
Layered Concurrent Programs

Bernhard Kragl1 and Shaz Qadeer2

1 IST Austria, Klosterneuburg, Austria
2 Microsoft Research, Redmond, USA

Abstract. We present layered concurrent programs, a compact and
expressive notation for specifying refinement proofs of concurrent pro-
grams. A layered concurrent program specifies a sequence of connected
concurrent programs, from most concrete to most abstract, such that
common parts of different programs are written exactly once. These
programs are expressed in the ordinary syntax of imperative concur-
rent programs using gated atomic actions, sequencing, choice, and (re-
cursive) procedure calls. Each concurrent program is automatically ex-
tracted from the layered program. We reduce refinement to the safety
of a sequence of concurrent checker programs, one each to justify the
connection between every two consecutive concurrent programs. These
checker programs are also automatically extracted from the layered pro-
gram. Layered concurrent programs have been implemented in the Civl
verifier which has been successfully used for the verification of several
complex concurrent programs.

1 Introduction

Refinement is an approach to program correctness in which a program is ex-
pressed at multiple levels of abstraction. For example, we could have a sequence
of programs P1, . . . ,Ph,Ph+1 where P1 is the most concrete and the Ph+1 is the
most abstract. Program P1 can be compiled and executed efficiently, Ph+1 is
obviously correct, and the correctness of Pi is guaranteed by the correctness of
Pi+1 for all i ∈ [1, h]. These three properties together ensure that P1 is both ef-
ficient and correct. To use the refinement approach, the programmer must come
up with each version Pi of the program and a proof that the correctness of Pi+1

implies the correctness of Pi. This proof typically establishes a connection from
every behavior of Pi to some behavior of Pi+1.

Refinement is an attractive approach to the verified construction of complex
programs for a number of reasons. First, instead of constructing a single mono-
lithic proof of P1, the programmer constructs a collection of localized proofs
establishing the connection between Pi and Pi+1 for each i ∈ [1, h]. Each local-
ized proof is considerably simpler than the overall proof because it only needs to
reason about the (relatively small) difference between adjacent programs. Sec-
ond, different localized proofs can be performed using different reasoning meth-
ods, e.g., interactive deduction, automated testing, or even informal reasoning.



P1

C1

P2 Pi

Ci

Pi+1

· · ·
Ph

Ch

Ph+1

· · ·

abstraction refinement

Fig. 1. Concurrent programs Pi and connecting checker programs Ci represented by a
layered concurrent program LP.

Finally, refinement naturally supports a bidirectional approach to correctness—
bottom-up verification of a concrete program via successive abstraction or top-
down derivation from an abstract program via successive concretization.

This paper explores the use of refinement to reason about concurrent pro-
grams. Most refinement-oriented approaches model a concurrent program as a
flat transition system, a representation that is useful for abstract programs but
becomes increasingly cumbersome for a concrete implementation. To realize the
goal of verified construction of efficient and implementable concurrent programs,
we must be able to uniformly and compactly represent both highly-detailed and
highly-abstract concurrent programs. This paper introduces layered concurrent
programs as such a representation.

A layered concurrent program LP represents a sequence P1, . . . ,Ph,Ph+1 of
concurrent programs such that common parts of different programs are written
exactly once. These programs are expressed not as flat transition systems but in
the ordinary syntax of imperative concurrent programs using gated atomic ac-
tions [4], sequencing, choice, and (recursive) procedure calls. Our programming
language is accompanied by a type system that allows each Pi to be automat-
ically extracted from LP. Finally, refinement between Pi and Pi+1 is encoded
as the safety of a checker program Ci which is also automatically extracted from
LP. Thus, the verification of P1 is split into the verification of h concurrent
checker programs C1, . . . , Ch such that Ci connects Pi and Pi+1 (Figure 1).

We highlight two crucial aspects of our approach. First, while the programs Pi
have an interleaved (i.e., preemptive) semantics, we verify the checker programs
Ci under a cooperative semantics in which preemptions occur only at procedure
calls. Our type system [5] based on the theory of right and left movers [10] en-
sures that the cooperative behaviors of Ci cover all preemptive behaviors of Pi.
Second, establishing the safety of checker programs is not tied to any particu-
lar verification technique. Any applicable technique can be used. In particular,
different layers can be verified using different techniques, allowing for great flex-
ibility in verification options.

1.1 Related Work

This paper formalizes, clarifies, and extends the most important aspect of the de-
sign of Civl [6], a deductive verifier for layered concurrent programs. Hawblitzel
et al. [7] present a partial explanation of Civl by formalizing the connection be-
tween two concurrent programs as sound program transformations. In this paper,

2



we provide the first formal account for layered concurrent programs to represent
all concurrent programs in a multi-layered refinement proof, thereby establishing
a new foundation for the verified construction of concurrent programs.

Civl is the successor to the Qed [4] verifier which combined a type system for
mover types with logical reasoning based on verification conditions. Qed enabled
the specification of a layered proof but required each layer to be expressed in
a separate file leading to code duplication. Layered programs reduce redundant
work in a layered proof by enabling each piece of code to be written exactly once.
Qed also introduced the idea of abstracting an atomic action to enable attaching
a stronger mover type to it. This idea is incorporated naturally in layered pro-
grams by allowing a concrete atomic action to be wrapped in a procedure whose
specification is a more abstract atomic action with a more precise mover type.

Event-B [1] is a modeling language that supports refinement of systems ex-
pressed as interleaved composition of events, each specified as a top-level transi-
tion relation. Verification of Event-B specifications is supported by the Rodin [2]
toolset which has been used to model and verify several systems of industrial
significance. TLA+ [9] also specifies systems as a flat transition system, enables
refinement proofs, and is more general because it supports liveness specifications.
Our approach to refinement is different from Event-B and TLA+ for several
reasons. First, Event-B and TLA+ model different versions of the program as
separate flat transition systems whereas our work models them as different lay-
ers of a single layered concurrent program, exploiting the standard structuring
mechanisms of imperative programs. Second, Event-B and TLA+ connect the
concrete program to the abstract program via an explicitly specified refinement
mapping. Thus, the guarantee provided by the refinement proof is contingent
upon trusting both the abstract program and the refinement mapping. In our
approach, once the abstract program is proved to be free of failures, the trusted
part of the specification is confined to the gates of atomic actions in the concrete
program. Furthermore, the programmer never explicitly specifies a refinement
mapping and is only engaged in proving the correctness of checker programs.

The methodology of refinement mappings has been used for compositional
verification of hardware designs [11,12]. The focus in this work is to decompose
a large refinement proof connecting two versions of a hardware design into a
collection of smaller proofs. A variety of techniques including compositional rea-
soning (converting a large problem to several small problems) and customized
abstractions (for converting infinite-state to finite-state problems) are used to
create small and finite-state verification problems for a model checker. This work
is mostly orthogonal to our contribution of layered programs. Rather, it could be
considered an approach to decompose the verification of each (potentially large)
checker program encoded by a layered concurrent program.

2 Concurrent Programs

In this section we introduce a concurrent programming language. The syntax of
our programming language is summarized in Figure 2.

3



Val ⊇ B
v ∈ Var = GVar ∪ LVar

I,O, L ⊆ LVar
σ ∈ Store = Var → Val
e ∈ Expr = Store → Val
t ∈ Trans = 2Store×Store

A ∈ Action
P,Q ∈ Proc
ι, o ∈ IOMap = LVar ⇀ LVar

gs ∈ 2GVar

as ∈ A 7→ (I,O, e, t)
ps ∈ P 7→ (I,O, L, s)
m ∈ Proc ∪Action
I ∈ 2Store

P ∈ Prog ::= (gs, as, ps,m, I)

s ∈ Stmt ::= skip | s ; s | if e then s else s | pcall (A, ι, o) (P, ι, o) (A, ι, o)

Fig. 2. Concurrent programs

Preliminaries. Let Val be a set of values containing the Booleans. The set of
variables Var is partitioned into global variables GVar and local variables LVar .
A store σ is a mapping from variables to values, an expression e is a mapping
from stores to values, and a transition t is a binary relation between stores.

Atomic actions. A fundamental notion in our approach is that of an atomic
action. An atomic action captures an indivisible operation on the program state
together with its precondition, providing a universal representation for both low-
level machine operations (e.g., reading a variable from memory) and high-level
abstractions (e.g., atomic procedure summaries). Most importantly for reasoning
purposes, our programming language confines all accesses to global variables to
atomic actions. Formally, an atomic action is a tuple (I,O, e, t). The semantics
of an atomic action in an execution is to first evaluate the expression e, called the
gate, in the current state. If the gate evaluates to false the execution fails, other-
wise the program state is updated according to the transition t. Input variables
in I can be read by e and t, and output variables in O can be written by t.

Remark 1. Atomic actions subsume many standard statements. In particular,
(nondeterministic) assignments, assertions, and assumptions. The following table
shows some examples for programs over variables x and y.

command e t

x := x+ y true x′ = x+ y ∧ y′ = y
havoc x true y′ = y
assert x < y x < y x′ = x ∧ y′ = y
assume x < y true x < y ∧ x′ = x ∧ y′ = y

Procedures. A procedure is a tuple (I,O, L, s) where I,O, L are the input,
output, and local variables of the procedure, and s is a statement composed from
skip, sequencing, if, and parallel call statements. Since only atomic actions can
refer to global variables, the variables accessed in if conditions are restricted to
the inputs, outputs, and locals of the enclosing procedure. The meaning of skip,
sequencing, and if is as expected and we focus on parallel calls.

4



Pcalls. A parallel call (pcall, for short) pcall (A, ι, o) (P, ι, o) (A, ι, o) consists
of a sequence of invocations of atomic actions and procedures. We refer to the
invocations as the arms of the pcall. In particular (A, ι, o) is an atomic-action
arm and (P, ι, o) is a procedure arm. An atomic-action arm executes the called
atomic action, and a procedure arm creates a child thread that executes the
statement of the called procedure. The parent thread is blocked until all arms
of the pcall finish. In the standard semantics the order of arms does not matter,
but our verification technique will allow us to consider the atomic action arms
before and after the procedure arms to execute in the specified order. Parameter
passing is expressed using partial mappings ι, o between local variables; ι maps
formal inputs of the callee to actual inputs of the caller, and o maps actual
outputs of the caller to formal outputs of the callee. Since we do not want
to introduce races on local variables, the outputs of all arms must be disjoint
and the output of one arm cannot be an input to another arm. Finally, notice
that our general notion of a pcall subsumes sequential statements (single atomic-
action arm), synchronous procedure calls (single procedure arm), and unbounded
thread creation (recursive procedure arm).

Concurrent programs. A concurrent program P is a tuple (gs, as, ps,m, I),
where gs is a finite set of global variables used by the program, as is a finite
mapping from action names A to atomic actions, ps is a finite mapping from
procedure names P to procedures, m is either a procedure or action name that
denotes the entry point for program executions, and I is a set of initial stores.
For convenience we will liberally use action and procedure names to refer to the
corresponding atomic actions and procedures.

Semantics. Let P = (gs, as, ps,m, I) be a fixed concurrent program. A state
consists of a global store assigning values to the global variables and a pool
of threads, each consisting of a local store assigning values to local variables
and a statement that remains to be executed. An execution is a sequence of
states, where from each state to the next some thread is selected to execute one
step. Every step that switches the executing thread is called a preemption (also
called a context switch). We distinguish between two semantics that differ in
(1) preemption points, and (2) the order of executing the arms of a pcall.

In preemptive semantics, a preemption is allowed anywhere and the arms
of a pcall are arbitrarily interleaved. In cooperative semantics, a preemption is
allowed only at the call and return of a procedure, and the arms of a pcall are ex-
ecuted as follows. First, the leading atomic-action arms are executed from left to
right without preemption, then all procedure arms are executed arbitrarily inter-
leaved, and finally the trailing atomic-action arms are executed, again from left
to right without preemption. In other words, a preemption is only allowed when
a procedure arm of a pcall creates a new thread and when a thread terminates.

For P we only consider executions that start with a single thread that execute
m from a store in I. P is called safe if there is no failing execution, i.e., an
execution that executes an atomic action whose gate evaluates to false. We
write Safe(P) if P is safe under preemptive semantics, and CSafe(P) if P is safe
under cooperative semantics.

5



2.1 Running Example

In this section, we introduce a sequence of three concurrent programs (Figure 3)
to illustrate features of our concurrent programming language and the layered
approach to program correctness. Consider the program P lock

1 in Figure 3(a). The
program uses a single global Boolean variable b which is accessed by the two
atomic actions CAS and RESET. The compare-and-swap action CAS atomically
reads the current value of b and either sets b from false to true and returns
true, or leaves b true and returns false. The RESET action sets b to false and
has a gate (represented as an assertion) that states that the action must only
be called when b is true. Using these actions, the procedures Enter and Leave
implement a spinlock as follows. Enter calls the CAS action and retries (through
recursion on itself) until it succeeds to set b from false to true. Leave just calls
the RESET action which sets b back to false and thus allows another thread
executing Enter to stop spinning. Finally, the procedures Main and Worker
serve as a simple client. Main uses a pcall inside a nondeterministic if statement
to create an unbounded number of concurrent worker threads, which just acquire
the lock by calling Enter and then release the lock again by calling Leave. The
call to the empty procedure Alloc is an artifact of our extraction from a layered
concurrent program and can be removed as an optimization.

Proving P lock
1 safe amounts to showing that RESET is never called with b set

to false, which expresses that P lock
1 follows a locking discipline of releasing only

previously acquired locks. Doing this proof directly on P lock
1 has two drawbacks.

First, the proof must relate the possible values of b with the program counters
of all running threads. In general, this approach requires sound introduction of
ghost code and results in complicated case distinctions in program invariants.
Second, the proof is not reusable across different lock implementations. The
correctness of the client does not specifically depend on using a spinlock over
a Boolean variable, and thus the proof should not as well. We show how our
refinement-based approach addresses both problems.

Program P lock
2 in Figure 3(b) is an abstraction of P lock

1 that introduces an ab-
stract lock specification. The global variable b is replaced by lock which ranges
over integer thread identifiers (0 is a dedicated value indicating that the lock is
available). The procedures Alloc, Enter and Leave are replaced by the atomic
actions ALLOC, ACQUIRE and RELEASE, respectively. ALLOC allocates unique and
non-zero thread identifiers using a set of integers slot to store the identifiers
not allocated so far. ACQUIRE blocks executions where the lock is not available
(assume lock == 0) and sets lock to the identifier of the acquiring thread. RE-
LEASE asserts that the releasing thread holds the lock and sets lock to 0. Thus,
the connection between P lock

1 and P lock
2 is given by the invariant b <==> lock

!= 0 which justifies that Enter refines ACQUIRE and Leave refines RELEASE.
The potential safety violation in P lock

1 by the gate of RESET is preserved in P lock
2

by the gate of RELEASE. In fact, the safety of P lock
2 expresses the stronger locking

discipline that the lock can only be released by the thread that acquired it.
Reasoning in terms of ACQUIRE and RELEASE instead of Enter and Leave is

more general, but it is also simpler! Figure 3(b) declares atomic actions with a

6



(a) P lock
1

var b : bool

proc Main()
if (*)

pcall Worker(), Main()

proc Worker()

pcall Alloc()
pcall Enter()
pcall Leave()

proc Alloc() : ()
skip

proc Enter()
var success : bool
pcall success := CAS()
if (success)

skip
else

pcall Enter()

proc Leave()
pcall RESET()
skip

atomic CAS() : (success : bool)
if (b) success := false
else success, b := true, true

atomic RESET()
assert b
b := false

(b) P lock
2

var lock : int
var linear slots : set<int>

proc Main()
if (*)

pcall Worker(), Main()

proc Worker()
var linear tid : int
pcall tid := ALLOC()
pcall ACQUIRE(tid)
pcall RELEASE(tid)

right ALLOC() : (linear tid : int)
assume tid != 0 && tid ∈ slots
slots := slots - tid

right ACQUIRE(linear tid : int)
assert tid != 0
assume lock == 0
lock := tid

left RELEASE(linear tid : int)
assert tid != 0 && lock == tid
lock := 0

(c) P lock
3

both SKIP()
skip

Fig. 3. Lock example

mover type [5], right for right mover, and left for left mover. A right mover
executed by a thread commutes to the right of any action executed by a different
thread. Similarly, a left mover executed by thread commutes to the left of any
action executed by a different thread. A sequence of right movers followed by
at most one non-mover followed by a sequence of left movers in a thread can
be considered atomic [10]. The reason is that any interleaved execution can
be rearranged (by commuting atomic actions), such that these actions execute
consecutively. For P lock

2 this means that Worker is atomic and thus the gate of
RELEASE can be discharged by pure sequential reasoning; ALLOC guarantees tid
!= 0 and after executing ACQUIRE we have lock == tid. As a result, we finally
obtain that the atomic action SKIP in P lock

3 (Figure 3(c)) is a sound abstraction
of procedure Main in P lock

2 . Hence, we showed that program P lock
1 is safe by

soundly abstracting it to P lock
3 , a program that is trivially safe.

The correctness of right and left annotations on ACQUIRE and RELEASE,
respectively, depends on pair-wise commutativity checks among atomic actions
in P lock

2 . These commutativity checks will fail unless we exploit the fact that
every thread identifier allocated by Worker using the ALLOC action is unique. For

7



instance, to show that ACQUIRE executed by a thread commutes to the right of
RELEASE executed by a different thread, it must be known that the parameters
tid to these actions are distinct from each other. The linear annotation on
the local variables named tid and the global variable slots (which is a set of
integers) is used to communicate this information.

The overall invariant encoded by the linear annotation is that the set of
values stored in slots and in local linear variables of active stack frames across
all threads are pairwise disjoint. This invariant is guaranteed by a combination of
a linear type system [14] and logical reasoning on the code of all atomic actions.
The linear type system ensures using a flow analysis that a value stored in a linear
variable in an active stack frame is not copied into another linear variable via an
assignment. Each atomic action must ensure that its state update preserves the
disjointness invariant for linear variables. For actions ACQUIRE and RELEASE,
which do not modify any linear variables, this reasoning is trivial. However,
action ALLOC modifies slots and updates the linear output parameter tid. Its
correctness depends on the (semantic) fact that the value put into tid is removed
from slots; this reasoning can be done using automated theorem provers.

3 Layered Concurrent Programs

A layered concurrent program represents a sequence of concurrent programs
that are connected to each other. That is, the programs derived from a layered
concurrent program share syntactic structure, but differ in the granularity of
the atomic actions and the set of variables they are expressed over. In a layered
concurrent program, we associate layer numbers and layer ranges with variables
(both global and local), atomic actions, and procedures. These layer numbers
control the introduction and hiding of program variables and the summarization
of compound operations into atomic actions, and thus provide the scaffolding of a
refinement relation. Concretely, this section shows how the concurrent programs
P lock
1 , P lock

2 , and P lock
3 (Figure 3) and their connections can all be expressed

in a single layered concurrent program. In Section 4, we discuss how to check
refinement between the successive concurrent programs encoded in a layered
concurrent program.

Syntax. The syntax of layered concurrent programs is summarized in Figure 4.
Let N be the set of non-negative integers and I the set of nonempty intervals
[a, b]. We refer to integers as layer numbers and intervals as layer ranges. A
layered concurrent program LP is a tuple (GS ,AS , IS ,PS ,m, I) which, simi-
larly to concurrent programs, consists of global variables, atomic actions, and
procedures, with the following differences.

1. GS maps global variables to layer ranges. For GS (v) = [a, b] we say that v
is introduced at layer a and available up to layer b.

2. AS assigns a layer range r to atomic actions denoting the layers at which an
action exists.

3. IS (with a disjoint domain from AS ) distinguishes a special type of atomic
actions called introduction actions. Introduction actions have a single layer

8



[a, b] = {x | a, b, x ∈ N ∧ a ≤ x ≤ b}

n, α ∈ N
r ∈ I = {[a, b] | a ≤ b}

ns ∈ LVar ⇀ N

GS ∈ GVar ⇀ I
AS ∈ A 7→ (I,O, e, t, r)
IS ∈ A 7→ (I,O, e, t, n)
PS ∈ P 7→ (I,O, L, s, n,ns, A)
m ∈ Proc
I ∈ 2Store

LP ∈ LayeredProg ::= (GS ,AS , IS ,PS ,m, I)

s ∈ Stmt ::= · · · | icall (A, ι, o) | pcallα (Pi, ιi, oi)i∈[1,k] (α ∈ {ε} ∪ [1, k])

Fig. 4. Layered Concurrent Programs

number n and are responsible for assigning meaning to the variables in-
troduced at layer n. Correspondingly, statements in layered concurrent pro-
grams are extended with an icall statement for calling introduction actions.

4. PS assigns a layer number n, a layer number mapping for local variables
ns, and an atomic action A to procedures. We call n the disappearing layer
and A the refined atomic action. For every local variable v, ns(v) is the
introduction layer of v.
The pcallα statement in a layered concurrent program differs from the
pcall statement in concurrent programs in two ways. First, it can only have
procedure arms. Second, it has a parameter α which is either ε (unannotated
pcall) or the index of one of its arms (annotated pcall). We usually omit
writing ε in unannotated pcalls.

5. m is a procedure name.

The top layer h of a layered concurrent program is the disappearing layer of m.

Intuition behind layer numbers. Recall that a layered concurrent program
LP should represent a sequence of h+1 concurrent programs P1, · · · ,Ph+1 that
are connected by a sequence of h checker programs C1, · · · , Ch (cf. Figure 1).
Before we provide formal definitions, let us get some intuition on two core mech-
anisms: global variable introduction and procedure abstraction/refinement.

Let v be a global variable with layer range [a, b]. The meaning of this layer
range is that the “first” program that contains v is Ca, the checker program
connecting Pa and Pa+1. In particular, v is not yet part of Pa. In Ca the intro-
duction actions at layer a can modify v and thus assign its meaning in terms of
all other available variables. Then v is part of Pa+1 and all programs up to and
including Pb. The “last” program containing v is Cb. In other words, when going
from a program Pi to Pi+1 the variables with upper bound i disappear and the
variables with lower bound i are introduced; the checker program Ci has access
to both and establishes their relationship.

Let P be a procedure with disappearing layer n and refined atomic action
A. The meaning of the disappearing layer is that P exists in all programs from
P1 up to and including Pn. In Pn+1 and above every invocation of P is replaced
by an invocation of A. To ensure that this replacement is sound, the checker

9



program Cn performs a refinement check that ensures that every execution of P
behaves like A. Observe that the body of procedure P itself changes from P1 to
Pn according to the disappearing layer of the procedures it calls.

With the above intuition in mind it is clear that the layer annotations in a
layered concurrent program cannot be arbitrary. For example, if procedure P
calls a procedure Q, then Q cannot have a higher disappearing layer than P , for
Q could introduce further behaviors into the program after P was replaced by
A, and those behaviors are not captured by A.

3.1 Type Checker

We describe the constraints that need to be satisfied for a layered concurrent
program to be well-formed. A full formalization as a type checker with top-level
judgment ` LP is given in Figure 5. For completeness, the type checker includes
standard constraints (e.g., variable scoping, parameter passing, etc.) that we are
not going to discuss.

(Atomic action)/(Introduction action). Global variables can only be ac-
cessed by atomic actions and introduction actions. For a global variable v with
layer range [a, b], introduction actions with layer number a are allowed to mod-
ify v (for sound variable introduction), and atomic actions with a layer range
contained in [a+ 1, b] have access to v. Introduction actions must be nonblock-
ing, which means that every state that satisfies the gate must have a possible
transition to take. This ensures that introduction actions only assign meaning
to introduced variables but do not exclude any program behavior.

(If). Procedure bodies change from layer to layer because calls to procedures
become calls to atomic actions. But the control-flow structure within a procedure
is preserved across layers. Therefore (local) variables accessed in an if condition
must be available on all layers to ensure that the if statement is well-defined on
every layer.

(Introduction call). Let A be an introduction action with layer number n.
Since A modifies global variables introduced at layer n, icalls to A are only
allowed from procedures with disappearing layer n. Similarly, the formal output
parameters of an icall to A must have introduction layer n. The icall is only
preserved in Cn.

(Parallel call). All arms in a pcall must be procedure arms invoking a procedure
with a disappearing layer less than or equal to the disappearing layer of the caller.
Furthermore, above the disappearing layer of the callee its refined atomic action
must be available up to the disappearing layer of the caller. Parameter passing
can only be well-defined if the actual inputs exist before the formal inputs, and
the formal outputs exist before the actual outputs. The sequence of disappearing
layers of the procedures in a pcall must be monotonically increasing and then
decreasing, such that the resulting pcall in the extracted programs consists of
procedure arms surrounded by atomic-action arms on every layer.

Annotated pcalls are only used for invocations to procedures with the same
disappearing layer n as the caller. In particular, during refinement checking in

10



(Program)

dom(AS) ∩ dom(IS) = ∅
PS(m) = ( , , , , h, , Am)

AS(Am) = ( , , , , r)

h+ 1 ∈ r
∀ A ∈ dom(AS) : (GS ,AS) ` A
∀ A ∈ dom(IS) : (GS , IS) ` A
∀ P ∈ dom(PS) : (AS , IS ,PS) ` P
` (GS ,AS , IS ,PS ,m, I)

(Atomic action)

AS(A) = (I,O, e, t, r)

Disjoint(I,O)

∀ v ∈ ReadVars(e, t) : v ∈ I ∨ r ⊆ ĜS(v)

∀ v ∈WriteVars(t) : v ∈ O ∨ r ⊆ ĜS(v)

(GS ,AS) ` A

(Introduction action)

IS(A) = (I,O, e, t, n)

Disjoint(I,O)

∀ v ∈ ReadVars(e, t) : v ∈ I ∨ n ∈ GS(v)

∀ v ∈WriteVars(t) : v ∈ O ∨GS(v) = [n, ]

Nonblocking(e, t)

(GS , IS) ` A

(Procedure)

PS(P ) = (I,O, L, s, n,ns, A)

AS(A) = (I,O, , , )

Disjoint(I,O, L)

∀ v ∈ I ∪O ∪ L : ns(v) ≤ n
(AS , IS ,PS), P ` s
(AS , IS ,PS) ` P

(Skip)

(AS , IS ,PS), P ` skip

(Sequence)

(AS , IS ,PS), P ` s1 (AS , IS ,PS), P ` s2
(AS , IS ,PS), P ` s1 ; s2

(If)

PS(P ) = (I, , L, , ,ns, )

∀ x ∈ ReadVars(e) : x ∈ I ∪ L ∧ ns(x) = 0

(AS , IS ,PS), P ` s1 (AS , IS ,PS), P ` s2
(AS , IS ,PS), P ` if e then s1 else s2

(Parameter passing)

dom(ι) = I′ dom(o) ⊆ O ∪ L
img(ι) ⊆ I ∪O ∪ L img(o) ⊆ O′

ValidIO(ι, o, I, O, L, I′, O′)

(Introduction call)

PS(P ) = (IP , OP , LP , , nP ,nsP , )

IS(A) = (IA, OA, , t, nA)

ValidIO(ι, o, IP , OP , LP , IA, OA)

nA = nP
∀ v ∈ dom(o) : nsP (v) = nP

(AS , IS ,PS), P ` icall (A, ι, o)

(Parallel call)

∀ i 6= j : dom(oi) ∩ dom(oj) = ∅
dom(oi) ∩ img(ιj) = ∅

∀ i : PS(P ) = (IP , OP , LP , , nP ,nsP , )

PS(Qi) = (Ii, Oi, , , ni,nsi, Ai)

AS(Ai) = ( , , , , ri)

ValidIO(ιi, oi, IP , OP , LP , Ii, Oi)

∀ v ∈ dom(ιi) : nsP (ιi(v)) ≤ nsi(v)

∀ v ∈ dom(oi) : nsi(oi(v)) ≤ nsP (v)

ni ≤ nP [ni + 1, nP ] ⊆ ri
i = α =⇒ ni = nP ∧OP ⊆ dom(oi)

i 6= α ∧ ni = nP =⇒ dom(oi) ⊆ Li
∃ i : n1 ≤ · · · ≤ ni ≥ · · · ≥ nk
(AS , IS ,PS), P ` pcallα (Qi, ιi, oi)i∈[1,k]

ĜS(v) = [a+ 1, b] for GS(v) = [a, b]

ReadVars(e) = {v | ∃ σ, a : e(σ) 6= e(σ[v 7→ a])} ∪

ReadVars(t) = {v | ∃ σ, σ′, a : (σ, σ′) ∈ t ∧ (σ[v 7→ a], σ′) 6∈ t}

ReadVars(e, t) = ReadVars(e) ∪ ReadVars(t)

WriteVars(t) = {v | ∃ σ, σ′ : (σ, σ′) ∈ t ∧ σ(v) 6= σ′(v)}

Nonblocking(e, t) = ∀ σ ∈ e : ∃ σ′ : (σ, σ′) ∈ t

Fig. 5. Type checking rules for layered concurrent programs

11



Cn only the arm with index α is allowed to modify the global state, which must
be according to the refined atomic action of the caller. The remaining arms must
leave the global state unchanged.

3.2 Concurrent Program Extraction

Let LP = (GS ,AS , IS ,PS ,m, I) be a layered concurrent program such that
PS (m) = ( , , , , h, , Am). We show how to extract the programs P1, · · · ,Ph+1

by defining a function Γ`(LP) such that P` = Γ`(LP) for every ` ∈ [1, h + 1].
For a local variable layer mapping ns we define the set of local variables with
layer number less then ` as ns|` = {v | ns(v) < `}. Now the extraction function
Γ` is defined as

Γ`(LP) = (gs, as, ps,m′, I),

where

gs = {v | GS(v) = [a, b] ∧ ` ∈ [a+ 1, b]},

as = {A 7→ (I,O, e, t) | AS(A) = (I,O, e, t, r) ∧ ` ∈ r},

ps = {P 7→ (I ∩ ns|`, O ∩ ns|`, L ∩ ns|`, ΓP` (s)) | PS(P ) = (I,O, L, s, n,ns, ) ∧ ` ≤ n},

m′ =

{
m if ` ∈ [1, h]

Am if ` = h+ 1
,

and the extraction of a statement in the body of procedure P is given by

ΓP` (skip) = skip,

ΓP` (s1 ; s2) = ΓP` (s1) ; ΓP` (s2),

ΓP` (if e then s1 else s2) = if e then ΓP` (s1) else Γ
P
` (s2),

ΓP` (icall (A, ι, o)) = skip,

ΓP` (pcallα (Q, ι, o)) = pcall (X, ι|nsQ|` , o|nsP |` ),

for
PS(P ) = ( , , , , ,nsP , )

PS(Q) = ( , , , , n,nsQ, A)
and X =

{
Q if ` ≤ n
A if ` > n

.

Thus P` includes the global and local variables that were introduced before ` and
the atomic actions with ` in their layer range. Furthermore, it does not contain
introduction actions and correspondingly all icall statements are removed. Every
arm of a pcall statement, depending on the disappearing layer n of the called
procedure Q, either remains a procedure arm to Q, or is replaced by an atomic-
action arm to A, the atomic action refined by Q. The input and output mappings
are restricted to the local variables at layer `. The set of initial stores of P` is
the same as for LP, since stores range over all program variables.

In our programming language, loops are subsumed by the more general mech-
anism of recursive procedure calls. Observe that P` can indeed have recursive
procedure calls, because our type checking rules (Figure 5) allow a pcall to invoke
a procedure with the same disappearing layer as the caller.

12



LP lock

var b@[0,1] : bool
var lock@[1,2] : int
var pos@[1,1] : int
var linear slots@[1,2] : set<int>

predicate InvLock
b <==> lock != 0

predicate InvAlloc
pos > 0 && slots == [pos,∞)

init InvLock && InvAlloc

both SKIP@3 ()
skip

proc Main@2()
refines SKIP

if (*)
pcall Worker(), Main()

proc Worker@2()
refines SKIP

var linear tid@1 : int
pcall tid := Alloc()
pcall Enter(tid)
pcall Leave(tid)

right ALLOC@[2,2]() : (linear tid : int)
assume tid != 0 && tid ∈ slots
slots := slots - tid

proc Alloc@1() : (linear tid@1 : int)
refines ALLOC

icall tid := iIncr()

iaction iIncr@1() : (linear tid : int)
assert InvAlloc
tid := pos
pos := pos + 1
slots := slots - tid

right ACQUIRE@[2,2](linear tid : int)
assert tid != 0
assume lock == 0
lock := tid

left RELEASE@[2,2](linear tid : int)
assert tid != 0 && lock == tid
lock := 0

proc Enter@1(linear tid@1 : int)
refines ACQUIRE

var success@0 : bool
pcall success := Cas()
if (success)

icall iSetLock(tid)
else

pcall1 Enter(tid)

proc Leave@1(linear tid@1 : int)
refines RELEASE

pcall Reset()
icall iSetLock(0)

iaction iSetLock@1(v : int)
lock := v

atomic CAS@[1,1]() : (success : bool)
if (b) success := false
else success, b := true, true

atomic RESET@[1,1]()
assert b
b := false

proc Cas@0() : (success@0 : bool)
refines CAS

proc Reset@0()
refines RESET

Fig. 6. Lock example (layered concurrent program)

3.3 Running Example

We return to our lock example from Section 2.1. Figure 6 shows its implementa-
tion as the layered concurrent program LP lock . Layer annotations are indicated
using an @ symbol. For example, the global variable b has layer range [0, 1], all
occurrences of local variable tid have introduction layer 1, the atomic action
ACQUIRE has layer range [2, 2], and the introduction action iSetLock has layer
number 1.

First, observe that LP lock is well-formed, i.e., ` LP lock . Then it is an easy
exercise to verify that Γ`(LP lock ) = P lock

` for ` ∈ [1, 3]. Let us focus on procedure
Worker. In P lock

1 (Figure 3(a)) tid does not exist, and correspondingly Alloc,
Enter, and Leave do not have input respectively output parameters. Further-
more, the icall in the body of Alloc is replaced with skip. In P lock

2 (Figure 3(b))

13



we have tid and the calls to Alloc, Enter, and Leave are replaced with their
respective refined atomic actions ALLOC, ACQUIRE, and RELEASE. The only an-
notated pcall in LP lock is the recursive call to Enter.

In addition to representing the concurrent programs in Figure 3, the program
LP lock also encodes the connection between them via introduction actions and
calls. The introduction action iSetLock updates lock to maintain the relation-
ship between lock and b, expressed by the predicate InvLock. It is called in
Enter in case the CAS operation successfully set b to true, and in Leave when
b is set to false. The introduction action iIncr implements linear thread iden-
tifiers using the integer variables pos which points to the next value that can be
allocated. For every allocation, the current value of pos is returned as the new
thread identifier and pos is incremented.

The variable slots is introduced at layer 1 to represent the set of unallocated
identifiers. It contains all integers no less than pos, an invariant that is expressed
by the predicate InvAlloc and maintained by the code of iIncr. The purpose
of slots is to encode linear allocation of thread identifiers in a way that the
body of iIncr can be locally shown to preserve the disjointness invariant for
linear variables; slots plays a similar role in the specification of the atomic
action ALLOC in P2. The variable pos is both introduced and hidden at layer 1
so that it exists neither in P lock

1 nor P lock
2 . However, pos is present in the checker

program C1 that connects P lock
1 and P lock

2 .
The bodies of procedures Cas and Reset are not shown in Figure 6 because

they are not needed. They disappear at layer 0 and are replaced by the atomic
actions CAS and RESET, respectively, in P lock

1 .
The degree of compactness afforded by layered programs (as in Figure 6)

over separate specification of each concurrent program (as in Figure 3) increases
rapidly with the size of the program and the maximum depth of procedure calls.
In our experience, for realistic programs such as a concurrent garbage collector [7]
or a data-race detector [15], the saving in code duplication is significant.

4 Refinement Checking

Section 3 described how a layered concurrent program LP encodes a sequence
P1, . . . ,Ph,Ph+1 of concurrent programs. In this section, we show how the safety
of any concurrent program in the sequence is implied by the safety of its succes-
sor, ultimately allowing the safety of P1 to be established by the safety of Ph+1.

There are three ingredients to connecting P` to P`+1 for any ` ∈ [1, h]—
reduction, projection, and abstraction. Reduction allows us to conclude the
safety of a concurrent program under preemptive semantics by proving safety
only under cooperative semantics.

Theorem 1 (Reduction). Let P be a concurrent program. If MSafe(P) and
CSafe(P), then Safe(P).

The judgment MSafe(P) uses logical commutativity reasoning and mover types
to ensure that cooperative safety is sufficient for preemptive safety (Section 4.1).
We use this theorem to justify reasoning about CSafe(P`) rather than Safe(P`).

14



The next step in connecting P` to P`+1 is to introduce computation intro-
duced at layer ` into the cooperative semantics of P`. This computation com-
prises global and local variables together with introduction actions and calls to
them. We refer to the resulting program at layer ` as P̃`.

Theorem 2 (Projection). Let LP be a layered concurrent program with top

layer h and ` ∈ [1, h]. If CSafe(P̃`), then CSafe(P`).

Since introduction actions are nonblocking and P̃` is safe under cooperative
semantics, every cooperative execution of P` can be obtained by projecting away
the computation introduced at layer `. This observation allows us to conclude
that every cooperative execution of P` is also safe.

Finally, we check that the safety of the cooperative semantics of P̃` is ensured
by the safety of the preemptive semantics of the next concurrent program P`+1.
This connection is established by reasoning about the cooperative semantics of
a concurrent checker program C` that is automatically constructed from LP.

Theorem 3 (Abstraction). Let LP be a layered concurrent program with top

layer h and ` ∈ [1, h]. If CSafe(C`) and Safe(P`+1), then CSafe(P̃`).

The checker program C` is obtained by instrumenting the code of P̃` with extra
variables and procedures that enable checking that procedures disappearing at
layer ` refine their atomic action specifications (Section 4.2).

Our refinement check between two consecutive layers is summarized by the
following corollary of Theorem 1-3.

Corollary 1. Let LP be a layered concurrent program with top layer h and
` ∈ [1, h]. If MSafe(P`), CSafe(C`) and Safe(P`+1), then Safe(P`).

The soundness of our refinement checking methodology for layered concurrent
programs is obtained by repeated application of Corollary 1.

Corollary 2. Let LP be a layered concurrent program with top layer h. If
MSafe(P`) and CSafe(C`) for all ` ∈ [1, h] and Safe(Ph+1), then Safe(P1).

4.1 From Preemptive to Cooperative Semantics

We present the judgment MSafe(P) that allows us to reason about a concur-
rent program P under cooperative semantics instead of preemptive semantics.
Intuitively, we want to use the commutativity of individual atomic actions to
rearrange the steps of any execution under preemptive semantics in such a way
that it corresponds to an execution under cooperative semantics. We consider
mappings M ∈ Action → {N,R,L,B} that assign mover types to atomic actions;
N for non-mover, R for right mover, L for left mover, and B for both mover. The
judgment MSafe(P) requires a mapping M that satisfies two conditions.

First, the atomic actions in P must satisfy the following logical commutativity
conditions [7], which can be discharged by a theorem prover.

15



– Commutativity: If A1 is a right mover or A2 is a left mover, then the effect
of A1 followed by A2 can also be achieved by A2 followed by A1.

– Forward preservation: If A1 is a right mover or A2 is a left mover, then the
failure of A2 after A1 implies that A2 must also fail before A1.

– Backward preservation: If A2 is a left mover (and A1 is an arbitrary), then
the failure of A1 before A2 implies that A1 must also fail after A2.

– Nonblocking: If A is a left mover, then A cannot block.

Second, the sequence of atomic actions in preemptive executions of P must
be such that the desired rearrangement into cooperative executions is possible.

A

RM LM

B,R,L,N,Y

B,R,Y B,L,Y

Y

Given a preemptive execution, consider, for each
thread individually, a labeling of execution steps
where atomic action steps are labeled with their
mover type and procedure calls and returns are
labeled with Y (for yield). The nondeterministic
atomicity automaton A on the right defines all
allowed sequences. Intuitively, when we map the
execution steps of a thread to a run in the automaton, the state RM denotes
that we are in the right mover phase in which we can stay until the occurrence
of a non-right mover (L or N). Then we can stay in the left mover phase (state
LM) by executing left movers, until a preemption point (Y) takes us back to
RM. Let E be the mapping from edge labels to the set of edges that contain the
label, e.g., E(R) = {RM → RM,RM → LM}. Thus we have a representation of
mover types as sets of edges in A, and we define E(A) = E(M(A)). Notice that
the set representation is closed under relation composition ◦ and intersection,
and behaves as expected, e.g., E(R) ◦ E(L) = E(N).

Now we define an intraprocedural control flow analysis that lifts E to a map-

ping Ê on statements. Intuitively, x → y ∈ Ê(s) means that every execution
of the statement s has a run in A from x to y. Our analysis does not have to
be interprocedural, since procedure calls and returns are labeled with Y, allow-

ing every possible state transition in A. MSafe(P) requires Ê(s) 6= ∅ for every

procedure body s in P, where Ê is defined as follows:

Ê(skip) = E(B) Ê(s1 ; s2) = Ê(s1) ◦ Ê(s2) Ê(if e then s1 else s2) = Ê(s1) ∩ Ê(s2)

Ê(pcall A1P A2) =

{
E∗(A1A2) if P = ε

E(L) ◦ E∗(A1) ◦ E(Y) ◦ E∗(A2) ◦ E(R) if P 6= ε

Skip is a both mover, sequencing composes edges, and if takes the edges
possible in both branches. In the arms of a pcall we omit writing the input and
output maps because they are irrelevant to the analysis. Let us first focus on
the case P = ε with no procedure arms. In the preemptive semantics all arms
are arbitrarily interleaved and correspondingly we define the function

E∗(A1 · · ·An) =
⋂
τ∈Sn

E(Aτ(1)) ◦ · · · ◦ E(Aτ(n))

to consider all possible permutations (τ ranges over the symmetric group Sn)
and take the edges possible in all permutations. Observe that E∗ evaluates to

16



non-empty in exactly four cases: E(N) for {B}∗N{B}∗, E(B) for {B}∗, E(R) for
{R,B}∗ \{B}∗, and E(L) for {L,B}∗ \{B}∗. These are the mover-type sequences
for which an arbitrary permutation (coming from a preemptive execution) can
be rearranged to the order given by the pcall (corresponding to cooperative
execution).

In the case P 6= ε there is a preemption point under cooperative semantics
between A1 and A2, the actions in A1 are executed in order before the preemp-
tion, and the actions in A2 are executed in order after the preemption. To ensure
that the cooperative execution can simulate an arbitrarily interleaved preemp-
tive execution of the pcall, we must be able to move actions in A1 to the left and
actions in A2 to the right of the preemption point. We enforce this condition by
requiring that A1 is all left (or both) movers and A2 all right (or both) movers,
expressed by the leading E(L) and trailing E(R) in the edge composition.

4.2 Refinement Checker Programs

In this section, we describe the construction of checker programs that justify the
formal connection between successive concurrent programs in a layered concur-
rent program. The description is done by example. In particular, we show the
checker program Clock1 that establishes the connection between P lock

1 and P lock
2

(Figure 3) of our running example.

Overview. Cooperative semantics splits any execution of P lock
1 into a sequence

of preemption-free execution fragments separated by preemptions. Verification
of Clock1 must ensure that for all such executions, the set of procedures that
disappear at layer 1 behave like their atomic action specifications. That is, the
procedures Enter and Leave must behave like their specifications ACQUIRE and
RELEASE, respectively. It is important to note that this goal of checking refine-
ment is easier than verifying that P lock

1 is safe. Refinement checking may succeed
even though P lock

1 fails; the guarantee of refinement is that such a failure can
be simulated by a failure in P lock

2 . The construction of Clock1 can be understood

in two steps. First, the program P̃ lock
1 shown in Figure 7 extends P lock

1 (Fig-
ure 3(a)) with the variables introduced at layer 1 (globals lock, pos, slots and
locals tid) and the corresponding introduction actions (iIncr and iSetLock).

Second, Clock1 is obtained from P̃ lock
1 by instrumenting the procedures to encode

the refinement check, described in the remainder of this section.

Context for refinement. There are two kinds of procedures, those that con-
tinue to exist at layer 2 (such as Main and Worker) and those that disappear
at layer 1 (such as Enter and Leave). Clock1 does not need to verify anything
about the first kind. These procedures only provide the context for refinement
checking and thus all invocation of an atomic action (I,O, e, t) in any atomic-
action arm of a pcall is converted into the invocation of a fresh atomic action
(I,O, true, e ∧ t). In other words, the assertions in procedures that continue to
exist at layer 2 are converted into assumptions for the refinement checking at
layer 1; these assertions are verified during the refinement checking on a higher

17



P̃ lock
1

var b : bool
var lock : int
var pos : int
var linear slots : set<int>

proc Main()
if (*)

pcall Worker(), Main()

proc Worker()
var linear tid : int
pcall tid := Alloc()
pcall Enter(tid)
pcall Leave(tid)

proc Alloc() : (linear tid : int)
icall tid := iIncr()

iaction iIncr() : (tid : int)
assert InvAlloc
tid := pos
pos := pos + 1
slots := slots - tid

proc Enter(linear tid : int)
var success : bool
pcall success := CAS()
if (success)

icall iSetLock(tid)
else

pcall Enter(tid)

proc Leave(linear tid : int)
pcall RESET()
icall iSetLock(0)

iaction iSetLock(v : int)
lock := v

atomic CAS() : (success : bool)
if (b) success := false
else success, b := true, true

atomic RESET()
assert b
b := false

Fig. 7. Lock example (variable introduction at layer 1)

layer. In our example, Main and Worker do not have atomic-action arms, al-
though this is possible in general.

Refinement instrumentation. We illustrate the instrumentation of proce-
dures Enter and Leave in Figure 8. The core idea is to track updates by
preemption-free execution fragments to the shared variables that continue to
exist at layer 2. There are two such variables—lock and slots. We capture
snapshots of lock and slots in the local variables _lock and _slots and use
these snapshots to check that the updates to lock and slots behave according
to the refined atomic action. In general, any path from the start to the end of the
body of a procedure may comprise many preemption-free execution fragments.
The checker program must ensure that exactly one of these fragments behaves
like the specified atomic action; all other fragments must leave lock and slot
unchanged. To track whether the atomic action has already happened, we use
two local Boolean variables—pc and done. Both variables are initialized to false,
get updated to true during the execution, and remain at true thereafter. The
variable pc is set to true at the end of the first preemption-free execution frag-
ment that modifies the tracked state, which is expressed by the macro *CHANGED*
on line 1. The variable done is set to true at the end of the first preemption-free
execution fragment that behaves like the refined atomic action. For that, the
macros *RELEASE* and *ACQUIRE* on lines 2 and 3 express the transition rela-
tions of RELEASE and ACQUIRE, respectively. Observe that we have the invariant
pc ==> done. The reason we need both pc and done is to handle the case where
the refined atomic action may stutter (i.e., leave the state unchanged).

18



Clock1

1 macro *CHANGED* is !(lock == _lock && slots == _slots)
2 macro *RELEASE* is lock == 0 && slots == _slots
3 macro *ACQUIRE* is _lock == 0 && lock == tid && slots == _slots
4

5 proc Leave(linear tid) # Leave must behave like RELEASE

6 var _lock, _slots, pc, done
7 pc, done := false, false # initialize pc and done

8 _lock, _slots := lock, slots # take snapshot of global variables

9 assume pc || (tid != 0 && lock == tid) # assume gate of RELEASE

10

11 pcall RESET()
12 icall iSetLock(0)
13

14 assert *CHANGED* ==> (!pc && *RELEASE*) # state change must be the first and like RELEASE

15 pc := pc || *CHANGED* # track if state changed

16 done := done || *RELEASE* # track if RELEASE happened

17

18 assert done # check that RELEASE happened

19

20 proc Enter(linear tid) # Enter must behave like ACQUIRE

21 var success, _lock, _slots, pc, done
22 pc, done := false, false # initialize pc and done

23 _lock, _slots := lock, slots # take snapshot of global variables

24 assume pc || tid != 0 # assume gate of ACQUIRE

25

26 pcall success := CAS()
27 if (success)
28 icall iSetLock(tid)
29 else
30 assert *CHANGED* ==> (!pc && *ACQUIRE*) # state change must be the first and like ACQUIRE

31 pc := pc || *CHANGED* # track if state changed

32 done := done || *ACQUIRE* # track if ACQUIRE happened

33

34 if (*) # then: check refinement of caller

35 pcall pc := Check_Enter_Enter(tid, # check annotated procedure arm

36 tid, pc) # in fresh procedure (defined below)

37 done := true # above call ensures that ACQUIRE happened

38 else # else: check refinement of callee

39 pcall Enter(tid) # explore behavior of callee

40 assume false # block after return (only then is relevant below)

41

42 _lock, _slots := lock, slots # take snapshot of global variables

43 assume pc || tid != 0 # assume gate of ACQUIRE

44

45 assert *CHANGED* ==> (!pc && *ACQUIRE*) # state change must be the first and like ACQUIRE

46 pc := pc || *CHANGED* # track if state changed

47 done := done || *ACQUIRE* # track if ACQUIRE happened

48

49 assert done # check that ACQUIRE happened

50

51 proc Check_Enter_Enter(tid, x, pc) : (pc’) # check annotated pcall from Enter to Enter

52 var _lock, _slots
53 _lock, _slots := lock, slots # take snapshot of global variables

54 assume pc || tid != 0 # assume gate of ACQUIRE

55

56 pcall ACQUIRE(x) # use ACQUIRE to ‘‘simulate’’ call to Enter

57

58 assert *ACQUIRE* # check that ACQUIRE happened

59 assert *CHANGED* ==> !pc # state change must be the first

60 pc’ := pc || *CHANGED* # track if state changed

Fig. 8. Instrumented procedures Enter and Leave (layer 1 checker program)

19



Instrumenting Leave. We first look at the instrumentation of Leave. Line 8
initializes the snapshot variables. Recall that a preemption inside the code of
a procedure is introduced only at a pcall containing a procedure arm. Conse-
quently, the body of Leave is preemption-free and we need to check refinement
across a single execution fragment. This checking is done by lines 14-16. The as-
sertion on line 14 checks that if any tracked variable has changed since the last
snapshot, (1) such a change happens for the first time (!pc), and (2) the current
value is related to the snapshot value according to the specification of RELEASE.
Line 15 updates pc to track whether any change to the tracked variables has
happened so far. Line 16 updates done to track whether RELEASE has happened
so far. The assertion at line 18 checks that RELEASE has indeed happened be-
fore Leave returns. The assumption at line 9 blocks those executions which can
be simulated by the failure of RELEASE. It achieves this effect by assuming the
gate of RELEASE in states where pc is still false (i.e., RELEASE has not yet hap-
pened). The assumption yields the constraint lock != 0 which together with
the invariant InvLock (Figure 6) proves that the gate of RESET does not fail.

The verification of Leave illustrates an important principle of our approach
to refinement. The gates of atomic actions invoked by a procedure P disappearing
at layer ` are verified using a combination of invariants established on C` and
pending assertions at layer `+1 encoded as the gate of the atomic action refined
by P . For Leave specifically, assert b in RESET is propagated to assert tid
!= nil && lock == tid in RELEASE. The latter assertion is verified in the
checker program Clock2 when Worker, the caller of RELEASE, is shown to refine
the action SKIP which is guaranteed not to fail since its gate is true.

Instrumenting Enter. The most sophisticated feature in a concurrent pro-
gram is a pcall. The instrumentation of Leave explains the instrumentation of
the simplest kind of pcall with only atomic-action arms. We now illustrate the
instrumentation of a pcall containing a procedure arm using the procedure En-
ter which refines the atomic action ACQUIRE and contains a pcall to Enter itself.
The instrumentation of this pcall is contained in lines 30-43.

A pcall with a procedure arm is challenging for two reasons. First, the callee
disappears at the same layer as the caller so the checker program must reason
about refinement for both the caller and the callee. This challenge is addressed
by the code in lines 34-40. At line 34, we introduce a nondeterministic choice
between two code paths—then branch to check refinement of the caller and else
branch to check refinement of the callee. An explanation for this nondeterministic
choice is given in the next two paragraphs. Second, a pcall with a procedure arm
introduces a preemption creating multiple preemption-free execution fragments.
This challenge is addressed by two pieces of code. First, we check that lock
and slots are updated correctly (lines 30-32) by the preemption-free execution
fragment ending before the pcall. Second, we update the snapshot variables
(line 42) to enable the verification of the preemption-free execution fragment
beginning after the pcall.

Lines 35-37 in the then branch check refinement against the atomic action
specification of the caller, exploiting the atomic action specification of the callee.

20



The actual verification is performed in a fresh procedure Check_Enter_Enter
invoked on line 35. Notice that this procedure depends on both the caller and the
callee (indicated in colors), and that it preserves a necessary preemption point.
The procedure has input parameters tid to receive the input of the caller (for
refinement checking) and x to receive the input of the callee (to generate the be-
havior of the callee). Furthermore, pc may be updated in Check_Enter_Enter
and thus passed as both an input and output parameter. In the body of the
procedure, the invocation of action ACQUIRE on line 56 overapproximates the
behavior of the callee. In the layered concurrent program (Figure 6), the (recur-
sive) pcall to Enter in the body of Enter is annotated with 1. This annotation
indicates that for any execution passing through this pcall, ACQUIRE is deemed
to occur during the execution of its unique arm. This is reflected in the checker
program by updating done to true on line 37; the update is justified because
of the assertion in Check_Enter_Enter at line 58. If the pcall being translated
was instead unannotated, line 37 would be omitted.

Lines 39-40 in the else branch ensure that using the atomic action speci-
fication of the callee on line 56 is justified. Allowing the execution to continue
to the callee ensures that the called procedure is invoked in all states allowed
by P1. However, the execution is blocked once the call returns to ensure that
downstream code sees the side-effect on pc and the snapshot variables.

To summarize, the crux of our instrumentation of procedure arms is to com-
bine refinement checking of caller and callee. We explore the behaviors of the
callee to check its refinement. At the same time, we exploit the atomic action
specification of the callee to check refinement of the caller.

Instrumenting unannotated procedure arms. Procedure Enter illustrates
the instrumentation of an annotated procedure arm. The instrumentation of
an unannotated procedure arm (both in an annotated or unannotated pcall) is
simpler, because we only need to check that the tracked state is not modified.
For such an arm to a procedure refining atomic action Action, we introduce a
procedure Check_Action (which is independent of the caller) comprising three
instructions: take snapshots, pcall A, and assert !*CHANGED*.

Pcalls with multiple arms. Our examples show the instrumentation of pcalls
with a single arm. Handling multiple arms is straightforward, since each arm is
translated independently. Atomic action arms stay unmodified, annotated pro-
cedure arms are replaced with the corresponding Check_Caller_Callee pro-
cedure, and unannotated procedure arms are replaced with the corresponding
Check_Action procedure.

Output parameters. Our examples illustrate refinement checking for atomic
actions that have no output parameters. In general, a procedure and its atomic
action specification may return values in output parameters. We handle this
generalization but lack of space does not allow us to present the technical details.

21



5 Conclusion

In this paper, we presented layered concurrent programs, a programming no-
tation to succinctly capture a multi-layered refinement proof capable of con-
necting a deeply-detailed implementation to a highly-abstract specification. We
presented an algorithm to extract from the concurrent layered program the in-
dividual concurrent programs, from the most concrete to the most abstract.
We also presented an algorithm to extract a collection of refinement checker
programs that establish the connection among the sequence of concurrent pro-
grams encoded by the layered concurrent program. The cooperative safety of
the checker programs and the preemptive safety of the most abstract concurrent
program suffices to prove the preemptive safety of the most concrete concurrent
program.

Layered programs have been implemented in Civl, a deductive verifier for
concurrent programs, implemented as a conservative extension to the Boogie ver-
ifier [3]. Civl has been used to verify a complex concurrent garbage collector [6]
and a state-of-the-art data-race detection algorithm [15]. In addition to these two
large benchmarks, around fifty smaller programs (including a ticket lock and a
lock-free stack) are available at https://github.com/boogie-org/boogie.

There are several directions for future work. We did not discuss how to verify
an individual checker program. Civl uses the Owicki-Gries method [13] and rely-
guarantee reasoning [8] to verify checker programs. But researchers are exploring
many different techniques for verification of concurrent programs. It would be
interesting to investigate whether heterogeneous techniques could be brought to
bear on checker programs at different layers.

In this paper, we focused exclusively on verification and did not discuss code
generation, an essential aspect of any programming system targeting the con-
struction of verified programs. There is a lot of work to be done in connecting
the most concrete program in a concurrent layered program to executable code.
Most likely, different execution platforms will impose different obligations on
the most concrete program and the general idea of layered concurrent programs
would be specialized for different target platforms.

Scalable verification is a challenge as the size of programs being verified in-
creases. Traditionally, scalability has been addressed using modular verification
techniques but only for single-layer programs. It would be interesting to ex-
plore modularity techniques for concurrent layered programs in the context of a
refinement-oriented proof system.

Layered concurrent programs bring new challenges and opportunities to the
design of programming languages and development environments. Integrating
layers into a programming language requires intuitive syntax to specify layer
information and atomic actions. For example, ordered layer names can be more
readable and easier to refactor than layer numbers. An integrated development
environment could provide different views of the layered concurrent program. For
example, it could show the concurrent program, the checker program, and the
introduced code at a particular layer. Any updates made in these views should
be automatically reflected back into the layered concurrent program.

22

https://github.com/boogie-org/boogie


Acknowledgments. We thank Hana Chockler, Stephen Freund, Thomas A.
Henzinger, Viktor Toman, and James R. Wilcox for comments that improved this
paper. This research was supported in part by the Austrian Science Fund (FWF)
under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

References

1. Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

2. Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. STTT, 12(6):447–466, 2010.

3. Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In FMCO, 2005.

4. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic actions. In
POPL, 2009.

5. Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In
PLDI, 2003.

6. Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and
modular refinement reasoning for concurrent programs. In CAV, 2015.

7. Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated
and modular refinement reasoning for concurrent programs. Technical Report
MSR-TR-2015-8, Microsoft Research, February 2015.

8. Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
1983.

9. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

10. Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, 1975.

11. Kenneth L. McMillan. A compositional rule for hardware design refinement. In
CAV, 1997.

12. Kenneth L. McMillan. Verification of an implementation of Tomasulo’s algorithm
by compositional model checking. In CAV, 1998.

13. Susan S. Owicki and David Gries. Verifying properties of parallel programs: An
axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

14. Philip Wadler. Linear types can change the world! In Programming Concepts and
Methods, 1990.

15. James R. Wilcox, Cormac Flanagan, and Stephen N. Freund. VerifiedFT: a verified,
high-performance precise dynamic race detector. In PPoPP, pages 354–367, 2018.

23


	Layered Concurrent Programs

