
8: if checkSat(ψsynth) = SAT then
9: r,uref,xref ← model(ψsynth)

10: cover← cover ∪ Br(xref[0])
11: controllers← controllers ∪ { ( 〈K,xref[0],uref〉 , Br(xref[0]) ) }
12: else
13: r∗ ← r∗/2

14: return controllers;

to over-approximate Reach(Br(xref[0]), t) with the rectangle Rv′(xref[t]), where
v′ = (c1[t]r + c2[t])v. The computation of these parameters proceeds as follows.
Matrix K is determined using LQR (Proposition 1). Now we use Equation (7)
to compute the matrix M and the rate of convergence α. Vector v is then com-
puted such that E1(0,M) is bounded by Rv(0). Let runit = maxx∈B1(0) ‖x‖M
and δ = maxd∈D ‖d‖M . Then we have, Br(x0) ⊆ Er·runit(x0,M) for any x0.

The constants c1[0], . . . c1[T ], c2[0], . . . c2[T ] are computed as c1[t] = α
t
2 runit and

c2[t] =
∑t−1
i=0 α

i
2 δ; Section 3.2-Section 3.4 establish the correctness guarantees of

these parameters. Clearly, these computations are independent of any reference
executions xref and control sequences uref.

The procedure getConstraints constructs the logical formula ψsynth below
such that whenever ψsynth holds, we can find an initial radius r, and center x0 in
the set Θ \ cover and a control sequence uref such that any controlled execution
starting from Br(x0) satisfies the reach-avoid requirements.

ψsynth
∆
= ∃x0 ∃r ·

(
x0 ∈ Θ ∧ x0 6∈ cover ∧ r > r∗ ∧ φsynth(x0, r)

)
(10)

Recall that the constants r0, . . . rT used in φsynth are affine functions of r and
thus ψsynth falls in the QF-LRA fragment.

Line 8 checks for the satisfiability of ψsynth. If satisfiable, we extract the model
generated to get the radius of the initial ball, the control sequence uref and
the reference execution xref in Line 9. The generated controller 〈K,xref[0],uref〉
is guaranteed to work for the ball Br(xref[0]), which can be marked covered
by adding it to the set cover. In order to keep all the constraints linear, one
can further underapproximate Br(xref[0]) with the rectangle Rw(xref[0]), where
w(i) = r/

√
n for each dimension i ≤ n. If ψsynth is unsatisfiable, then we reduce

the minimum radius r∗ (Line 13) and continue to look for controllers, until we
find that Θ ⊆ cover.

The set controllers is the set of pairs (〈K,x0,uref〉, S), such that the con-
troller 〈K,x0,uref〉 drives the set S to meet the desired specification. Each time
a new controller is found, it is added to the set controllers together with
the initial set for which it works (Line 11). The following theorem asserts the
soundness of Algorithm 1, and it follows from Lemma 1 and 2.
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Theorem 1. If Algorithm 1 terminates, then the synthesized controller is cor-
rect. That is, (a) for each x ∈ Θ, there is a (〈K,x0,uref〉, S) ∈ controllers,
such that x ∈ S, and (b) for each (〈K,x0,uref〉, S) ∈ controllers, the unique
controller 〈K,x0,uref〉 is such that for every x ∈ S and for every d ∈ DT ,
the unique execution defined by 〈K,x0,uref〉 and d, starting at x, satisfies the
reach-avoid specification.

Algorithm 1 ensures that, upon termination, every x ∈ Θ is covered, i.e.,
one can construct a combined controller that drives x to G while avoiding O.
However it may find multiple controllers for a point x ∈ Θ. This non-determinism
can be easily resolved by picking any controller assigned for x.

Below, we show that, under certain robustness assumptions on the system
A, G and the sets O, and in the absence of disturbance Algorithm 1 terminates.

Robustly controllable systems. A system A = 〈A,B,Θ,U,D〉 is said to
be ε-robustly controllable (ε > 0) with respect to the reach-avoid specifica-
tion (O, G) and matrix K, if (a) D = {0}, and (b) for every initial state
θ ∈ Θ and for every open loop-controller uref ∈ UT such that the unique execu-
tion starting from θ using the open-loop controller uref satisfies the reach-avoid
specification, then with the controller 〈K, θ,uref〉 defined as in Equation (3),
∀t ≤ T,Reach(Bε(θ), t) ∩ O[t] = ∅ and Reach(Bε(θ), T ) ⊆ G, i.e., ∀x ∈ Bε(θ),
the unique trajectory x defined by the controller 〈K, θ,uref〉 starting from x also
satisfies the reach avoid specification.

Theorem 2. Let A be ε-robust with respect to the reach-avoid specification
(O, G) and K, for some ε > 0. If there is a controller for A that satisfies the
reach-avoid specification, then Algorithm 1 terminates.

When the system is robust, then (in the absence of any disturbance i.e.,
D = {0}), the sizes r0, r1, . . . , rT of the hyper-rectangles that overapproximate
reach-sets go arbitrarily close to 0 as the initial cover converges to a single
point (as seen in Lemma 1). Therefore, the over-approximations can be made
arbitrarily precise as r∗ decreases. Moreover, as r∗ approaches 0, Equation (9)
(with simplifications for QF-LRA), also becomes satisfiable whenever there is a
controller. The correctness of Theorem 2 follows from both these observations.

4 RealSyn implementation and evaluation

4.1 Implementation

We have implemented our synthesis algorithm in a tool called RealSyn. Re-
alSyn is written in Python. For solving Equation (10) it can interface with
any SMT solver through Python APIs. We present experimental results with
Z3 (version 4.5.1) [6], Yices (version 2.5.4) [8], and CVC4 (version 1.5) [4]. Re-
alSyn leverages the incremental solving capabilities of these solvers as follows:
The constraints ψsynth generated (line 8 in Algorithm 1) can be expressed as

∃x0,∃r ·ψ1∧ψ2, where ψ1
∆
= φsynth(x0, r) and ψ2

∆
= x0 ∈ Θ∧x0 6∈ cover∧r > r∗.
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Since the bulk of the formula φsynth(x0, r) is in ψ1 and it does not change across
iterations, we can generate this formula only once, and push it on the context
stack of the solvers. The formula ψ2 is different across iterations, and can be
pushed and popped out of the stack as required. This minimizes the time taken
for generation of constraints.

4.2 Evaluation

We use 24 benchmark examples3 to evaluate the performance of RealSyn with
three different solvers on a standard laptop with Intel R© CoreTM i7 processor,
16GB RAM, running Ubuntu 16.04. The results are reported in Table 1. The
results are encouraging and demonstrate the effectiveness of using our approach
and the feasibility of scalable controller synthesis for high dimensional systems
and complex reach-avoid specifications.

Table 1: Controller synthesis using RealSyn and different SMT solvers. An explanation for the ∗

marked entries can be found in Section 4.

Model n m
Z3 CVC4 Yices

#iter time(s) #iter time(s) #iter time(s)
1 1-robot 2 1 9 0.21 1 0.06 7 0.06
2 2-robot 4 2 164 12.62 11 0.31 183 2.26
3 running-example 4 2 N/A T/O N/A T/O 1 319.97
4 1-car dynamic avoid 4 2 9 53.17 1 96.43 12 8.49
5 1-car navigation 4 2 18 7.49 1 3.05 17 6.73
6 2-car navigation 8 4 1 60.14 1 2668.2 1 4.07
7 3-car navigation 12 6 1 733.42 1 481.88 1 741.73
8 4-car platoon 8 4 1 0.37 1 0.21 1 0.15
9 8-car platoon 16 8 1 23.02 1 1.44 1 0.62
10 10-car platoon 20 10 1 459.36 1 20.93 1 7.74

11 example 3 1 82 2.32 18 0.10 67 0.43
12 cruise 1 1 1 0.06 1 0.03 1 0.02
13 motor 2 1 1 0.10 1 0.06 1 0.03
14 helicopter 3 1 81 2.31 13 0.08 70 0.38
15 magnetic suspension 2 1 39 0.47 2 0.05 39 0.08
16 pendulum 2 1 30 0.32 8 0.05 42 0.07
17 satellite 2 1 40 0.46 5 0.05 32 0.06
18 suspension 4 1 1 0.17 1 0.11 1 0.09
19 tape 3 1 1 0.12 1 0.07 1 0.07
20 inverted pendulum 2 1 39 0.49 2 0.05 39 0.09
21 magnetic pointer 3 1 44 1.12 12 0.08 134 0.83

22 helicopter 28 6 N/A (1∗) T/O (650∗) 1 651.21 N/A T/O
23 building 48 1 1 (1∗) 1936.03 (240∗) N/A T/O 1 552.48
24 pde 84 1 N/A (1∗) T/O (1800∗) 1 8.48 1 8.87

Comparison with other tools. We considered other controller synthesis tools
for possible comparison with RealSyn. In summary, CoSyMa [27], Pessoa [30],
and SCOTS [31] do not explicitly support discrete-time sytems. LTLMop [37,22]
is designed to analyze robotic systems in the (2-dimensional) Euclidean plane

3 The examples are available at http://umathur3.web.engr.illinois.edu/realsyn.
html

http://umathur3.web.engr.illinois.edu/realsyn.html
http://umathur3.web.engr.illinois.edu/realsyn.html
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and thus not suitable for most of our examples. TuLiP [39,13] comes closest
to addressing the same class of problems. TuLip relies on discretization of the
state space and a receding horizon approach for synthesizing controllers for more
general GR(1) specifications. However, we found TuLip succumbs to the state
space explosion problem when discretizing the state space, and it did not work on
most of our examples. For instance, TuLiP was unable to synthesize a controller
for the 2-dimensional system ‘1-robot’ (Table 1), and returned unrealizable.
On the benchmark ‘2-robot’ (n = 4), TuLip did not return any answer within 1
hour. We checked these findings with the developers and they concurred that it
is typical for TuLip to take hours even for 4-dimensional systems.

Benchmarks. Our benchmarks and their SMT encodings, could be of inde-
pendent interest to the verification and SMT-community. Examples 1-10 are
vehicle motion planning examples we have designed with reach-avoid specifi-
cations. Benchmarks 1-2 model robots moving on the Euclidean plane, where
each robot is a 2-dimensional system and admits a 1-dimensional input. Start-
ing from some initial region on the plane, the robots are required to reach the
common goal area within the given time steps, while avoiding certain obstacles.
For ‘2-robot’, the robots are also required to maintain a minimum separation.
Benchmarks 3-7 are discrete vehicular models adopted from [12]. Each vehicle is
a 4-dimensional system with 2-dimensional input. Benchmark 3 is the system as
our running example. Benchmark 4 describes one ego vehicle running on a two-
lane road, trying to overtake a vehicle in front of it. The second vehicle serves as
the obstacle. Benchmarks 5-7 are similar to Benchmark 2 where the vehicles are
required to reach a common goal area while avoiding collision with the obstacles
and with each other (inspired by a merge). The velocities and accelerations of
the vehicles are also constrained in each of these benchmarks.

Benchmarks 8-10 model multiple vehicles trying to form a platoon by main-
taining the safe relative distance between consecutive vehicles. The models are
adopted (and discretized) from [32]. Each vehicle is a 2-dimensional system with
1-dimensional input. For the 4-car platoon model, the running times reported
in Table 1 are much smaller than the time (5 minutes) reported in [32]. This
observation aligns with our analysis in Section 3.1.

Benchmarks 11-21 are from [2]. The specification here is that the reach set has
to be within a safe rectangle (that is, G = true). In [2] each model is discretized
using 8 different time steps and here we randomly pick one for each model. In
general, the running time of RealSyn is less than those reported in [2] (their
reported machine had better configuration). On the other hand, the synthesized
controller from [2] considers quantization errors, while our approach does not
provide any guarantee for that.

Benchmarks 22-24 are a set of high dimensional examples adopted and dis-
cretized from [36]. Similar to previous ones, the only specification is that the
reach sets starting from an initial state with the controller should be contained
within a safe rectangle.

Synthesis performance. In Table 1, columns ‘n’ and ‘m’ stand for the di-
mensions of the state space and input space. For each background solver, ‘#iter’
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is the number of iterations Algorithm 1 required to synthesize a controller, and
‘time’ is the respective running times. We specify a time limit of 1 hour and
report T/O (timeout) for benchmarks that do not finish within this limit. All
benchmarks are synthesized for a specification with 10− 20 steps.

In general, for low-dimensional systems (for example, in Benchmarks 11-21),
each of the solvers finish quickly (in less than 1s), with CVC4 and Yices outper-
forming Z3 on most benchmarks. The Yices solver is faster than the other two
on most examples. Z3 was the slowest on most, except a few (e.g., Benchmark
3,6) where CVC4 was much slower. The running time, in general, increases with
the increase of the dimensionality but this relationship is far from simple. For
example, the 84-dimensional Benchmark 24 was synthesized in less than 9 sec-
onds by both CVC4 and Yices, possibly because the safety specification is rather
simple for this problem.

The three solvers use different techniques for solving QF-LRA formulae with
support for incremental solving. The default tactic in Z3 is such that it spends a
large chunk of time when a constraint is pushed to the solver stack. In fact, for
Benchmark 24, while the other two solvers finish within 9 seconds, Z3 did not
finish pushing the constraints in the solver stack. When we disable incremental
solving in Z3, the Benchmarks 22, 23 and 24 finish in about 650, 240 and 1800
seconds respectively (marked with ∗). The number of iterations widely vary
across solvers, with CVC4 usually finishing in the fewest number of iterations.
Despite the larger number of satisfiability queries, Yices manages to finish close
to CVC4 on most examples.

5 Conclusion

We proposed a novel technique for synthesizing controllers for systems with dis-
crete time linear dynamics, operating under bounded disturbances,and for reach-
avoid specifications. Our approach relies on generating controllers that combine
an open loop-controller with a tracking controller, thereby allowing a decoupled
approach for synthesizing each component independently. Experimental evalu-
ation using our tool RealSyn demonstrates the value of the approach when
analyzing systems with complex dynamics and specifications.

There are several avenues for future work. This includes synthesis of com-
bined controllers for nonlinear dynamical and hybrid systems, and for more
general temporal logic specifications. Generating witnesses to show the absence
of controllers is also an interesting direction.
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