
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

JBMC: A Bounded Model Checking Tool for
Verifying Java Bytecode?

Lucas Cordeiro1,2[0000−0002−6235−4272],
Pascal Kesseli1,

Daniel Kroening1,2[0000−0002−6681−5283],
Peter Schrammel1,3[0000−0002−5713−1381], and

Marek Trtik1

1 Diffblue Ltd, Oxford, United Kingdom
2 University of Oxford, Oxford, United Kingdom

3 University of Sussex, Brighton, United Kingdom

Abstract. We present a bounded model checking tool for verifying Java
bytecode, which is built on top of the CPROVER framework, named Java
Bounded Model Checker (JBMC). JBMC processes Java bytecode together
with a model of the standard Java libraries and checks a set of desired
properties. Experimental results show that JBMC can correctly verify
a set of Java benchmarks from the literature and that it is competitive
with two state-of-the-art Java verifiers.

1 Introduction

The Java Programming Language is a general-purpose, concurrent, strongly typed,
object-oriented language [13]. Applications written in Java are compiled to the
bytecode instruction set and binary format as defined in the Java Virtual Machine
(JVM) specification. This compiled Java bytecode can run on all platforms on
top of a JVM without the need for recompilation. However, Java programs may
have bugs, which may result in array bound violations, unintended arithmetic
overflows, and other kinds of functional and runtime errors. In addition, Java
allows multi-threading, and thus, problems such as race conditions and deadlocks
can occur.

To detect such issues, we developed an extension to the C Bounded Model
Checker (CBMC) [6], named JBMC,4 that verifies Java bytecode. JBMC consists
of a frontend for parsing Java bytecode and a Java operational model (JOM),
which is an exact but verification-friendly model of the standard Java libraries.
A distinct feature of JBMC, when compared with other approaches [2,7,9], is
the use of Bounded Model Checking (BMC) [4] in combination with Boolean
Satisfiability and Satisfiability Modulo Theories (SMT) [3] and full symbolic
state-space exploration, which allows us to perform a bit-accurate verification
of Java programs. Apart from JBMC, there are other Java verifiers, which use
different verification approaches.
? Support by ERC project 280053 CPROVER and the H2020 FET OPEN 712689 SC2.
4 Available at https://www.cprover.org/jbmc/

https://www.cprover.org/jbmc/


Parse
classes

Convert
to GOTO

Symbolic
Execution Solver

Fig. 1: JBMC verification process

Existing Java Verifiers. JayHorn is a verifier for Java bytecode [9] that uses
the Java optimization framework Soot [14] as a front-end and then produces a set
of constrained Horn clauses to encode the verification condition (VC). Java Path
Finder (JPF) is an explicit-state and symbolic software model checker for Java
bytecode [2]. JPF is used to find and explain defects, collect runtime information
as coverage metrics, deduce test vectors, and create corresponding test drivers for
Java programs. JPF checks for property violations such as deadlocks or unhandled
exceptions along all potential execution paths as well as user-specified assertions.
ESC/Java is a compile-time extended static checker, which detects common
programming errors (e.g., null dereference, array bounds errors, and type cast
errors) [7]. It uses an automatic theorem prover to catch bugs that go beyond the
abilities of the Java type checker, including runtime errors and synchronization
errors in concurrent programs.

2 JBMC: A Bounded Model Checker for Java Bytecode

2.1 Architecture and Implementation

Our front-end integrates a class loader, which accepts Java bytecode class files
and jar archives. The parse trees for the classes are translated into the CPROVER
CFG representation, which is called a GOTO program [6].

To handle polymorphism, JBMC encodes virtual method dispatch into a
switch over the runtime type information attached to the object in order to select
the correct method to be called. Similarly, the complex control flow arising from
exceptions is encoded into conditional branches. We record the exception thrown
in a global variable, which is then used to propagate the exception up the call
stack until a matching catch statement (if any) to handle the error is reached.
JBMC can detect when the JVM would abort due to an exception that is not
caught within the program.

The resulting GOTO program is then passed to the bounded model check-
ing algorithm for finding bugs. The BMC algorithm symbolically executes the
program, unwinding loops and unfolding recursive function calls up to a given
bound. The resulting bit-vector formula is then passed on to the configured SAT
or SMT solver [6].

2.2 Java Operational Model

The Java language relies on compiler-generated functions and classes as well
as a large standard library. In order to correctly support Java functionality,
we developed an abstract representation of the standard Java libraries, called
the operational model (OM). The use of OMs is commonplace in analysers for



Java; for instance, a similar approach was previously proposed for the formal
verification of Android applications [12]. Currently, our OM consists of models
of the most common classes from java.lang and a few from java.util. Our Java
OM simplifies the implementation of the standard Java library by removing
verification-irrelevant performance optimizations (e.g., in the implementation
of container classes), exploiting declarative specifications (using assume) and
functions that are built into the CPROVER framework (e.g., for array and string
manipulation). We are continuously extending our OM to speed up verification
by replacing the original standard Java library classes by our models.

Java has an assert(c) statement for specifying safety properties. In addition,
we provide API classes that allow users to define non-deterministic verification
harnesses and stub functions. The API contains such methods for primitive
types (e.g., int nondetInt()) and generic methods (i.e., parametrised by a
type T) as <T> T nondetWithNull() and <T> T nondetWithoutNull() to non-
deterministically initialize object references that may or may not be null. The
API also provides an assume(c) method, which advises JBMC to ignore paths
that do not satisfy a user-specified condition c.

Currently, JBMC handles neither the Java Native Interface, which allows
Java code to interface native libraries, nor reflection, which allows the program to
inspect and manipulate itself at runtime. We are currently extending JBMC to
support generics and lambdas; and to verify multi-threaded Java programs (that
use java.lang.Thread), exploiting the partial order encoding technique of [1].

2.3 String Solver

One of the biggest challenges in verifying Java programs is the widespread use of
character strings, which makes verification problems resulting from Java programs
highly complex. Solving such constraints is an active area of research [5,8,11].
JBMC implements a solver for strings to determine the satisfiability of a set
of constraints involving string operations. Our string solver supports the most
common basic accesses (e.g., obtain the length of a string and a character at
a given position); comparisons (e.g., lexicographic comparison and equality);
transformations (e.g., insertion, concatenation, replacement, and removal); and
conversions (e.g., conversion of the primitive data types into a string and parsing
them from a string). The axioms for these operations use quantified constraints.
For instance, a Java expression s.substring(5) is translated into a predicate
substring(res, s, 5), where res, s are pairs (length, charArray), representing the
resulting and the input string s, respectively; and substring is axiomatized by
the formula ∀i.(0 ≤ i ∧ i < s.length − 5) → (res.length = s.length − 5) ∧
(res.charArray[i] = s.charArray[i + 5]). The universal quantifiers are handled
using quantifier elimination [10].

2.4 JBMC Usage

Runtime errors in Java (e.g., illegal memory access) are detected by the JVM and
an appropriate exception is thrown (e.g., NullPointerException, ArrayIndex-
OutOfBoundsException). An AssertionError is thrown on violation of a condition



specified by the programmer using the assert keyword. JBMC analyzes the
program and verifies whether such error conditions occur.

JBMC can be used to analyze a single class file:5 jbmc C.class --unwind k or
a Java archive (jar) file: jbmc file.jar --main-class class --unwind k. In both
cases the entry point for the analysis of the program is the static void main
method of the specified main class. k is a positive integer limiting the number of
times loops are unwound and recursions are unfolded. If no bug is found, up to a
k-depth unwinding, then JBMC reports VERIFICATION SUCCESSFUL; otherwise,
it reports VERIFICATION FAILED along with a counterexample in the form of an
execution trace (--trace), which contains the full variable assignment in each
program state with file, method, and line information. Note that if the Java
bytecode is compiled with debug information, then JBMC can also provide the
original program variable names in the counterexample, rather than just bytecode
variable slots. Further JBMC options can be retrieved via jbmc --help.

3 Experimental Evaluation

(a) JBMC suite (b) Recursive suite

Corr
ect

 sa
fe

Corr
ect

 unsaf
e

Incor
rec

t sa
fe

Incor
rec

t u
nsaf

e

Tim
eou

t
Erro

r

Tools per result types

0

10

20

30

40

50

60

70

80

Co
un

t o
f b

en
ch

ma
rks

41

76

84
79

82

23

4
1

62

43

9
3 1 3

0

9
6 5

Correctness of tools on benchmarks suite 'jbmc'.
JayHorn
JBMC
JPF

Corr
ect

 sa
fe

Corr
ect

 unsaf
e

Incor
rec

t sa
fe

Incor
rec

t u
nsaf

e

Tim
eou

t
Erro

r

Tools per result types

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
un

t o
f b

en
ch

ma
rks

7

2

14

7

3
2

0 0

3
2

0 0

4

18

3 3

0
1

Correctness of tools on benchmarks suite 'recursive'.
JayHorn
JBMC
JPF

(c) JPF suite (d) MinePump suite

Corr
ect

 sa
fe

Corr
ect

 unsaf
e

Incor
rec

t sa
fe

Incor
rec

t u
nsaf

e

Tim
eou

t
Erro

r

Tools per result types

0

10

20

30

40

50

Co
un

t o
f b

en
ch

ma
rks

4

5252
50

52

42

1 0

8

47

0 0 0 0 0
2

0
2

Correctness of tools on benchmarks suite 'jpf'.
JayHorn
JBMC
JPF

Corr
ect

 sa
fe

Corr
ect

 unsaf
e

Incor
rec

t sa
fe

Incor
rec

t u
nsaf

e

Tim
eou

t
Erro

r

Tools per result types

0

10

20

30

40

50

60

Co
un

t o
f b

en
ch

ma
rks

0

8 8

1

5252

0
4 4

0 0 0

62

0 0 1 0 0

Correctness of tools on benchmarks suite 'minepump'.
JayHorn
JBMC
JPF

Fig. 2: Verification results for JayHorn, JBMC and JPF

5 If a class C is in a package x.y, then compile it to some-dir/x/y/C.class, and in
some-dir execute jbmc-installation-dir/jbmc x/y/C.class --unwind k.



10−1 100 101 10210−1

100

101

102

JBMC faster

JayHorn faster

timeout

tim
eo
ut

JBMC (time in seconds)

Ja
yH

or
n
(t
im

e
in

se
co
nd

s)

Safe Unsafe

10−1 100 101 10210−1

100

101

102

JBMC faster

JPF faster

timeout

tim
eo
ut

JBMC (time in seconds)

JP
F
(t
im

e
in

se
co
nd

s)

Safe Unsafe

Fig. 3: Runtime comparison of JBMC to JayHorn and JPF

There is no standard benchmark suite for Java verification. Therefore, we took
our entire regression test suite consisting of 177 benchmarks (including known bugs
and hard benchmarks that JBMC cannot yet handle); these benchmarks (denoted
as “jbmc”) test common Java features (e.g., polymorphism, exceptions, arrays,
and strings). We also used 23 recursive benchmarks (denoted as “recursive”)
taken from the JayHorn repository [9], and 64 minepump benchmarks (denoted
as “minepump”) from the SV-COMP repository. Additionally, we have extracted
104 benchmarks from the JPF regression test suite [2]. The following table
summarizes the characteristics of the benchmark sets:6

benchmark set total safe unsafe avg. LOC

jbmc 177 89 88 25
jpf 104 52 52 52
recursive 23 14 9 35
minepump 64 8 56 62

total 368 163 205 40

3.1 Objectives and Setup

Our experiments aim at answering two research questions: [RQ1] (correctness)
How accurate is JBMC when verifying the chosen benchmarks? [RQ2] (per-
formance) How does JBMC performance compare to other existing verifiers?
To answer both questions, we analyze all benchmarks with three Java verifiers
(JBMC v5.8-cav18, JayHorn v0.5.1, and JPF v32) on an Intel Core i7-6700 CPU
8 × 3.40 GHz, with 32 GB of RAM, running Ubuntu 16.04 LTS. We restrict
CPU time and memory to 300 s and 15GB, respectively. JBMC uses a stepwise
approach to unwinding loops (to prove unbounded safety) and runs with MiniSat2
as its SAT backend.
6 Benchmarks and detailed results are available at https://www.cprover.org/jbmc.

https://www.cprover.org/jbmc


3.2 Results

Figure 2 gives an overview of the experimental results for the four benchmark
suites. Correct safe means that the program was analyzed to be free of errors,
correct unsafe means that the error in the program was found, incorrect safe
means that the program had an error but the verifier did not find it, incorrect
unsafe means that an error is reported for a program that fulfills the specification,
timeout indicates that the verifier has exceeded the time limit, and error represents
an internal failure in the verifier or exhaustion of available memory. The following
table summarizes the overall results:

correct incorrect
total safe unsafe total safe unsafe timeout error

JayHorn 189 52 137 97 5 92 67 15
JBMC 327 138 189 14 5 9 21 6
JPF 277 158 119 80 77 3 3 8

The experimental results show that JBMC reached a successful verification
rate of approximately 89% while JayHorn reported 51% and JPF 75%, which
positively answers RQ1. JayHorn and JPF currently produce 6 times more
incorrect results (i.e., bugs in the tool) than JBMC. To answer RQ2, Figure 3
compares the analysis times for the benchmarks where the tools return correct
results. None of the three tools is consistently better than the other two. JBMC
is faster than JPF on 176 benchmarks, JPF is faster than JBMC on 93. JBMC is
faster than JayHorn on 222 benchmarks, whereas JayHorn is faster than JBMC
on 25. In comparison to JayHorn, JBMC deals poorly with recursion, as its
analysis led to timeout for 69% of the recursive benchmarks, whereas JayHorn
could only solve a single benchmark from the minepump benchmark suite. In
summary, we observed that JBMC’s scalability depends mainly on the complexity
of string operations, loops, recursion and (floating-point) arithmetic.

4 Conclusions and Future Work

Despite more than 15 years of research in BMC and Java verification, JBMC
is the first BMC-based Java verifier. To achieve this, we based our implemen-
tation on an industrial-strength verification framework, and developed a Java
OM, removing verification-irrelevant optimizations and exploiting declarative
specifications and built-in functions. Because of the prevalent use of character
strings in Java programs, we have also developed a string solver using an efficient
quantifier elimination scheme. We compare JBMC to JayHorn and JPF, which
are state-of-the-art verifiers for Java bytecode based on constrained Horn clauses
and path-based symbolic execution, respectively. Experimental results show that
JBMC achieves a successful verification rate of 89% compared to 51% of JayHorn
and 75% of JPF. For future work, the Java OM will be extended to support more
Java classes, with the goal of speeding up verification of larger Java applications.
In addition, we are currently extending JBMC to verify multi-threaded programs.

Acknowledgments. We thank P. Rümmer and W. Visser for helpful discussions
about JayHorn and JPF, respectively.



References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model
checking of concurrent software. In: CAV. LNCS, vol. 8044, pp. 141–157 (2013).
https://doi.org/10.1007/978-3-642-39799-8_9

2. Anand, S., Pasareanu, C.S., Visser, W.: JPF-SE: A symbolic execution extension
to Java PathFinder. In: TACAS. LNCS, vol. 4424, pp. 134–138 (2007). https:
//doi.org/10.1007/978-3-540-71209-1_12

3. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories,
Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 26, pp. 825–885.
IOS Press (Feb 2009)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

5. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the ReplaceAll function. PACMPL 2(POPL), 3:1–3:29 (2018).
https://doi.org/10.1145/3158091

6. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: TACAS. LNCS, vol. 2988, pp. 168–176 (2004). https://doi.org/10.1007/
978-3-540-24730-2_15

7. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
PLDI 2002: Extended static checking for Java. SIGPLAN Notices 48(4S), 22–33
(2013). https://doi.org/10.1145/2502508.2502520

8. Holík, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4:1–4:32
(2018). https://doi.org/10.1145/3158092

9. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A framework for verify-
ing Java programs. In: CAV. LNCS, vol. 9779 (2016). https://doi.org/10.1007/
978-3-319-41528-4_19

10. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: HVC. LNCS, vol. 8244, pp. 15–31 (2013)

11. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient SMT solver for string constraints. Formal Methods in System Design 48(3),
206–234 (2016). https://doi.org/10.1007/s10703-016-0247-6

12. van der Merwe, H., Tkachuk, O., van der Merwe, B., Visser, W.: Generation of
library models for verification of Android applications. ACM SIGSOFT Software
Engineering Notes 40(1), 1–5 (2015). https://doi.org/10.1145/2693208.2693247

13. Oracle: JavaT M programming language. https://docs.oracle.com/javase/8/docs/
technotes/guides/language/index.html (2017), accessed: 31-01-2018

14. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot – a
Java bytecode optimization framework. In: CASCON. p. 13. IBM Press (1999)

10.1145/2502508.2502520
10.1145/2693208.2693247
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html

	JBMC: A Bounded Model Checking Tool for Verifying Java Bytecode

