
Eager Abstraction for Symbolic Model Checking

Kenneth L. McMillan

Microsoft Research

Abstract. We introduce a method of abstraction from infinite-state to
finite-state model checking based on eager theory explication and evalu-
ate the method in a collection of case studies.

1 Introduction

In constructing decision procedures for arithmetic formulas and other theories,
a successful approach has been to separate propositional reasoning and theory
reasoning in a modular way. This approach is usually called Satisfiability Mod-
ulo Theories, or SMT [1]. There are two primary approaches to SMT: eager and
lazy theory explication. Both approaches abstract the formula in question by con-
structing its propositional skeleton, that is, converting each atomic predicate to
a corresponding free Boolean variable. Obviously, propositional abstraction loses
a great deal of information. The eager approach compensates for this by con-
joining tautologies of the theory to the formula before propositional abstraction.
In abstract interpretation terms, we can think of this as a semantic reduction:
it makes the formula more explicit without changing its semantics. The lazy
approach, on the other hand, performs the propositional abstraction first, then
retroactively adds tautologies of the theory to rule out infeasible propositional
models.

In this paper, we will consider applying the same concepts to the symbolic
model checking problem (SMC). In this problem, we are given a Kripke model
M that is expressed implicitly using logical formulas, and a temporal formula φ,
and we wish to determine whether M |= φ. The states of the Kripke model are
structures of a logic L over a given vocabulary, while the set of initial states I and
the set of transitions T are expressed, respectively, by one- and two-vocabulary
formulas. The atomic propositions in φ are also presumed to be expressed in L.

In the case where L is propositional logic, the Kripke model is finite-state,
the SMC problem is PSPACE-complete, and many well-developed techniques
are available to solve it in a heuristically efficient way. On the other hand, if
L is a richer logic (say, Presburger arithmetic) SMC is usually undecidable.
Here, we propose to solve instances of this problem by separating propositional
reasoning and theory reasoning in a modular way, as in SMT. Given an SMC
problem (I, T, φ), we will form its propositional abstraction by computing the
propositional skeletons of I, T and φ. This abstraction is sound, and allows us to
apply well-developed tools for propositional SMC, however it loses a great deal
of information. To compensate for this loss, we will use incomplete eager theory

explication. By controlling theory explication, the user controls the abstraction.
We will call this general approach eager symbolic model checking, or ESMC.

Related work Because of the propositional abstraction, ESMC may at first
seem to be a form of predicate abstraction [9]. This is not the case, however.
Predicate abstraction uses a vocabulary of predicates to abstract the state, but
does not abstract the theory itself. As a result, a decision procedure for the
theory is needed to compute the best abstract transformer. This is problematic
if the logic is undecidable, and in any event requires an exponential number of
decision procedure calls in the worst case. In ESMC, the abstraction is performed
in a purely syntactic way. One controls the abstraction by giving a set of axiom
schemata to be instantiated and by introducing prophecy variables, as opposed
to giving abstraction predicates. One effect of this is that the abstraction may
depend on the precise syntactic expression of the transition relation.

The technique of “datatype reductions” [18] is also closely related. This
method has been used to verify various parameterized protocols and microarchi-
tectures using finite-state model checking [6, 5, 20, 12, 19]. The technique also ab-
stracts an infinite-state SMC problem to a finite-state one syntactically. Though
it does not do this by explicating the theory, we will see that the abstraction
it produces can be simulated by ESMC. Compared to this method, ESMC is
user-extensible and allows both a simpler theoretical account and a simpler im-
plementation. Moreover, it uses a smaller trusted computing base, since the
tautologies it introduces can be mechanically checked.

The methods of Invisible Invariants [25] and Indexed Predicate Abstrac-
tion [14] use different methods to compute the least fixed point in a finite abstract
domain of quantified formulas. This requires decidability and incurs a relatively
high cost for computing an extremal fixed point, limiting scalability (though IPA
can approximate the best transformer in the undecidable case). The abstractions
are also difficult to refine in practice.

Road map After preliminaries in the next section, we introduce our schema-
based class of abstractions in Section 3. The next section gives some useful
instantiations of this class. Section 5 describes a methodology for exploiting the
abstraction in proofs of infinite-state systems, as implemented in the IVy tool.
In Section 5, we evaluate the approach using case studies.

2 Preliminaries

Let FO=(S, Σ) be standard sorted first-order logic with equality, where S is a
collection of first-order sorts and Σ is a vocabulary of sorted non-logical symbols.
We assume a special sort B ∈ S that is the sort of propositions. Each symbol
fS ∈ Σ has an associated sort S of the form D1×· · ·×Dn → R, where Di, R ∈ S
and n ≥ 0 is the arity of the symbol. If n = 0, we say fS is a constant, and
if R = B it is a relation. We write vocab(t) for the set of non-logical symbols
occurring in term t.

Given a set of sorts S, a universe U maps each sort in S to a non-empty
set (with U(B) = {>,⊥}). An interpretation of a vocabulary Σ over universe U
maps each symbol fD1×···×Dn→R in Σ to a function in U(D1)× · · · ×U(Dn)→
U(R). A Σ-structure is a pair M = (U, I) where U is a universe and I is
an interpretation of Σ over U . The structure is a model of a proposition φ in
FO=(S, Σ) if φ evaluates to > under I according to the standard semantics of
first-order logic. In this case, we write M |= φ. Given an interpretation J with
domain disjoint from I, we write M,J to abbreviate the structure (U, I ∪ J).

In the sequel, we take the vocabulary Σ to be a disjoint union of four sets:
ΣS , the state symbols, Σ′S the primed symbols, ΣT the temporary symbols, and
ΣB , the background symbols. We take (·)′ to be a bijection ΣS → Σ′S and extend
it in the expected way to terms and interpretations. We write unprime(t) for the
term u such that u′ = t, if u exists.

A transition system is a pair (I, T) where I is a proposition over ΣS ∪ ΣB

and T is a proposition over Σ. Let MB = (U, IB) be a ΣB-structure (that is,
fix the universe and the interpretation of the background symbols). A U -state
of the system is an interpretation of ΣS (the state symbols) over U . A MB-run
of the system is an infinite sequence s0, s1, . . . of U -states such that:

– MB , s0 |= I, and

– for all 0 ≤ i, there exists and interpretation IT of ΣT over U such that
MB , si, IT , s′i+1 |= T .

That is, under the background interpretation, the initial state must satisfy the
initial condition, and for every successive pair of states, there must be an inter-
pretation of the temporary symbols such that the transition condition is satis-
fied. The temporary symbols are used, for example, to model local variables of
procedures, and may also be Skolem symbols. Because they can have second-
order sort, we cannot existentially quantify them within the logic, so instead we
quantify them implicitly in the transition system semantics. Given a background
theory T over ΣB , a T -run is any MB-run such that MB |= T .

A linear temporal formula over Σ applies the operators of FO=(S, Σ) plus
the standard strict until operator U and strict since operator S. We define©φ =
⊥ U φ, �φ = φ ∧ ¬(> U ¬φ) and also Hφ = φ S ⊥, meaning “always φ in the
strict past”. We fix T and say (I, T) |= φ if every T -run of (I, T) satisfies φ
under the standard LTL semantics. The symbolic model checking problem SMC
is to determine whether (I, T) |= φ.

3 A schema-based abstraction class

An atom is a proposition in which every instance of {∧,∨,¬,U ,S} occurs under a
quantifier. The propositional skeleton of a proposition φ is obtained by replacing
each atom in φ by a corresponding propositional constant. The propositional
skeleton is an abstraction, in the sense that for every model M of φ we can
construct a model of its propositional skeleton from the truth values of each

atomic proposition in M . We will use propositional skeletons here to convert an
infinite-state model checking problem to a finite-state one.

We assume that each vocabulary ΣB , ΣS and ΣT contains a countably in-
finite set of propositional constants. This allows us to construct injections AB ,
AS , AT from atomic propositions of the logic to propositional constants in ΣB ,
ΣS and ΣT respectively.

In defining the propositional skeleton of a transition formula we must con-
sider atomic propositions containing symbols from more than one vocabulary. To
which vocabulary should we map such an atom in the propositional skeleton?
Here, we take a simple solution that is sound, though it may lose some state
information. That is, for any atomic proposition φ, we say

– if vocab(φ) ⊆ ΣB , then A(φ) = AB(φ),
– else if vocab(φ) ⊆ ΣB ∪ΣS then A(φ) = AS(φ)
– else if vocab(φ) ⊆ ΣB ∪Σ′S then A(φ) = AS(unprime(φ))′

– else A(φ) = AT (φ)

That is, pure background propositions are abstracted to background symbols,
state propositions are abstracted to state symbols and next-state propositions are
abstracted to the primed version of the corresponding state proposition. Every-
thing else is abstracted to a temporary symbol (which is existentially quantified
in the abstract transition relation).

We then extend A to non-atomic formulas in the obvious way, such that
A(φ ∧ ψ) = A(φ) ∧ A(ψ), A(©φ) = ©A(φ) and so on. The following theorem
shows that we can use propositional skeletons to convert infinite-state to finite-
state model checking problems in a sound (but incomplete) way:

Theorem 1. For any symbolic transition system (I, T) and linear temporal for-
mula φ, if (A(I),A(T)) |= A(φ) then (I, T) |= φ.

Intuitively, this holds because we can convert every concrete counterexample to
an abstract one by simply extracting the truth values of the atomic propositions.

Theory explication While propositional skeletons are sound, they lose a great
deal of information. For example, suppose our transition relation is y′ = x. Given
a predicate p, we would like to infer that p(x)⇒©p(y). However, in the propo-
sitional skeleton, the transition relation A(T) is just AT (y′ = x). In other words,
it is just a free propositional symbol with no relation to any other proposition.
Thus, we cannot prove the abstracted property A(p(x))⇒©A(p(y)).

To mitigate this loss of information, we use theory explication. That is, before
abstracting T , we conjoin to it tautologies of the logic or the background theory.
This doesn’t change the semantics of T , and thus the set of runs of the transition
system remains unchanged. It does, however, change the propositional skeleton.
For example, y′ = x∧ p(x)⇒ p(y′) is a tautology of the theory of equality. If we
conjoin this formula to T in the above example, the abstract transition relation
becomes AT (y′ = x) ∧ (AT (y′ = x) ∧ AS(p(x)) ⇒ AS(p(y))′) which is strong
enough to prove the abstracted property.

In general, theory explication adds predicates to the abstraction. This is
the only mechanism we will use to add predicates; we will not supply them
manually, or obtain them automatically from counterexamples. The following
theorem justifies model checking with eager theory explication:

Theorem 2. For any symbolic transition system (I, T), linear temporal formula
φ, ΣB∪ΣS formula ψI and Σ formula ψT , if T |= ψI∧ψT then (I∧ψI , T∧ψT) |=
φ iff (I, T) |= φ.

The question, of course, is how to choose the tautologies in ψI and ψT . This is
not just a question of capturing the transition relation semantics, since theory
explication also determines the FO predicates representing state of the finite
abstraction. Thus, complete theory explication is at least as hard as predicate
discovery in predicate abstraction. Our goal is not to solve this problem, but to
find an effective incomplete strategy that is useful in practice. It is important
that the resulting finite-state model checking problems be easily resolved by a
modern model checker, and that in case the strategy fails, a human can use the
resulting counterexample and effectively refine the abstraction.

Schema-based theory explication The basic approach we will use to con-
trolling theory explication is a restricted case of the pattern-based quantifier
instantiation method introduced in the Simplify prover [8]. That is, we are given
a set of axioms, and for each axiom a set of triggers. A trigger is a term (or
terms) containing all of the free variables in the axiom. The trigger is matched
against all ground subterms in the formula being explicated. Each match induces
an instance of the axiom.

In our example above, suppose we have the axiom Y = X ∧ p(X) ⇒ p(Y)
with a trigger Y = X (here and in the sequel, capital letters will stand for free
variables). The trigger Y = X matches the ground term y′ = x in T which
generates the ground instance y′ = x ∧ p(x) ⇒ p(y′). Since we match modulo
the symmetry of equality, we also get x = y′ ∧ p(y′)⇒ p(x).

A risk of trigger-based instantiation is the matching loop. For example, if
we have the axiom f(X) > X + 1 with a trigger f(X), then we can generate
an infinite sequence of instantiations: f(y) > y + 1, f(f(y)) > f(y) + 1 and so
on. A simple approach to prevent this is to bound the number of generations
of matching. In practice, we will use just one generation and expand the set
axioms in cases where more than one generation is needed. This has the benefit
of keeping the number of generated terms small, which limits the size of the
SMC problem and also makes it easier for users to understand counterexamples.

To avoid having to write a large number of axioms, we specify the axioms
using general schemata. A schema is a parameterized axiom. It takes a list of
sorts and symbols as parameters and yields an axiom. In the sequel we will use s
and t to stand for sort parameters. As an example, here is a general congruence
schema that can be used in place of our axiom above:

f : s→ t
X = Y ⇒ f(X) = f(Y) {X = Y }

The trigger is in curly braces. We first instantiate the axiom schemata for all
possible parameter valuations using the sorts and symbols of the concrete system.
Then we ground the resulting axioms using pattern-based instantiation.

One further technique is needed, however, to ground the quantifiers occur-
ring in the formula being explicated. Quantifiers usually occur in the transition
relations of parameterized systems either in the guards of guarded commands
or in state updates. As an example, suppose a given command sets the state of
process p to ‘ready’. This would appear in the transition formula as a constraint
such as the following:

∀x. state′(x) = ready if x = p else state(x)

If this quantifier is not instantiated, then all information about process state will
be lost. To avoid this, we would like to apply the following schema:

y : s, p : s→ B
(∀X. p(X))⇒ p(y) {∀X. p(X)}

Here we intend that p should match any predicate with one free variable and not
just a predicate symbol (including non-temporal sub-formulas of the property
to be proved). However, rather than implement a general second-order matching
scheme, it is simpler to build this particular schema into the theory explication
process. There is some question as to which ground terms to supply for the
parameter y. As with other schemata, only constants are used in the current
implementation. This appears to be adequate, but it might also be useful to
allow the user to supply explicit triggers for quantifiers in the transition system
or property.

The theory explication process thus has three steps:

1. Instantiate quantifiers in the formulas using the quantifier schema above.
2. Generate axioms from the user axiom schemata, supplying symbols from the

formulas as parameters.
3. Instantiate the axioms using triggers for one generation.

Notice this is a slight departure from the policy of one generation of matching,
since terms generated in step 1 can be used to match axioms in step 3. This is
important in practice since without grounding the quantifiers there may be no
ground terms to match in step 3.

4 Example abstractions in the class

A typical approach to verifying parameterized protocols with finite-state model
checking is to track the state of a representative fixed collection of processes and
abstract away the state of the remaining processes. In this approach, introduced
in [17], a small collection background constants (typically two or three) is used
to identify the tracked processes. For each process identifier in the system, the
abstraction records whether it is equal to each of the tracked ids, but carries no

further information. For each function f over process ids, the abstraction main-
tains the value of f(x) only if x is equal to one of the background constants. This
approach has been used, for example, to verify processor micro-architectures [17,
16, 12] and cache coherence protocols [6, 5, 19].

This abstraction can be implemented using schema-based instantiation. The
high-level idea is to create a set of schemata that make it possible to abstractly
evaluate terms in a bottom-up manner.

For example, consider an occurrence t = u of the equality operator where t
and u are terms of sort s. The abstract value of this term is > if t and u are
both equal to some background constant c, ⊥ if t = c and u 6= c, and otherwise
is unknown. To implement this abstraction, we use the following schemata:

c : s
X = c ∧ Y = c⇒ X = Y {X = Y }

c : s
X = c ∧ Y 6= c⇒ X 6= Y {X = Y }

The triggers of these two schemata cause them to be applied to every occurrence
of an equality operator in the formula being abstracted.

For an application f(t) of a function symbol, the abstract value is the abstrac-
tion of f(c) if t is equal to background constant c, and is otherwise unknown.
This fact could be captured by chaining the congruence schema above with the
above two equality schemata. That is, matching the congruence schema, we ob-
tain t = c ⇒ f(t) = f(c). Then matching the equality operator schemata with
this result, we obtain (in the contrapositive) f(t) = f(c) ∧ f(c) = d⇒ f(t) = d
and f(t) = f(c) ∧ f(c) 6= d ⇒ f(t) 6= d (for any background constants c, d).
Recall, however, that we allow only one generation of matching, so this second
matching step will not occur. Instead, we write the above two facts explicitly as
a schema:

c : s, d : t, f : s→ t
X = c⇒ (f(X) = d⇔ f(c) = d) {f(X)}

This schema is matched for every application of a symbol of arity one in the
formula. We also specify similar schemata for arities greater than one. Notice that
this schema also applies to relation symbols if we treat > and ⊥ as background
constants of sort B. However, for relations and functions to finitely enumerated
sorts, it is more efficient to use the congruence schema, since it produces fewer
instances.

Finally, we need one additional schema to guarantee that the abstract values
are consistent with the equality relation on the background constants:

c : s, d : s
X = c⇒ (X = d⇔ c = d) {X}

Notice that this axiom is instantiated for every term in the formula (though
in practice not for propositions). Though it doesn’t affect satisfiability of for-
mulas, it is also helpful to add reflexivity, symmetry and transitivity over the
background constants as it makes the resulting counterexamples easier to un-
derstand.

These schemata produce an abstraction of the formula that is at least as
strong as the datatype reduction for scalarset types described in [18]. In fact, this
is true if we restrict the application of the schemata to constants c and d in the
set of background constants, which we do in practice. The cost of the abstraction
is moderate, since the number of axiom instances is directly proportional to the
size of the formula and to the number of background constants.

An advantage of the schema-based explication approach is that we can use
it to construct abstractions for various datatypes and even use different abstrac-
tions of the same datatype for different applications. As an example, consider
an abstraction for totally ordered datatypes such as the integers. We want the
abstraction to track, for any term t of this sort, whether it is equal to, less than
or greater than each background constant. The abstract value of a term t is cap-
tured by the values of the predicates t < c and t = c for background constants c.
We begin with the abstract semantics of equality given above. The abstract se-
mantics of the < relation can be given by the following schemata (where t ≤ c
is an abbreviation for t < c ∨ t = c):

c : s
X ≤ c ∧ c < Y ⇒ X < Y {X < Y }

c : s
X < c ∧ c ≤ Y ⇒ X < Y {X < Y }

c : s
Y ≤ c ∧ ¬(X < c)⇒ ¬(X < Y) {X < Y }

By chaining the congruence schema with these, we can obtain the abstract se-
mantics of function application, but again we wish to limit the number of match-
ing generations to one. Thus, as with equality, we write an explicit schema com-
bining the two steps:

c : s, d : t, f : s→ t
X = c⇒ (f(X) < d⇔ f(c) < d) {f(X)}

We also require that the abstract value of every term be consistent with the
interpretation of = and < over the background constants. This gives us:

c : s
¬(X = c ∧X < c) {X}

c : s, d : t
X ≤ d ∧ ¬(X < c)⇒ c ≤ d {X}

With the equality schemata, these imply that the background constants are
totally ordered. As an extension, if the totally ordered sort has a least element 0,
we can add it as a background constant along with the axiom ¬(X < 0).

This abstraction is a bit weaker than the “ordset” abstraction used, for exam-
ple, in [20]. We can simulate that abstraction by adding schemata that interpret
the + operator, and facts about numeric constants such as 0 < 1. In general, for
a given datatype, we can tailor an abstraction that captures just the properties
of that type needed to prove a given system property. This extensibility makes
the schema-based approach more flexible and possibly more efficient than the
built-in abstractions of [18]. The above schemata have been verified by Z3.

5 Proof methodology

In the previous sections, we developed an approach to produce a sound finite-
state abstraction of an infinite-state system using eager theory explication and
propositional skeletons. Now we consider how to construct proofs of systems
using this approach. This section is essentially a summary of some results in [18].

The first question that arises is how to obtain the set of background constants
that determine the abstraction. Generally speaking these arise as prophecy vari-
ables. For example, suppose we wish to prove a mutual exclusion property of the
form �∀x, y. p(x) ∧ p(y) ⇒ x = y. To do this, we replace the bound variables
x and y with fresh background constants a and b, to obtain the quantifier-free
property �p(a) ∧ p(b) ⇒ a = b. In effect a and b are immutable prophecy vari-
ables that predict the values of x and y for which the property will fail. By
introducing prophecy variables, we refine the abstraction so that it tracks the
state of the pair of processes that ostensibly cause the mutual exclusion property
to fail. We hope, of course, to prove that there are no such processes. We apply
the following theorem to introduce prophecy variables soundly:

Theorem 3. Let (I, T) be a symbolic transition system, x:s a variable, φ(x) a
temporal formula and v:s a background symbol not occurring in I, T, φ. Then
(I, T) |= �∀x. φ(x) iff (I, T) |= �φ(v).

This theorem can be applied as many times as needed to eliminate universal
quantifiers from an invariance property. Further refinement can be obtained if
needed by manually adding prophesy variables. For example, suppose that each
process x has a ticket number t(x), and we wish to track the ticket number held
by process a at the time of the failure. To do this, we replace our property with
the property � c = t(a)⇒ (p(a) ∧ p(b)⇒ a = b) where c is a fresh background
constant. In general, we can introduce additional prophecy variables using this
theorem:

Theorem 4. Let (I, T) be a transition system, φ a temporal formula and t a
term. Then (I, T) |= �φ iff (I, T) |= �∀x. x = t⇒ φ, where x is not free in φ.

The theorem can be applied repeatedly to introduce as many prophecy variables
as needed to refine the abstraction. The introduced quantifiers can be converted
to background symbols by the preceding theorem.

Since our abstraction tracks the state of only processes a and b, a protocol
step in which an untracked process sends a message to a or b is likely to produce
an incorrect result in the abstraction. To mitigate this problem, we assume by
induction over time that our universally quantified invariant property φ has
always held in the strict past. This makes use of the following theorem:

Theorem 5. Let (I, T) be a symbolic transition system, and φ a temporal for-
mula. Then (I, T) |= �φ iff (I, T) |= � (Hφ)⇒ φ.

The quantifiers in φ will be instantiated with ground terms in T . Thus, in our
mutual exclusion example, we can rely on the fact that the sender of a past

message (identified by some temporary symbol) is not in its critical section if
either a or b are. Using induction in this way can mitigate the loss of information
in the finite abstraction. Note we can pull quantifiers out of the above implica-
tion in order to apply Theorem 3. That is, (H∀x. φ) ⇒ ∀x.φ is equivalent to
∀x. (H∀x. φ)⇒ φ.

If the above tactics fail to prove an invariant property because the abstraction
loses too much information, we can strengthen the invariant by adding conjuncts
to it. These conjuncts have been called “non-interference lemmas”, since they
serve to reduce the interference with the tracked processes that is caused by loss
of information about the untracked processes. We use the following theorem:

Theorem 6. Let (I, T) be a symbolic transition system, and φ, ψ temporal for-
mulas. Then if (I, T) |= �φ ∧ ψ then (I, T) |= �φ.

The general proof approach has the following steps:

1. Strengthen the invariant property (manually) with Theorem 6.
2. Apply temporal induction with Theorem 5.
3. Add quantifiers to the invariant with Theorem 4.
4. Convert the invariant quantifiers to background symbols with Theorem 3.
5. Add tautologies to the system using Theorem 2 and specified schemata.
6. Abstract to a finite-state SMC problem using Theorem 1.
7. Apply a finite-state symbolic model checker to check the property.

Implementation in IVy This approach has been implemented in the IVy
tool [15]. In IVy, the state of the model is expressed in terms of mutable functions
and relations over primitive sorts. The language is procedural, and allows the
expression of protocol models as interleavings of atomic guarded commands, the
semantics of which is expressible in first-order logic.

To implement the approach, IVy’s language was augmented with a syntax
for expressing schemata. The schemata of Section 4 were added to the tool’s
standard library. Syntax is also provided to decorate invariant assertions with
terms to be used as prophecy variables. IVy extends the above theory slightly
by allowing invariant properties to be asserted not only between commands,
but also in the middle of sequential commands. This can be convenient, since it
allows invariants to reference local variables inside the commands.

With this input, the tool applies the six transformation steps detailed above
to produce a purely propositional SMC problem. This problem is then converted
to the AIGER format [2], a standard for hardware model checking. At present,
the system only handles safety properties of the form �(Hφ) ⇒ φ, where φ is
non-temporal. The AIGER format does support liveness, however, and this is
planned as a future extension.

The resulting AIGER file is passed to the tool ABC [4] which uses its im-
plementation of property driven reachability [10] to check the property. The
counterexample, if any, is converted back to a run of the abstract transition
system. The propositional symbols in this run are converted back to the corre-
sponding atoms by inverting the abstraction mapping A. This yields an abstract

counterexample: a sequence of predicate valuations that correspond to both the
state and temporary symbols in the abstraction.

The abstract counterexample may be spurious in the sense that it corresponds
to no run of the concrete transition system. In this case, the user must analyze
the trace to determine where necessary information was lost and either modify
the invariant or refine the abstraction by adding a prophecy variable.

6 Case studies

In this section, we consider the proof of safety properties of four parameterized
algorithms and protocols. We wish to address three main questions. First, is
the abstraction approach efficient? That is, if we construct an abstract model
using schema-based theory explication, can the resulting finite-state problem be
solved using a modern symbolic model checker? Second, is the methodology us-
able? That is, can a human user construct a proof using the methodology by
analyzing the abstract counterexamples? Third, when is it more effective than
the current best alternative, which is to write an inductive invariant manually
and check it using an SMT solver, as in [11]? We will call this approach “in-
variant checking”. We note that predicate abstraction is not suitable to these
examples because the invariants require complex quantified formulas while cur-
rent methods that synthesize quantified invariants for parameterized systems are
unreliable in practice and do not scale well.

The last question in particular has not been well addressed in prior work on
model checking approaches to parameterized verification. In most cases, either no
comparison was made, or comparison was made to proofs using general-purpose
proof assistants, which tend to be extremely laborious and do not make use
of current state-of-the art proof automation techniques. To make a reasonably
direct comparison, we construct proofs of each model using both methodologies,
using the same language and tool, using the state-of-the art tools ABC [4] for
model checking and Z3 [7] for invariant checking.

To apply the invariant checking method, some of the protocol models have
been slightly re-encoded. In particular, it is helpful in some cases to use relations
rather than functions in modeling the protocol state, as this can prevent the
prover from diverging in a “matching loop” [8]. This re-encoding adds negligibly
to the proof effort and is arguably harmless, since it does not appear in practice
to affect the difficulty of refining the model to a concrete implementation.

Our four example models are:

1. Tomasulo: a parameterized model of Tomasulo’s algorithm for out-or-order
instruction execution, taken from [17].

2. German: a model of a simple directory-based cache coherence protocol
from [6].

3. FLASH: a model of a more complex and realistic cache coherence protocol
from [23, 19], based on the Stanford FLASH multiprocessor [13].

4. VS-Paxos: a model of Virtually Synchronous Paxos [3], a distributed con-
sensus algorithm, from [21].

model checking invariant checking
model size |Inv| HVars PVars |Pf| time |Inv| HVars |Pf| time

Tomasulo 1245 100 6 11 248 0.39 318 5 398 2.4
German 754 23 1 0 29 0.60 234 1 240 1.8
FLASH 2427 81 3 2 122 69 1235 1 1255 9.1
VS-Paxos 1442 224 8 34 512 23 1022 2 1101 59

Table 1. Comparison of proofs using two methodologies.

A comparison of the proofs obtained using the two methodologies is shown in
Table 1. The column “size” shows the textual size of the model plus property in
lexical tokens. The columns labeled |Inv| give the size of the auxiliary invariants
used in the proofs, expressed in the number of lexical tokens not including the
property to be proved. Since both methods require the user to supply auxiliary
invariants and discovering this invariant is the largest part of the effort in both
cases, this number provides a fairly direct comparison of the complexity of the
proofs. In both methodologies, the user also defines history or “ghost” variables
that help in expressing the invariant. The number of these variables is shown
in the columns labeled HVars. In the model checking approach, the user also
refines the abstraction by defining prophecy variables. These were not used in
the invariant checking proofs. The closest analogy in invariant checking proofs to
this type of information would be quantifier instantiations or triggers provided
by the user. This was not needed, however, since the methodology of [22] was
applied to ensure that all verification conditions reside in a decidable fragment
of the logic. For the model checking methodology, the number of distinct terms
supplied by the user as prophecy variables is shown in the column labeled PVars.
The time columns show the total time in seconds for model checking or invariant
checking for the completed proofs on a 2.6 GHz Intel Xeon CPU using one core.
Times to produce counterexamples were generally faster.

When measuring the overall complexity of the proofs, it is unclear how to
weight the three kinds of information supplied by the user. In a sense, prophecy
variables are the easiest to handle, since their behavior is monotone. That is,
adding a prophecy variable only increases precision so it cannot cause passing
invariants to fail. Ghost variables are more conceptually difficult to introduce,
since the invariants depend on them. If a ghost variable definition is changed to
repair a failing invariant, this may cause a different invariant to fail. Similarly if
we strengthen a passing invariant, it may fail to be proved and if we weaken a
failing one it may cause other formerly passing invariants to fail. This instability
can cause the manual proof search to fail to converge and is the chief cause of
conceptual difficulty in constructing proofs in both methodologies. Having said
this, for lack of a principled way to weight the different aspects of the proof effort,
we will measure the proof size as simply the sum of the number of lexical tokens
in the auxiliary invariant, the history variable definitions, and all terms used as
prophecy variables. The total proof size is shown in the columns labeled |Pf|.

These numbers should be taken as unreliable for several reasons that are
common to any attempt to measure the effectiveness of a proof methodology.
First, the size of the proof (or any other measure of the proof difficulty, such
as expended time) can depend on the proficiency of the user in the particular
methodology. Even if the same user produces both proofs, the user’s proficiency
in the two methodologies may differ, and knowledge gained in the first proof
will effect the second one. Since resources were not available to train and test a
statistically significant population users in both methodologies (assuming such
could be found) the numbers presented here should not be considered a direct
comparison of the methods. Rather, they are presented to support some obser-
vations made below about the specific case studies and proofs.

Case study: Tomasulo’s algorithm This is a simple abstract model of a
processor microarchitecture that executes instructions concurrently out of order.
The model state consists of a register file, a set of reservation stations (RS) and
a set of execution units (EU) and is parameterized on the size of each of these,
as well as the data word size. The machine’s instructions are register-to-register
and are modeled abstractly by an uninterpreted function. Each register has a
flag that records whether it is the destination of a pending instruction. If so, its
tag indicates which RS is holding that instruction. Each RS stores the tags of
its instruction arguments, and waits for these to be computed before issuing the
instruction to an EU.

Both proofs are based on history variables that record the correct values of
arguments and result for each RS. The principal invariant of both states that
the arguments obtained by all RS’s are correct. In the model checking case, the
abstraction is refined by making the tags of these arguments and chosen EU into
prophecy variables. This allows the model checker to track enough state infor-
mation to prove the main invariant, though one additional “non-interference”
lemma is needed to guarantee that other EU’s do not interfere by producing an
incorrect tag. An interesting aspect of the invariant is that it does not refer to
the states of the register file or EU’s. The necessary invariants of these structures
can be inferred by the model checker. On the other hand, this information must
be supplied explicitly in the manual invariant. As the table shows, the resulting
invariant is more complex.

Case study: German’s cache protocol This simple distributed directory-
based cache coherence protocol allows the caches to communicate directly only
with the directory. The property proved is coherence, in effect that exclusive
copies are exclusive. In the model checking proof, there is one non-interference
lemma, stating that no cache produces a spurious invalidation acknowledgment
message. No extra prophecy variables are need, as tracking the state of just the
two caches that produce the coherence failure suffices. The manual invariant on
the other hand is much more detailed, in fact about an order of magnitude larger.
This is because it must relate the state of all the various types of messages in

the network to the cache and directory states. These relationships were inferred
automatically by the model checker, resulting in a much simpler proof.

Case study: FLASH cache coherence protocol This is a much more com-
plex (and realistic) distributed cache coherence protocol model. The increased
protocol complexity derives from the fact that information can be transferred
directly from one cache to another. In a typical transaction, a cache sends a
request to the directory for (say) an exclusive copy of a cache line. The directory
forwards the request to the current owner of the line, which then sends a copy
to the original requester, as well as a response to the directory confirming the
ownership transfer. Handling various race conditions in this scheme makes both
the protocol and its proof complex. Again the property proved is coherence.
The model checking proof is similar to [19], though there data correctness and
liveness were proved.

In this case, three non-interference lemmas are used in the model checking
proof, ruling out three types of spurious messages. Also two additional prophecy
variables are needed. For example, one of these identifies the cache that sent
an exclusive copy. This allows the abstraction to track the state of the third
participant in the triangular transaction described above. Generally, protocols
with more complex communication patterns require more prophecy variables to
refine the abstraction.

As with German’s protocol, and for the same reason, the manual invariant
is an order of magnitude larger. In this case, the additional protocol complexity
makes it quite challenging to converge to an invariant and a large number of
strengthenings and weakenings were needed.

Case study: Virtually Synchronous Paxos This is a high-level model of
a distributed consensus protocol, designed to allow a collection of processes to
agree on a sequence of decisions, despite process and network failures. This model
was previous proved by a manual invariant to be consistent, meaning that two
decisions for a given index never disagree [21].

The protocol operates in a sequence of epochs, each of which has a leader
process. The leader proposes decision values and any proposal that receives votes
of a majority of processes becomes a decision. When the leader fails the protocol
must move on to a new epoch. For consistency, any decisions that are possibly
made in the old epoch must be preserved in the new. This is accomplished by
choosing a majority of processes to start the new epoch and preserving all of
their votes. Any decision having a majority of votes in the old epoch must have
one voter in the new epoch’s starting majority and thus must be preserved. The
choice of an epoch’s starting majority is itself a single-decree consensus problem.
This is solved in a sequence of rounds called “stakes”. A stake can be created by
a majority of processes and proposes the votes of some majority to be carried to
the next epoch. Each process in the stake promises not accept any lesser stake
with differing votes. If a majority accepts the stake, then the votes of that stake
can be passed to the next epoch.

The important auxiliary invariants of the model checking proof are these:

– At each epoch, the votes of the majority that ends the epoch are known to
the leaders of all future epochs, and

– When a stake is created, every lesser stake with different votes is “dead” in
the sense that a majority of nodes has promised not to accept it, and

– In any epoch, any two accepted stakes agree on their votes.

Perhaps not surprisingly, the manual invariant is much larger. The model check-
ing proof, however, requires many extra prophecy variables. This is mainly ac-
counted for by the fact that the model has seven unbounded sorts: process id’s,
decision indices, decision values, epochs, stakes, vote sets and process sets. Typi-
cally each invariant (including the one to be proved) requires one or two prophecy
variables of each sort to refine the abstraction (though some of these may not
be unique).

An additional complication is dealing with sets and majorities. Sets of pro-
cesses are represented by an abstract data type. This type provides a predicate
called ‘majority’ that indicates that a set contains more than half of the pro-
cess id’s. A function ‘common’ returns a common element between two sets if
both are majorities (and is otherwise undefined). For example, to prove that
we cannot have two conflicting decisions, we use the majorities that voted for
each decision and declare the common process between these majorities as a
prophecy variable. It then suffices to show that this particular process cannot
have voted for both decisions (which requires the auxiliary invariants above).
Since majorities are used in several places in the protocol, this tactic is applied
several times.

Because of the larger number of prophecy variables, our (admittedly arbi-
trary) measure of overall proof complexity does not show as much advantage
for model checking in this protocol as it does for the cache protocols. In fact,
getting the details right in this proof was much more difficult subjectively than
for FLASH.

This difficulty may be related to the two sorts in the model that are totally or-
dered: epochs and stakes. For these sorts we use the schemata for totally ordered
sets detailed in Section 4. The ordering of these sorts introduces some difficulty
in the proof, requiring more detailed invariants. For example, suppose we want
to show that the first invariant above holds at the moment when a given process
leaves one epoch and enters the next. The votes received at the epoch depend
on all the previous epochs. We cannot however, make all of the unboundedly
many lesser epochs concrete by adding a finite number of prophecy variables.
This means our property must be inductive over epochs, that is, it holds now if
it held in the past at the start of some particular epoch we can identify (perhaps
the previous one). The need to write invariants that are inductive over ordered
datatypes may account for the the fact that the VS-Paxos invariant is more
complex than that of the more complex FLASH protocol.

Discussion We can make several general observations about these case studies.
First, the performance of the finite-state model checker was never problematic.

It always produced results in a reasonable amount of time and was not the bot-
tleneck in constructing any of the proofs. Rather the most time-consuming task
was usually analyzing the abstract counterexamples. This task proved tractable
in practice, allowing the proof search process to converge.

Second, the invariants used in the model checking approach are generally
much smaller than the manual ones because of the model checker’s ability to
infer state invariants.

This advantage may be somewhat offset by the need to provide prophecy
variables to refine the abstraction, especially in the case where there are many
unbounded sorts. Moreover, the need to write properties that are inductive over
ordered sorts may lessen the advantage of model checking in invariant complexity.
This was evident in the case of VS-Paxos and to some extent in Tomasulo as
well, because of the implicit induction over the instruction stream. These criteria
may be helpful in deciding which approach to take to a given proof problem.

Finally, it is interesting to note that the schemata presented in Section 4
proved adequate in all cases. That is, in no case was it necessary to add a
schema to refine the abstraction of the transition relation. This indicates there
is no need in practice to restrict to decidable logics or pay the cost of computing
best transformers.

7 Conclusion

We have presented a method of abstracting parameterized or infinite-state SMC
problems to finite-state problems based on propositional skeletons and eager
theory explication. The method is extensible in the sense that users can add
abstractions (or refine existing abstractions) by providing axiom schemata. It
generalizes the ‘datatype reduction’ approach of [18] while giving both a simpler
theoretical account and allowing a simpler implementation. Compared to predi-
cate abstraction, it has the advantage that it can be applied to undecidable logics
and does not require a costly decision procedure in the loop. The approach has
been implemented in the IVy tool. Based on some case studies, we found that
the approach is practical and requires substantially less complex auxiliary in-
variants than inductive invariant checking. We identified some conditions under
which the approach is likely to be most effective.

Conceivably some of the tasks performed here by a human could be auto-
mated. However, the resulting system would be liable to fail unpredictably and
opaquely. The present approach is an attempt to create a usable trade-off be-
tween human input and reliability.

The next step is to implement liveness. Recent work has constructed liveness
proofs in IVy by an infinite-state liveness-to-safety reduction, but the proofs are
complex [21]. It would interesting to compare this to an approach that leverages
a finite-state model checker’s ability to prove liveness.

References

1. Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfia-
bility modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby
Walsch, editors, Handbook of Satisfiability, chapter 12, pages 737–797. IOS Press,
2008.

2. Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond. Tech-
nical Report 11/2, Institute for Formal Models and Verification, Johannes Kepler
University, July 2011.

3. Ken Birman, Dahlia Malkhi, and Robbert van Renesse. Virtually synchronous
methodology for dynamic service replication. Technical Report MSR-TR-2010-
151, Microsoft Research, November 2010.

4. Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-strength
verification tool. In Tayssir Touili, Byron Cook, and Paul B. Jackson, editors, Com-
puter Aided Verification, 22nd International Conference, CAV 2010, Edinburgh,
UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer
Science, pages 24–40. Springer, 2010.

5. Xiaofang Chen, Yu Yang, Ganesh Gopalakrishnan, and Ching-Tsun Chou. Reduc-
ing verification complexity of a multicore coherence protocol using assume/guaran-
tee. In Formal Methods in Computer-Aided Design, 6th International Conference,
FMCAD 2006, San Jose, California, USA, November 12-16, 2006, Proceedings,
pages 81–88. IEEE Computer Society, 2006.

6. Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A simple method
for parameterized verification of cache coherence protocols. In Alan J. Hu and An-
drew K. Martin, editors, Formal Methods in Computer-Aided Design, 5th Inter-
national Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004,
Proceedings, volume 3312 of Lecture Notes in Computer Science, pages 382–398.
Springer, 2004.

7. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340, 2008.

8. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

9. Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS.
In Orna Grumberg, editor, Computer Aided Verification, 9th International Con-
ference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of
Lecture Notes in Computer Science, pages 72–83. Springer, 1997.

10. Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Better generalization in IC3.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 157–164. IEEE, 2013.

11. Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving prac-
tical distributed systems correct. In Ethan L. Miller and Steven Hand, editors,
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages 1–17. ACM, 2015.

12. Ranjit Jhala and Kenneth L. McMillan. Microarchitecture verification by composi-
tional model checking. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Computer Aided Verification, 13th International Conference, CAV 2001, Paris,
France, July 18-22, 2001, Proceedings, volume 2102 of Lecture Notes in Computer
Science, pages 396–410. Springer, 2001.

13. Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum, and John L. Hennessy. The stanford
FLASH multiprocessor. In David A. Patterson, editor, Proceedings of the 21st An-
nual International Symposium on Computer Architecture. Chicago, IL, USA, April
1994, pages 302–313. IEEE Computer Society, 1994.

14. Shuvendu K. Lahiri and Randal E. Bryant. Constructing quantified invariants via
predicate abstraction. In Bernhard Steffen and Giorgio Levi, editors, Verification,
Model Checking, and Abstract Interpretation, 5th International Conference, VM-
CAI 2004, Venice, January 11-13, 2004, Proceedings, volume 2937 of Lecture Notes
in Computer Science, pages 267–281. Springer, 2004.

15. Kenneth L. McMillan. IVy. http://microsoft.github.io/ivy/. Accessed: 2018-01-28.
16. Kenneth L. McMillan. Circular compositional reasoning about liveness. In Pierre

and Kropf [24], pages 342–345.
17. Kenneth L. McMillan. Verification of infinite state systems by compositional model

checking. In Pierre and Kropf [24], pages 219–234.
18. Kenneth L. McMillan. A methodology for hardware verification using composi-

tional model checking. Sci. Comput. Program., 37(1-3):279–309, 2000.
19. Kenneth L. McMillan. Parameterized verification of the FLASH cache coherence

protocol by compositional model checking. In Tiziana Margaria and Thomas F.
Melham, editors, Correct Hardware Design and Verification Methods, 11th IFIP
WG 10.5 Advanced Research Working Conference, CHARME 2001, Livingston,
Scotland, UK, September 4-7, 2001, Proceedings, volume 2144 of Lecture Notes in
Computer Science, pages 179–195. Springer, 2001.

20. Kenneth L. McMillan, Shaz Qadeer, and James B. Saxe. Induction in compositional
model checking. In E. Allen Emerson and A. Prasad Sistla, editors, Computer
Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA,
July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Science,
pages 312–327. Springer, 2000.

21. Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made EPR:
decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1–
108:31, 2017.

22. Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. Ivy: safety verification by interactive generalization. In Chandra Krintz
and Emery Berger, editors, Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, pages 614–630. ACM, 2016.

23. Seungjoon Park and David L. Dill. Verification of FLASH cache coherence protocol
by aggregation of distributed transactions. In SPAA, pages 288–296, 1996.

24. Laurence Pierre and Thomas Kropf, editors. Correct Hardware Design and Ver-
ification Methods, 10th IFIP WG 10.5 Advanced Research Working Conference,
CHARME ’99, Bad Herrenalb, Germany, September 27-29, 1999, Proceedings, vol-
ume 1703 of Lecture Notes in Computer Science. Springer, 1999.

25. Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. Automatic deductive verifica-
tion with invisible invariants. In Tiziana Margaria and Wang Yi, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 7th International Con-
ference, TACAS 2001 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceed-
ings, volume 2031 of Lecture Notes in Computer Science, pages 82–97. Springer,
2001.

