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Abstract. Given a relational specification between Boolean inputs and
outputs, the goal of Boolean functional synthesis is to synthesize each
output as a function of the inputs such that the specification is met. In
this paper, we first show that unless some hard conjectures in complex-
ity theory are falsified, Boolean functional synthesis must generate large
Skolem functions in the worst-case. Given this inherent hardness, what
does one do to solve the problem? We present a two-phase algorithm,
where the first phase is efficient both in terms of time and size of synthe-
sized functions, and solves a large fraction of benchmarks. To explain this
surprisingly good performance, we provide a sufficient condition under
which the first phase must produce correct answers. When this condition
fails, the second phase builds upon the result of the first phase, possibly
requiring exponential time and generating exponential-sized functions in
the worst-case. Detailed experimental evaluation shows our algorithm to
perform better than other techniques for a large number of benchmarks.
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1 Introduction

The algorithmic synthesis of Boolean functions satisfying relational specifications
has long been of interest to logicians and computer scientists. Informally, given a
Boolean relation between input and outupt variables denoting the specification,
our goal is to synthesize each output as a function of the inputs such that the
relational specification is satisfied. Such functions have also been called Skolem
functions in the literature [23, 29]. Boole [8] and Lowenheim [27] studied variants
of this problem in the context of finding most general unifiers. While these stud-
ies are theoretically elegant, implementations of the underlying techniques have
been found to scale poorly beyond small problem instances [28]. More recently,
synthesis of Boolean functions has found important applications in a wide range
of contexts including reactive strategy synthesis [4, 19, 41], certified QBF-SAT
solving [21, 34, 7, 31], automated program synthesis [38, 36], circuit repair and
debugging [22], disjunctive decomposition of symbolic transition relations [40]
and the like. This has spurred recent interest in developing practically efficient



Boolean function synthesis algorithms. The resulting new generation of tools [29,
23, 3, 17, 39, 34, 33] have enabled synthesis of Boolean functions from much larger
and more complex relational specifications than those that could be handled by
earlier techniques, viz. [20, 21, 28].

In this paper, we re-examine the Boolean functional synthesis problem from
both theoretical and practical perspectives. Our investigation shows that un-
less some hard conjectures in complexity theory are falsified, Boolean functional
synthesis must necessarily generate super-polynomial sized Skolem functions,
thereby requiring super-polynomial time, in the worst-case. Therefore, it is un-
likely that an efficient algorithm exists for solving all instances of Boolean func-
tional synthesis. There are two ways to address this hardness in practice: (i) de-
sign algorithms that are provably efficient but may give “approximate” Skolem
functions that are correct on only on a fraction of all possible input assignments,
or (ii) design a phased algorithm, wherein the initial phase(s) is/are provably
efficient and solve a subset of problem instances, and subsequent phase(s) have
worst-case exponential behaviour and solve all remaining problem instances. In
this paper, we combine the two approaches while giving heavy emphasis on ef-
ficient instances. We also provide a sufficient condition for our algorithm to be
efficient, which indeed is borne out by our experiments.

The primary contributions of this paper can be summarized as follows.

1. We start by showing that unless P = NP, there exist problem instances where
Boolean functional synthesis must take super-polynomial time. Moreover, if
the non-uniform exponential time hypothesis [14] holds, there exist prob-
lem instances where Boolean functional synthesis must generate exponential
sized Skolem functions, thereby also requiring at least exponential time.

2. We present a new two-phase algorithm for Boolean functional synthesis.

(a) Phase 1 of our algorithm generates candidate Skolem functions of size
polynomial in the input specification. This phase makes polynomially
many calls to an NP oracle (SAT solver in practice). Hence it directly
benefits from the progess made by the SAT solving community, and is
efficient in practice. Our experiments indicate that Phase 1 suffices to
solve a large majority of publicly available benchmarks.

(b) However, there are indeed cases where the first phase is not enough (our
theoretical results imply that such cases likely exist). In such cases, the
first phase provides good candidate Skolem functions as starting points
for the second phase. Phase 2 of our algorithm starts from these candi-
date Skolem functions, and uses a CEGAR-based approach to produce
correct Skolem functions whose size may indeed be exponential in the
input specification.

3. We analyze the surprisingly good performance of the first phase (especially
in light of the theoretical hardness results) and show a sufficient condition
on the structure of the input representation that guarantees correctness of
the first phase. Interestingly, popular representations like ROBDDs [11] give
rise to input structures that satisfy this condition. The goodness of Skolem
functions generated in this phase of the algorithm can also be quantified



with high confidence by invoking an approximate model counter [13], whose
complexity lies in BPPNP.

4. We conduct an extensive set of experiments over a variety of benchmarks,
and show that our algorithm performs favourably vis-a-vis state-of-the-art
algorithms for Boolean functional synthesis.

Related work The literature contains several early theoretical studies on vari-
ants of Boolean functional synthesis [8, 27, 16, 9, 30, 6]. More recently, researchers
have tried to build practically efficient synthesis tools that scale to medium or
large problem instances. In [29], Skolem functions for X are extracted from
a proof of validity of ∀Y∃XF (X,Y). Unfortunately, this doesn’t work when
∀Y∃XF (X,Y) is not valid, despite this class of problems being important, as
discussed in [17, 3]. Inspired by the spectacular effectiveness of CDCL-based SAT
solvers, an incremental determinization technique for Skolem function synthesis
was proposed in [33]. In [20, 40], a synthesis approach based on iterated compo-
sitions was proposed. Unfortunately, as has been noted in [23, 17], this does not
scale to large benchmarks. A recent work [17] adapts the composition-based ap-
proach to work with ROBDDs. For factored specifications, ideas from symbolic
model checking using implicitly conjoined ROBDDs have been used to enhance
the scalability of the technique further in [39]. In the genre of CEGAR-based
techniques, [23] showed how CEGAR can be used to synthesize Skolem func-
tions from factored specifications. Subsequently, a compositional and parallel
technique for Skolem function synthesis from arbitrary specifications represented
using AIGs was presented in [3]. The second phase of our algorithm builds on
some of this work. In addition to the above techniques, template-based [38] or
sketch-based [37] approaches have been found to be effective for synthesis when
we have information about the set of candidate solutions. A framework for func-
tional synthesis that reasons about some unbounded domains such as integer
arithmetic, was proposed in [25].

2 Notations and Problem Statement

A Boolean formula F (z1, . . . zp) on p variables is a mapping F : {0, 1}p → {0, 1}.
The set of variables {z1, . . . zp} is called the support of the formula, and denoted
sup(F ). A literal is either a variable or its complement. We use F |zi=0 (resp.
F |zi=1) to denote the positive (resp. negative) cofactor of F with respect to zi.
A satisfying assignment or model of F is a mapping of variables in sup(F ) to
{0, 1} such that F evaluates to 1 under this assignment. If π is a model of F ,
we write π |= F and use π(zi) to denote the value assigned to zi ∈ sup(F ) by
π. Let Z = (zi1 , zi2 , . . . zij ) be a sequence of variables in sup(F ). We use π↓Z to
denote the projection of π on Z, i.e. the sequence (π(zi1), π(zi2), . . . π(zij )).

A Boolean formula is in negation normal form (NNF) if (i) the only operators
used in the formula are conjunction (∧), disjunction (∨) and negation (¬), and
(ii) negation is applied only to variables. Every Boolean formula can be converted
to a semantically equivalent formula in NNF. We assume an NNF formula is



represented by a rooted directed acyclic graph (DAG), where nodes are labeled
by ∧ and ∨, and leaves are labeled by literals. In this paper, we use with AIGs [24]
as the initial representation of specifications. Given an AIG with t nodes, an
equivalent NNF formula of size O(t) can be constructed in O(t) time. We use
|F | to denote the number of nodes in a DAG represention of F .

Let α be the subformula represented by an internal node N (labeled by ∧ or
∨) in a DAG representation of an NNF formula. We use lits(α) to denote the
set of literals labeling leaves that have a path to the node N representing α in
the AIG. A formula is said to be in weak decomposable NNF, or wDNNF, if it is
in NNF and if for every ∧-labeled internal node in the AIG, the following holds:
let α = α1 ∧ . . .∧αk be the subformula represented by the internal node. Then,
there is no literal l and distinct indices i, j ∈ {1, . . . k} such that l ∈ lits(αi) and
¬l ∈ lits(αj). Note that wDNNF is a weaker structural requirement on the NNF
representation vis-a-vis the well-studied DNNF representation, which has elegant
properties [15]. Specifically, every DNNF formula is also a wDNNF formula.

We say a literal l is pure in F iff the NNF representation of F has a leaf
labeled l, but no leaf labeled ¬l. F is said to be positive unate in zi ∈ sup(F )
iff F |zi=0 ⇒ F |zi=1. Similarly, F is said to be negative unate in zi iff F |zi=1 ⇒
F |zi=0. Finally, F is unate in zi if F is either positive unate or negative unate
in zi. A function that is not unate in zi ∈ sup(F ) is said to be binate in zi.

We also use X = (x1, . . . xn) to denote a sequence of Boolean outputs, and
Y = (y1, . . . ym) to denote a sequence of Boolean inputs. The Boolean functional
synthesis problem, henceforth denoted BFnS, asks: given a Boolean formula
F (X,Y) specifying a relation between inputs Y = (y1, . . . ym) and outputs X =
(x1, . . . xn), determine functions Ψ = (ψ1(Y), . . . ψn(Y)) such that F (Ψ,Y)
holds whenever ∃XF (X,Y) holds. Thus, ∀Y∃X (F (X,Y) ⇔ F (Ψ,Y)) must
be rendered valid. The function ψi is called a Skolem function for xi in F , and
Ψ = (ψ1, . . . ψn) is called a Skolem function vector for X in F .

For 1 ≤ i ≤ j ≤ n, let Xj
i denote the subsequence (xi, xi+1, . . . xj) and

let F (i−1)(Xn
i ,Y) denote ∃Xi−1

1 F (Xi−1
1 ,Xn

i ,Y). It has been argued in [23, 17,
3, 20] that given a relational specification F (X,Y), the BFnS problem can be
solved by first ordering the outputs, say as x1 ≺ x2 · · · ≺ xn, and then syn-
thesizing a function ψi(X

n
i+1,Y) for each xi such that F (i−1)(ψi,X

n
i+1,Y) ⇔

∃xiF (i−1)(xi,X
n
i+1,Y). Once all such ψi are obtained, one can substitute ψi+1

through ψn for xi+1 through xn respectively, in ψi to obtain a Skolem function
for xi as a function of only Y. We adopt this approach, and therefore focus on
obtaining ψi in terms of Xn

i+1 and Y. Furthermore, we know from [23, 20] that

a function ψi is a Skolem function for xi iff it satisfies ∆i
F ⇒ ψi ⇒ ¬Γi

F , where
∆i

F ≡ ¬∃Xi−1
1 F (Xi−1

1 , 0,Xn
i+1,Y), and Γi

F ≡ ¬∃Xi−1
1 F (Xi−1

1 , 1,Xn
i+1,Y).

When F is clear from the context, we often omit it and write ∆i and Γi. It is
easy to see that both ∆i and ¬Γi serve as Skolem functions for xi in F .



3 Complexity-theoretical limits

In this section, we investigate the computational complexity of BFnS. It is easy
to see that BFnS can be solved in EXPTIME. Indeed a naive solution would be
to enumerate all possible values of inputs Y and invoke a SAT solver to find
values of X corresponding to each valuation of Y that makes F (X,Y) true.
This requires worst-case time exponential in the number of inputs and outputs,
and may produce an exponential-sized circuit. Given this one can ask if we can
develop a better algorithm that works faster and synthesizes “small” Skolem
functions in all cases? Our first result shows that existence of such small Skolem
functions would violate hard complexity-theoretic conjectures.

Theorem 1. 1. Unless P = NP, there exist problem instances where any algo-
rithm for BFnS must take super-polynomial time1.

2. Unless the non-uniform exponential-time hypothesis (or ETHnu) fails, there
exist problem instances where any algorithm for BFnS must generate Skolem
functions of size exponential in the input size.

A consequence of the second statement is that, under the same hypothesis, there
must exist an instance of BFnS for which any algorithm must take EXPTIME
time. The exponential-time hypothesis ETH and its strengthened version, the
non-uniform exponential-time hypothesis ETHnu are unproven computational
hardness assumptions (see [18],[14]), which have been used to show that several
classical decision, functional and parametrized NP-complete problems (such as
clique) are unlikely to have sub-exponential algorithms. ETHnu states that there
is no family of algorithms (one for each family of inputs of size n) that can
solve 3-SAT in subexponential time. In [14] it is shown that if ETHnu holds, then
p-Clique, the parametrized clique problem, cannot be solved in sub-exponential
time, i.e., for all d ∈ N, and sufficiently large fixed k, determining whether a
graph G has a clique of size k cannot be done in DTIME(nd).

Proof. We describe a reduction from p-Clique to BFnS. Given an undirected
graph G = (V,E) on n-vertices and a number k (encoded in binary), we want
to check if G has a clique of size k. We encode the graph as follows: each vertex
v ∈ V is identified by a unique number in {1, . . . n}, and for every (i, j) ∈ V ×V ,
we introduce an input variable yi,j that is set to 1 iff (i, j) ∈ E. We call the
resulting vector of input variables y. We also have additional input variables
z = z1, . . . zm, which represent the binary encoding of k (m = dlog2 ke). Finally,
we introduce output variables xv for each v ∈ V , whose values determine which
vertices are present in the clique. Let x denote the vector of xv variables.

Given inputs Y = {y, z}, and outputs X = {x}, our specification is repre-
sented by a circuit F over X,Y that verifies whether the vertices encoded by X
indeed form a k-clique of the graph G. The circuit F is constructed as follows:

1 Since the submission of this paper, we have obtained a sharper complexity result.
Details of this can be found in [2].



1. For every i, j such that 1 ≤ i < j ≤ n, we construct a sub-circuit imple-
menting xi ∧ xj ⇒ yi,j . The outputs of all such subcircuits are conjoined to
give an intermediate output, say EdgesOK. Clearly, all the subcircuits taken
together have size O(n2).

2. We have a tree of binary adders implementing x1 + x2 + . . . xn. Let the
dlog2 ne-bit output of the adder be denoted CliqueSz. The size of this adder
is clearly O(n).

3. We have an equality checker that checks if CliqueSz = k. Clearly, this sub-
circuit has size dlog2 ne. Let the output of this equality checker be called
SizeOK.

4. The output of the specification circuit F is EdgesOK ∧ SizeOK.

Given an instance Y = {y, z} of p-Clique, we now consider the specification
F (X,Y) as constructed above and feed it as input to any algorithm A for solving
BFnS. Let Ψ be the Skolem function vector output by A. For each i ∈ {1, . . . n},
we now feed ψi to the input yi of the circuit F . This effectively constructs a
circuit for F (Ψ,Y). It is easy to see from the definition of Skolem functions
that for every valuation of Y, the function F (Ψ,Y) evaluates to 1 iff the graph
encoded by Y contains a clique of size k.

Using this reduction, we can complete the proofs of both our statements:

1. If the circuits for the Skolem functions Ψ are super-polynomial size, then
of course any algorithm generating Ψ must take super-polynomial time. On
the other hand, if the circuits for the Skolem functions Ψ are always poly-
sized, then F (Ψ,Y) is polynomial-sized, and evaluating it takes time that is
polynomial in the input size. Thus, if A is a polynomial-time algorithm, we
also get an algorithm for solving p-Clique in polynomial time, which implies
that P = NP.

2. If the circuits for the Skolem functions Ψ are sub-exponential sized in the
input n, then F (Ψ,Y) is also sub-exponential sized and can be evaluated
in sub-exponential time. It then follows that we can solve any instance p-
Clique of input length n in sub-exponential time – a violation of ETHnu.
Note that since our circuits can change for different input lengths, we may
have different algorithms for different n. Hence we have to appeal to the
non-uniform variant of ETH. ut

Theorem 1 implies that efficient algorithms for BFnS are unlikely. We there-
fore propose a two-phase algorithm to solve BFnS in practice. The first phase
runs in polynomial time relative to an NP-oracle and generates polynomial-
sized “approximate” Skolem functions. We show that under certain structural
restrictions on the NNF representation of F , the first phase always returns exact
Skolem functions. However, these structural restrictions may not always be met.
An NP-oracle can be used to check if the functions computed by the first phase
are indeed exact Skolem functions. In case they aren’t, we proceed to the second
phase of our algorithm that runs in worst-case exponential time. Below, we dis-
cuss the first phase in detail. The second phase is an adaptation of an existing
CEGAR-based technique and is described briefly later.



4 Phase 1: Efficient polynomial-sized synthesis

An easy consequence of the definition of unateness is the following.

Proposition 1. If F (X,Y) is positive (resp. negative) unate in xi, then ψi = 1
(resp. ψi = 0) is a correct Skolem function for xi.

All omitted proofs, including that of the above, may be found in [2]. The above
result gives us a way to identify outputs xi for which a Skolem function can
be easily computed. Note that if xi (resp. ¬xi) is a pure literal in F , then F
is positive (resp. negative) unate in xi. However, the converse is not necessarily
true. In general, a semantic check is necessary for unateness. In fact, it follows
from the definition of unateness that F is positive (resp. negative) unate in xi,
iff the formula η+i (resp. η−i ) defined below is unsatisfiable.

η+i = F (Xi−1
1 , 0,Xn

i+1,Y) ∧ ¬F (Xi−1
1 , 1,Xn

i+1,Y). (1)

η−i = F (Xi−1
1 , 1,Xn

i+1,Y) ∧ ¬F (Xi−1
1 , 0,Xn

i+1,Y). (2)

Note that each such check involves a single invocation of an NP-oracle, and a
variant of this method is described in [5].

If F is binate in an output xi, Proposition 1 doesn’t help in synthesizing ψi.
Towards synthesizing Skolem functions for such outputs, recall the definitions of
∆i and Γi from Section 2. Clearly, if we can compute these functions, we can
solve BFnS. While computing ∆i and Γi exactly for all xi is unlikely to be effi-
cient in general (in light of Theorem 1), we show that polynomial-sized “good”
approximations of ∆i and Γi can be computed efficiently. As our experiments
show, these approximations are good enough to solve BFnS for several bench-
marks. Further, with an access to an NP-oracle, we can also check when these
approximations are indeed good enough.

Given a relational specification F (X,Y), we use F̂ (X,X,Y) to denote the
formula obtained by first converting F to NNF, and then replacing every oc-
currence of ¬xi (xi ∈ X) in the NNF formula with a fresh variable xi. As an
example, suppose F (X,Y) = (x1 ∨ ¬(x2 ∨ y1)) ∨ ¬(x2 ∨ ¬(y2 ∧ ¬y1)). Then

F̂ (X,X,Y) = (x1 ∨ (x2 ∧ ¬y1)) ∨ (x2 ∧ y2 ∧ ¬y1). Then, we have

Proposition 2. (a) F̂ (X,X,Y) is positive unate in both X and X.

(b) Let ¬X denote (¬x1, . . .¬xn). Then F (X,Y)⇔ F̂ (X,¬X,Y).

For every i ∈ {1, . . . n}, we can split X = (x1, . . . xn) into two parts, Xi
1 and

Xn
i+1, and represent F̂ (X,X,Y) as F̂ (Xi

1,X
n
i+1,X

i

1,X
n

i+1,Y). We use these rep-

resentations of F̂ interchangeably, depending on the context. For b, c ∈ {0, 1},
let bi (resp. ci) denote a vector of i b’s (resp. c’s). For notational convenience, we

use F̂ (bi,Xn
i+1, c

i,X
n

i+1,Y) to denote F̂ (Xi
1,X

n
i+1,X

i

1,X
n

i+1,Y)|
Xi

1=bi,X
i
1=ci in

the subsequent discussion. The following is an easy consequence of Proposition 2.

Proposition 3. For every i ∈ {1, . . . n}, the following holds:

F̂ (0i,Xn
i+1,0

i,¬Xn
i+1,Y) ⇒ ∃Xi

1F (X,Y) ⇒ F̂ (1i,Xn
i+1,1

i,¬Xn
i+1,Y)



Proposition 3 allows us to bound ∆i and Γi as follows.

Lemma 1. For every xi ∈ X, we have:

(a) ¬F̂ (1i−10,Xn
i+1,1

i,¬Xn
i+1,Y)⇒ ∆i ⇒ ¬F̂ (0i,Xn

i+1,0
i−11,¬Xn

i+1,Y)

(b) ¬F̂ (1i,Xn
i+1,1

i−10,¬Xn
i+1,Y)⇒ Γi ⇒ ¬F̂ (0i−11,Xn

i+1,0
i,¬Xn

i+1,Y)

In the remainder of the paper, we only use under-approximations of ∆i and Γi,
and use δi and γi respectively, to denote them. Recall from Section 2 that both
∆i and ¬Γi suffice as Skolem functions for xi. Therefore, we propose to use either
δi or ¬γi (depending on which has a smaller AIG) obtained from Lemma 1 as
our approximation of ψi. Specifically,

δi = ¬F̂ (1i−10,Xn
i+1,1

i,¬Xn
i+1,Y), γi = ¬F̂ (1i,Xn

i+1,1
i−10,¬Xn

i+1,Y)

ψi = δi or ¬γi, depending on which has a smaller AIG (3)

Example 1. Consider the specification X = Y, expressed in NNF as F (X,Y) ≡∧n
i=1 ((xi ∧ yi) ∨ (¬xi ∧ ¬yi)). As noted in [33], this is a difficult example for

CEGAR-based QBF solvers, when n is large.
From Eqn 3, δi = ¬(¬yi ∧

∧n
j=i+1(xj ⇔ yj)) = yi ∨

∨n
j=i+1(xj ⇔ ¬yj),

and γi = ¬(yi ∧
∧n

j=i+1(xj ⇔ yj)) = ¬yi ∨
∨n

j=i+1(xj ⇔ ¬yj). With δi as

the choice of ψi, we obtain ψi = yi ∨
∨n

j=i+1(xj ⇔ ¬yj). Clearly, ψn = yn. On
reverse-substituting, we get ψn−1 = yn−1 ∨ (ψn ⇔ ¬yn) = yn−1 ∨ 0 = yn−1.
Continuing in this way, we get ψi = yi for all i ∈ {1, . . . n}. The same result
is obtained regardless of whether we choose δi or ¬γi for each ψi. Thus, our
approximation is good enough to solve this problem. In fact, it can be shown
that δi = ∆i and γi = Γi for all i ∈ {1, . . . n} in this example. ut

Note that the approximations of Skolem functions, as given in Eqn (3), are

efficiently computable for all i ∈ {1, . . . n}, as they involve evaluating F̂ with
a subset of inputs set to constants. This takes no more than O(|F |) time and
space. As illustrated by Example 1, these approximations also often suffice to
solve BFnS. The following lemma partially explains this.

Theorem 2. (a) For i ∈ {1, . . . n}, suppose the following holds:

∀j ∈ {1, . . . i} F̂ (1j ,Xn
j+1,1

j ,X
n

j+1,Y)⇒F̂ (1j−10,Xn
j+1,1

j−11,X
n

j+1,Y)

∨ F̂ (1j−11,Xn
j+1,1

j−10,X
n

j+1,Y)

Then ∃Xi
1F (X,Y)⇔ F̂ (1i,Xn

i+1,1
i,¬Xn

i+1,Y).

(b) If F̂ (X,¬X,Y) is in wDNNF, then δi = ∆i and γi = Γi for every i ∈
{1, . . . n}.

Proof. To prove part (a), we use induction on i. The base case corresponds to i =

1. Recall that ∃X1
1F (X,Y)⇔ F̂ (1,Xn

2 , 0,¬Xn
2 ,Y)∨F (0,Xn

2 , 1,¬Xn
2 ,Y) by def-

inition. Proposition 3 already asserts that ∃X1
1F (X,Y)⇒ F̂ (1,Xn

2 , 1,¬Xn
2 ,Y).

Therefore, if the condition in Theorem 2(a) holds for i = 1, we then have



F̂ (1,Xn
2 , 1,¬Xn

2 ,Y)⇔ F̂ (1,Xn
2 , 0,¬Xn

2 ,Y)∨F (0,Xn
2 , 1,¬Xn

2 ,Y), which in turn
is equivalent to ∃X1

1F (X,Y). This proves the base case.
Let us now assume (inductive hypothesis) that the statement of Theorem 2(a)

holds for 1 ≤ i < n. We prove below that the same statement holds for i +
1 as well. Clearly, ∃Xi+1

1 F (X,Y) ⇔ ∃xi+1

(
∃Xi

1F (X,Y)
)
. By the inductive

hypothesis, this is equivalent to ∃xi+1F̂ (1i,Xn
i+1,1

i,¬Xn
i+1,Y). By definition

of existential quantification, this is equivalent to F̂ (1i+1,Xn
i+2,1

i0,¬Xn
i+2,Y)∨

F̂ (1i0,Xn
i+2,1

i+1,¬Xn
i+2,Y). From the condition in Theorem 2(a), we also have

F̂ (1i+1,Xn
i+2,1

i+1,X
n

i+2,Y)⇒ F̂ (1i0,Xn
i+2,1

i+1,X
n

1+2,Y)

∨ F̂ (1i+1,Xn
i+2,1

i0,X
n

i+2,Y)

The implication in the reverse direction follows from Proposition 2(a). Thus
we have a bi-implication above, which we have already seen is equivalent to
∃Xi+1

1 F (X,Y). This proves the inductive case.

To prove part (b), we first show that if F̂ (X,¬X,Y) is in wDNNF, then the
condition in Theorem 2(a) must hold for all j ∈ {1, . . . n}. Theorem 2(b) then
follows from the definitions of ∆i and Γi (see Section 2), from the statement of
Theorem 2(a) and from the definitions of δi and γi (see Eqn 3).

For j ∈ {1, . . . n}, let ζ(Xn
j+1,X

n

j+1,Y) denote the formula F̂ (1j ,Xn
j+1,1

j ,X
n

j+1,Y)

∧ ¬
(
F̂ (1j−10,Xn

j+1,1
j−11,X

n

j+1,Y) ∨ F̂ (1j−11,Xn
j+1,1

j−10,X
n

j+1,Y)
)

. Sup-

pose, if possible, F̂ is in wDNNF but there exists j (1 ≤ j ≤ n) such that
ζ(Xn

j+1,X
n

j+1,Y) is satisfiable. Let Xn
j+1 = σ, X

n

j+1 = κ and Y = θ be a
satisfying assignment of ζ. We now consider the simplified circuit obtained by

substituting 1j−1 for Xj−1
1 as well as for X

j−1
1 , σ for Xn

j+1, κ for X
n

j+1 and θ

for Y in the AIG for F̂ . This simplification replaces the output of every internal
node with a constant (0 or 1), if the node evaluates to a constant under the
above assignment. Note that the resulting circuit can have only xj and xj as its
inputs. Furthermore, since the assignment satisfies ζ, it follows that the simpli-
fied circuit evaluates to 1 if both xj and xj are set to 1, and it evaluates to 0 if
any one of xj or xj is set to 0. This can only happen if there is a node labeled

∧ in the AIG representing F̂ with a path leading from the leaf labeled xj , and
another path leading from the leaf labeled ¬xj . This is a contradiction, since

F̂ is in wDNNF. Therefore, there is no j ∈ {1, . . . n} such that the condition of
Theorem 2(a) is violated. ut

In general, the candidate Skolem functions generated from the approxima-
tions discussed above may not always be correct. Indeed, the conditions discussed
above are only sufficient, but not necessary, for the approximations to be exact.
Hence, we need a separate check to see if our candidate Skolem functions are cor-
rect. To do this, we use an error formula εΨ(X′,X,Y) ≡ F (X′,Y)∧

∧n
i=1(xi ↔

ψi)∧¬F (X,Y), as described in [23], and check its satisfiability. The correctness
of this check depends on the following result from [23].

Theorem 3 ([23]). εΨ is unsatisfiable iff Ψ is a correct Skolem function vector.



Algorithm 1: bfss

Input: F̂ (X,Y) in NNF (or wDNNF) with inputs |Y| = m, outputs |X| = n,
Output: Candidate Skolem Functions Ψ = (ψ1, . . . , ψn)

1 Initialize: Fix sets U0 = U1 = ∅;
2 repeat
3 // Repeatedly checks for Unate variables

4 for each xi ∈ X \ (U0 ∪ U1) do

5 if F̂ is positive unate in xi // check xi pure or η+i (Eq 1) SAT ;
6 then

7 F̂ := F̂ [xi = 1], U1 = U1 ∪ {xi}

8 else if F̂ is negative unate in xi // ¬xi pure or η− (Eq 2)SAT ;
9 then

10 F̂ := F̂ [xi = 0], U0 = U0 ∪ {xi}

11 until F is unchanged // No Unate variables remaining;
12 Choose an ordering � of X // Section 6 discusses ordering used;
13 for each xi ∈ X in � order do
14 if xi ∈ Uj for j ∈ {0, 1} // Assume x1 � x2 � . . . xn;
15 then
16 ψi = j

17 else
18 ψi is as defined in (Eq 3)

19 if error formula εΨ is UNSAT then
20 terminate and output Ψ

21 else
22 call Phase 2

We now combine all the above ingredients to come up with algorithm bfss
(for Blazingly Fast Skolem Synthesis), as shown in Algorithm 1. The algorithm
can be divided into three parts. In the first part (lines 2-11), unateness is checked.
This is done in two ways: (i) we identify pure literals in F by simply examining
the labels of leaves in the DAG representation of F in NNF, and (ii) we check
the satisfiability of the formulas η+i and η−i , as defined in Eqn 1 and Eqn 2.
This requires invoking a SAT solver in the worst-case, and is repeated at most
O(n2) times until there are no more unate variables. Hence this requires O(n2)
calls to a SAT solver. Once we have done this, by Proposition 1, the constants
1 or 0 (for positive or negative unate variables respectively) are correct Skolem
functions for these variables.

In the second part, we fix an ordering of the remaining output variables
according to an experimentally sound heuristic, as described in Section 6, and
compute candidate Skolem functions for these variables according to Equation 3.
We then check the satisfiability of the error formula εΨ to determine if the
candidate Skolem functions are indeed correct. If the error formula is found to



be unsatisfiable, we know from Theorem 3 that we have the correct Skolem
functions, which can therefore be output. This concludes phase 1 of algorithm
bfss. If the error formula is found to be satisfiable, we move to phase 2 of
algorithm bfss – an adaptation of the CEGAR-based technique described in [23],
and discussed briefly in Section 5. It is not difficult to see that the running time
of phase 1 of �is polynomial in the size of the input, relative to an NP-oracle (SAT
solver in practice). This also implies that the Skolem functions generated can
be of at most polynomial size. Finally, from Theorem 2(2) we also obtain that
if F is in wDNNF, Skolem functions generated in phase 1 are correct. From the
above reasoning, we obtain the following properties of phase 1 of bfss:

Theorem 4. 1. For all unate variables, phase 1 of bfss computes correct
Skolem functions.

2. If F̂ is in wDNNF, phase 1 of bfss computes all Skolem functions correctly.
3. The running time of phase 1 of bfss is polynomial in input size, relative to

an NP-oracle. Specifically, the algorithm makes O(n2) calls to an NP-oracle.
4. The candidate Skolem functions output by phase 1 of bfss have size at most

polynomial in the size of the input.

Discussion: We make two crucial and related observations. First, by our hard-
ness results in Section 3, we know that the above algorithm cannot solve BFnS
for all inputs, unless some well-regarded complexity-theoretic conjectures fail.
As a result, we must go to phase 2 on at least some inputs. Surprisingly, our
experiments show that this is not necessary in the majority of benchmarks.

The second observation tries to understand why phase 1 works in most cases
in practice. While a conclusive explanation isn’t easy, we believe Theorem 2
explains the success of phase 1 in several cases. By [15], we know that all Boolean
functions have a DNNF (and hence wDNNF) representation, although it may take
exponential time to compute this representation. This allows us to define two
preprocessing procedures. In the first, we identify cases where we can directly
convert to wDNNFand use the Phase 1 algorithm above. And in the second, we
use several optimization scripts available in the ABC [26] library to optimize the

AIG representation of F̂ . For a majority of benchmarks, this appears to yield
a representation of F̂ that allows the proof of Theorem 2(a) to go through. For
the rest, we apply the Phase 2 algorithm as described below.

Quantitative guarantees of “goodness” Given our theoretical and practical
insights of the applicability of phase 1 of bfss, it would be interesting to measure
how much progress we have made in phase 1, even if it does not give the correct
Skolem functions. One way to measure this “goodness” is to estimate the number
of counterexamples as a fraction of the size of the input space. Specifically, given
the error formula, we get an approximate count of the number of models for this
formula projected on the inputs Y. This can be obtained efficiently in practice
with high confidence using state-of-the-art approximate model counters, viz. [13],
with complexity in BPPNP. The approximate count thus obtained, when divided
by 2|Y| gives the fraction of input combinations for which the candidate Skolem



function output by phase 1 doesn’t work correctly. We call this the goodness
ratio of our approximation.

5 Phase 2: Counterexample-guided refinement

For phase 2, we can use any off-the-shelf worst-case exponential-time Skolem
function generator. However, given that we already have candidate Skolem func-
tions with guarantees on their “goodness”, it is natural to use them as starting
points for phase 2. Hence, we start off with candidate Skolem functions for all xi
as computed in phase 1, and then update (or refine) them in a counterexample-
driven manner. Intuitively, a counterexample is a value of the inputs Y for which
there exists a value of X that renders F (X,Y) true, but for which F (Ψ,Y) eval-
uates to false. As shown in [23], given a candidate Skolem function vector, every
satisfying assignment of the error formula εΨ gives a counterexample. The re-
finement step uses this satisfying assignment to update an appropriate subset of
the approximate δi and γi functions computed in phase 1. The entire process is
then repeated until no counterexamples can be found. The final updated vector
of Skolem functions then gives a solution of the BFnS problem. Note that this
idea is not new [23, 3] The only significant enhancement we do over the algorithm
in [23] is to use an almost-uniform sampler [12] to efficiently sample the space
of counterexamples almost uniformly. This allows us to do refinement with a
diverse set of counterexamples, instead of using counterexamples in a corner of
the solution space of εΨ that the SAT solver heuristics zoom down on.

6 Experimental results

Experimental methodology. Our implementation consists of two parallel
pipelines that accept the same input specification but represent them in two
different ways. The first pipeline takes the input formula as an AIG and builds
an NNF (not necessarily wDNNF) DAG, while the second pipeline builds an
ROBDD from the input AIG using dynamic variable reordering (no restrictions
on variable order), and then obtains a wDNNF representation from it using the
linear-time algorithm described in [15]. Once the NNF/wDNNF representation
is built, we use Algorithm 1 in Phase 1 and CEGAR-based synthesis using
UniGen[12] to sample counterexamples in Phase 2. We call this ensemble of
two pipelines as bfss. We compare bfss with the following algorithms/tools: (i)
parSyn [3], (ii) Cadet [35], (iii) RSynth [39], and (iv) AbsSynthe-Skolem
(based on the BFnS step of AbsSynthe [10]).

Our implementation of bfss uses the ABC [26] library to represent and ma-
nipulate Boolean functions. Two different SAT solvers can be used with bfss:
ABC’s default SAT solver, or UniGen [12] (to give almost-uniformly distributed
counterexamples). All our experiments use UniGen.

We consider a total of 504 benchmarks, taken from four different domains:
(a) forty-eight Arithmetic benchmarks from [17], with varying bit-widths (viz.



32, 64, 128, 256, 512 and 1024) of arithmetic operators, (b) sixty-eight Disjunc-
tive Decomposition benchmarks from [3], generated by considering some of the
larger sequential circuits in the HWMCC10 benchmark suite, (c) five Factoriza-
tion benchmarks, also from [3], representing factorization of numbers of different
bit-widths (8, 10, 12, 14, 16), and (d) three hundred and eighty three QBFEval
benchmarks, taken from the Prenex 2QBF track of QBFEval 2017 [32]2. Since
different tools accept benchmarks in different formats, each benchmark was con-
verted to both qdimacs and verilog/aiger formats. All benchmarks and the
procedure by which we generated (and converted) them are detailed in [1]. Re-
call that we use two pipelines for bfss. We use “balance; rewrite -l; refactor -l;
balance; rewrite -l; rewrite -lz; balance; refactor -lz; rewrite -lz; balance” as the
ABC script for optimizing the AIG representation of the input specification. We
observed that while this results in only 4 benchmarks being in wDNNF in the
first pipeline, 219 benchmarks were solved in Phase 1 using this pipeline. This
is attributable to specifications being unate in several output variables, and also
satisfying the condition of Theorem 2(a) (while not being in wDNNF). In the
second pipeline, however, we could represent 230 benchmarks in wDNNF, and
all of these were solved in Phase 1.

For each benchmark, the order � (ref. step 12 of Algorithm 1) in which
Skolem functions are generated is such that the variable which occurs in the
transitive fan-in of the least number of nodes in the AIG representation of the
specification is ordered before other variables. This order (�) is used for both
bfss and parSyn. Note that the order � is completely independent of the
dynamic variable order used to construct an ROBDD of the input specification
in the second pipeline, prior to getting the wDNNF representation.

All experiments were performed on a message-passing cluster, with 20 cores
and 64 GB memory per node, each core being a 2.2 GHz Intel Xeon processor.
The operating system was Cent OS 6.5. Twenty cores were assigned to each
run of parSyn. For RSynth and Cadet a single core on the cluster was used,
since these tools don’t exploit parallel processing. Each pipeline of bfss was
executed on a single node; the computation of candidate functions, building of
error formula and refinement of the counterexamples was performed sequentially
on 1 thread, and UniGen had 19 threads at its disposal (idle during Phase 1).

The maximum time given for execution of any run was 3600 seconds. The
total amount of main memory for any run was restricted to 16GB. The metric
used to compare the algorithms was time taken to synthesize Boolean functions.
The time reported for bfss is the better of the two times obtained from the alter-
native pipelines described above. Detailed results from the individual pipelines
are available in [2].

Results. Of the 504 benchmarks, 177 benchmarks were not solved by any tool
– 6 of these being from arithmetic benchmarks and 171 from QBFEval.

Table 1 gives a summary of the performance of bfss (considering the com-
bined pipelines) over different benchmarks suites. Of the 504 benchmarks, bfss

2 The track contains 384 benchmarks, but we were unsuccessful in converting 1 bench-
mark to some of the formats required by the various tools.



Benchmark Total # Benchmarks Phase 1 Phase 2 Solved By
Domain Benchmarks Solved Solved Started Phase 2
QBFEval 383 170 159 73 11
Arithmetic 48 35 35 8 0
Disjunctive

Decomposition 68 68 66 2 2
Factorization 5 5 5 0 0

Table 1: bfss: Performance summary of combined pipelines

was successful on 278 benchmarks; of these, 170 are from QBFEval, 68 from
Disjunctive Decomposition, 35 from Arithmetic and 5 from Factorization.

Of the 383 benchmarks in the QBFEval suite, we ran bfss only on 254 since
we could not build succinct AIGs for the remaining benchmarks. Of these, 159
benchmarks were solved by Phase 1 (i.e., 62% of built QBFEval benchmarks)
and 73 proceeded to Phase 2, of which 11 reached completion. On another 11
QBFEval benchmarks Phase 1 timed out. Of the 48 Arithmetic benchmarks,
Phase 1 successfully solved 35 (i.e., ∼ 72%) and Phase 2 was started for 8
benchmarks; Phase 1 timed out on 5 benchmarks. Of the 68 Disjunctive De-
composition benchmarks, Phase 1 successfully solved 66 benchmarks (i.e., 97%),
and Phase 2 was started and reached completion for 2 benchmarks. For the 5
Factorization benchmarks, Phase 1 was successful on all 5 benchmarks.

Recall that the goodness ratio is the ratio of the number of counterexamples
remaining to the total size of the input space after Phase 1. For all benchmarks
solved by Phase 1, the goodness ratio is 0. We analyzed the goodness ratio at
the beginning of Phase 2 for 83 benchmarks for which Phase 2 started. For 13
benchmarks this ratio was small (< 0.002), and Phase 2 reached completion for
these. Of the remaining benchmarks, 34 also had a small goodness ratio (< 0.1),
indicating that we were close to the solution at the time of timeout. However,
27 benchmarks in QBFEval had goodness ratio close to > 0.9, indicating that
most of the counter-examples were not eliminated by timeout.

We next compare the performance of bfss with other state-of-art tools. For
clarity, since the number of benchmarks in the QBFEval suite is considerably
greater, we plot the QBFEval benchmarks separately.

bfss vs Cadet: Of the 504 benchmarks, Cadet was successful on 241 bench-
marks, of which 24 belonged to Disjunctive Decomposition, 22 to Arithmetic, 1
to Factorization and 184 to QBFEval. Figure 1(a) gives the performance of the
two algorithms with respect to time on the QBFEval suite. Here, Cadet solved
35 benchmarks that bfss could not solve, whereas bfss solved 21 benchmarks
that could not be solved by Cadet. Figure 1(b) gives the performance of the
two algorithms with respect to time on the Arithmetic, Factorization and Dis-
junctive Decomposition benchmarks. In these categories, there were a total of
62 benchmarks that bfss solved that Cadet could not solve, and there was 1
benchmark that Cadet solved but bfss did not solve. While Cadet takes less
time on Arithmetic benchmarks and many QBFEval benchmarks, on Disjunctive
Decomposition and Factorization, bfss takes less time.
bfss vs parSyn: Figure 2 shows the comparison of time taken by bfss and
parSyn. parSyn was successful on a total of 241 benchmarks, and could solve
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Fig. 1: bfss vs Cadet: Legend: Q: QBFEval, A: Arithmetic, F: Factorization,
D: Disjunctive Decomposition. TO: benchmarks for which the corresponding
algorithm was unsuccessful.
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Fig. 2: bfss vs parSyn (for legend see Figure 1)

1 benchmark which bfss could not solve. On the other hand, bfss solved 94
benchmarks that parSyn could not solve. From Figure 2, we can see that on most
of the Arithmetic, Disjunctive Decomposition and Factorization benchmarks,
bfss takes less time than parSyn.

bfss vs RSynth: We next compare the performance of bfss with RSynth. As
shown in Figure 3, RSynth was successful on 51 benchmarks, with 4 benchmarks
that could be solved by RSynth but not by bfss. In contrast, bfss could solve
229 benchmarks that RSynth could not solve! Of the benchmarks that were
solved by both solvers, we can see that bfss took less time on most of them.

bfss vs AbsSynthe-Skolem: AbsSynthe-Skolem was successful on 215
benchmarks, anc could solve 34 benchmarks that bfss could not solve. In con-
trast, bfss solved a total of 87 benchmarks that AbsSynthe-Skolem could not.
Figure 4 shows a comparison of running times of bfss and AbsSynthe-Skolem.
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Fig. 3: bfss vs RSynth (for legend see Figure 1)

7 Conclusion
In this paper, we showed some complexity-theoretic hardness results for the
Boolean functional synthesis problem. We then developed a two-phase approach
to solve this problem, where the first phase, which is an efficient algorithm gen-
erating poly-sized functions surprisingly succeeds in solving a large number of
benchmarks. To explain this, we identified sufficient conditions when phase 1
gives the correct answer. For the remaining benchmarks, we employed the second
phase of the algorithm that uses a CEGAR-based approach and builds Skolem
functions by exploiting recent advances in SAT solvers/approximate counters.
As future work, we wish to explore further improvements in Phase 2, and other
structural restrictions on the input that ensure completeness of Phase 1.
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