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Abstract

Pre-mappable (PreM ) extrema constraints in recursive Datalog programs enable concise declarative
formulations for classical algorithms (Zaniolo et al. 2017). The programs expressing these algorithms
have formal non-monotonic semantics with efficient and scalable support on multiple platforms (Shkapsky
et al. 2016; Yang et al. 2017). However, proving PreM for different programs can be challenging for
programmers. Thus, in this paper, we introduce simple templates that allow users and compilers to verify
with ease that programs with extrema have the PreM property, along with the rigorous semantics and the
efficient and scalable implementation associated with it. We thus obtain simple declarative formulation for
classical algorithms under (i) perfect model semantics and (ii) stable model semantics.

1 Introduction

A growing interest in scalable data analytics on BigData has brought a renaissance of interest
in Datalog because of its ability to specify, declaratively, advanced data-intensive applications
that execute efficiently over different systems and architectures, including massively parallel
ones (Seo et al. 2013; Shkapsky et al. 2013; Yang and Zaniolo 2014; Aref et al. 2015; Wang
et al. 2015; Yang et al. 2015; Shkapsky et al. 2016; Yang et al. 2017). These recent developments
are significant because a fundamental reason that motivated early Datalog researchers to adopt a
bottom-up execution model was its affinity with that of relational DBMS which had demonstrated
major gains in performance and scalability via data parallelization as far back as the 80s—
albeit only for non-recursive queries (Teradata 1983). But the hope that Datalog could deliver
superior levels of performance and scalability for more powerful applications, took a very long
time to realize. Initially, massive parallelization of Datalog focused on supporting complex
algorithms under answer-set semantics (Alviano and Leone 2016), but more recently several
parallel Datalog systems were proposed that support efficiently polynomial-time algorithms by
allowing aggregates in recursive queries (Seo et al. 2013; Wang et al. 2015; Shkapsky et al.
2016; Yang et al. 2017). Among these, the UCLA BigDatalog project is the only one that
provides a formal semantics for these programs using the notion of Pre-Mappability (PreM).
This notion, introduced in (Zaniolo et al. 2017), establishes a direct link between specialized
fixpoint optimizations yielding superior performance and scalability with powerful declarative
semantics that enables the concise expression of a wide range of algorithms. At the system level,
a highly optimized fixpoint implementation, including special Resilient Distributed Datasets
(RDDs) (Zaharia et al. 2012), allows BigDatalog (Shkapsky et al. 2016) on Apache Spark to
surpass the performance and scalability of other Datalog systems, and even outperform GraphX
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on graph applications—the very domain for which GraphX was designed for (Gonzalez et al.
2014). At the application level, PreM allows us to express declaratively a wide range of
algorithms, including those discussed in this paper and those discussed in (Condie et al. 2018).
The validity of the PreM property for those examples was proven directly using the formal
definition of the property (Zaniolo et al. 2017). However as we have now gained experience with
more applications, a clear need has emerged for simple criteria and templates that make it easy to
verify the PreM property, particularly since we want a larger number of programmers to benefit
from these advances. Providing such criteria presents the first objective of this paper, which also
explores the close relationships that exists between the stable model semantics of programs that
use extrema inside the recursive definition, and the perfect models of equivalent programs where
extrema are applied outside the recursive definition i.e., as post-conditions in stratified programs.

The rest of this paper is organized as follows: Section 2 introduces the concept of pre-
mappable constraints, while Section 3 presents simple conditions that can be used to prove
PreM. Section 4 formally explains how these conditions can be mapped to relational constraints.
Section 5 presents the stable model semantics for PreM programs. Related work and conclusions
presented in Sections 6 and 7 bring the paper to a closing.

2 Pre-Mappable Constraints

This section contains a brief summary of results from (Zaniolo et al. 2017). In the Example 1,
below, rule r3 computes the least distance from node a to the remaining nodes in a directed graph
by applying the constraint is_min((Y),D) to the pth(Y,D) atoms produced by rules r1 and r2.
Example 1 (Finding the minimal distance of nodes from a)

r1 : pth(Y,D)← arc(a,Y,D).

r2 : pth(Y,D)← pth(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy,

r3 : qpth(Y,D)← pth(Y,D),is_min((Y),D).

In our goal is_min((Y),D) , we will refer to (Y) as the group-by argument (group-by arguments
can consist of zero or more variables), and D is the cost argument variable (cost argument consist
of a single variable). This goal is expressing the constraint that a pair (Y,D) is acceptable only if
no other pair exists having the same (Y) and a smaller value of D. Thus the formal meaning of
our constraint is defined by replacing r3 with r4:

r4 : qpth(Y,D)← pth(Y,D),¬smlr_pth(Y,D).

where the goal is_min((Y),D) has been revised into smlr_pth(Y,D), and the latter is defined as:

r5 : smlr_pth(Y,D)← pth(Y,D),smlr_pth(Y,D1),D1< D.

The program consisting of rules r1, r2, r4, and r5 is stratified w.r.t. negation, with pth occupying
the lower strata and qpth occupying the higher strata. Thus, the program has a perfect model
semantics, but its computation using the iterated fixpoint procedure can be quite inefficient and
actually unsafe when the graph contains cycles. To solve these problems, (Zaniolo et al. 2017)
introduces the PreM condition, where qpth can be computed safely and efficiently by pre-
mapping the min goal into the rules defining pth, whereby the following program is obtained:

Example 2 (The endo-min version of Example 1)

r′1 : pth(Y,D)← arc(a,Y,D),is_min((Y),D).
r′2 : pth(Y,D)← pth(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy,is_min((Y),D).
r′3 : qpth(Y,D)← pth(Y,D).
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Thus we have seen two versions of this program: the program in Example 2, with min in
recursion will be called the endo-min version, whereas the original program shown in Example 1
will be called its exo-min version. The PreM condition defined next establishes a clear semantics
relationship between the two versions: the exo-min version defines its abstract perfect-model
semantics, whereas the endo-min version defines its optimized concrete semantics that assures
more efficient computation and termination in situations, e.g. cycles in the underlying graph,
where the iterated fixpoint computation would not terminate. However, in the course of our
discussion it will become clear that, often, we might want to let users interface directly with the
endo-min version because (i) it is more natural for programmers, and (ii) it has a well-defined
total stable model semantics.
Fixpoint and PreM Constraints. Now we will consider stratified programs, such as those of
Example 1, having a perfect model semantics computed by strata. At the lower stratum we find
the minimal model of the rules defined by (i) interpreted predicates, such as comparison and
arithmetic predicates, and (ii) positive rules such as r1 and r2 defining the pth predicate. If
T is the Immediate Consequence Operator (ICO) for this positive program, then its minimal
model is defined by the least-fixpoint of T which can be computed by T ↑ω( /0) (a.k.a the naive
fixpoint computation). The subset of this minimal model obtained by removing from T ↑ω( /0) all
the pth(Y,D) that do not satisfy the constraint γ = is_min((Y),D) will be called the extreme
subset of T ↑ω( /0) defined by γ . Then, the perfect model of the program in our example, can be
obtained by adding to T ↑ω( /0) the pth atoms obtained by simply copying pth atoms under the
name qpth. We next formally define the notion of PreM (Zaniolo et al. 2017) which allows us
to transform programs such as those of Example 1 into that of Example 2 where the min or max
constraints have been pushed (or more precisely transferred) into the recursive rules.

Definition 1 (The PreM Property)
In a given Datalog program, let P be the set of its rules defining a (set of mutually) recursive
predicate(s). Also let T be the ICO defined by P. Then, the constraint γ will be said to be PreM
to T (and to P) when, for every interpretation I of P, we have that: γ(T (I)) = γ(T (γ(I))).

The importance of this property follows from the fact that if I = T (I) is a fixpoint for T , then
we also have that γ(I) = γ(T (I)), and when γ is PreM to T then: γ(I) = γ(T (I)) = γ(T (γ(I))).
Now, let Tγ denote the application of T followed by γ , i.e., Tγ(I) = γ(T (I)). If I is a fixpoint for
T and I′ = γ(I), then the above equality can be rewritten as: I′ = γ(I) = γ(T (γ(I))) = Tγ(I′).

Thus, when γ is PreM, the fact that I is a fixpoint for T implies that I′ = γ(I) is a fixpoint for
Tγ(I). We will next describe many programs of practical interest where the transfer of constraints
under PreM produces optimized programs that are safe and terminating even when the original
programs were not. Thus we focus on situations where T ↑nγ ( /0) = T ↑n+1

γ ( /0), i.e., the fixpoint
iteration converges after a finite number of steps n. As proven in (Zaniolo et al. 2017), the fixpoint
T ↑nγ ( /0) so obtained is in fact a minimal fixpoint for Tγ :

Theorem 1
If γ is PreM to T and for some integer n T ↑nγ ( /0) = T ↑n+1

γ ( /0), then:
(i) T ↑nγ ( /0) = T ↑n+1

γ ( /0) is a minimal fixpoint for Tγ , and
(ii) T ↑nγ ( /0) = γ(T ↑ω( /0)).

Therefore, when the PreM property holds, declarative exo-min (or exo-max) programs are
transformed into endo-min (or endo-max) programs having highly optimized seminaive-fixpoint
based operational semantics. For instance, consider Example 1 on the following facts:
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Example 3 (arc facts for Example 1)

arc(a,b,6). arc(a,c,10).

arc(b,c,2). arc(c,d,3).

arc(d,c,1).

In this example, while the computation of T ↑ω( /0) will never terminate, the computation of
T ↑nγ ( /0) produces the following pth atoms at each step of the computation (underlined atoms
denote atoms that are eliminated at the next step of the fixpoint computation since they are no
longer competitive).

Example 4 ( Computing T ↑nγ ( /0) for Example 1 on facts in Example 3 )
Step 1: pth(b,6), pth(c,10)
Step 2: pth(b,6), pth(c, 8), pth(d,13).
Step 3: pth(b,6), pth(c, 8), pth(d,11)
Step 4: pth(b,6), pth(c, 8), pth(d,11),

Thus, we have derived the pth atoms pth(b,6), pth(c,8), pth(d,11) which, along with the
given arc atom above, constitute the extreme subset of T ↑ω( /0) since the PreM property holds
for the recursive rules in Example 1. These atoms, renamed qpth plus the atoms in T ↑ω( /0) then
constitute the perfect model for the original program. We now leave the summary of (Zaniolo
et al. 2017) and present new results.

Determining that PreM holds. For all its obvious advantages, detecting and proving that PreM
holds in the program at hand might not be simple even in simple applications. Thus, we now
provide methods and tools that greatly simplify this task. We need to focus on the recursive
rules, since PreM always holds for exit rules (since these are used at the first step of T ↑ω( /0), i.e.
they are applied to the empty set). For recursive rules the problem can be illustrated by adding
an additional goal to the rule to express the pushing of the extrema constraint into the argument
of the ICO. For instance, the recursive rule of our Example 2 should be re-written as:

r′2 : pth(Y,D)← pth(X,Dx),\is_min((X),Dx)/,arc(X,Y,Dxy),D= Dx+Dxy,is_min((Y),D).

Thus we observe that the final is_min goal minimizes the second argument of pth w.r.t. the first
one. The additional goal that should be added after pth(X,Dx) is\is_min((X),Dx)/. Basically, PreM
is satisfied when this new goal dropped into the rule does not change the mapping from the
recursive predicates in the body of the rules to the head of the rule, defined by the original exo-
min rule. This “drop-in" rewriting helps understanding PreM at the intuitive level, and illustrates
the rigorous treatment provided in the next section.

3 Declarative Algorithms by Simple Pre-mappability Patterns
A variety of algorithms can be expressed by recursive programs that use extrema aggregates,
which satisfy the PreM conditions, and in this section, we introduce simple criteria and formal
conditions that will make it easy for programmers to prove that PreM holds in their programs.
As we will see, there are basically two general techniques for detecting and proving PreM.
One is based on existential cost-comparisons in the rule, the other on extrema goals and the
multivalued dependencies established by the rule. Since it is trivial to map between the endo-min
or endo-max versions of programs and their exo-min or exo-max counterparts, we will normally
use the former versions that are often more concise and closer to procedural algorithms.
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Naive Sorting. Here our fact base contains atoms such as item(PartNo,Cost) that state the
Cost of a part identified by its PartNo. Now the following endo-min program orders those
parts by assigning a positive sequence number to them, as follows:

Example 5 (Ordering parts by their price in an ascending sequence.)

asc(0,nil,0).

asc(J1,Part,Val1)← asc(J,_,Val),item(Part,Val1),J1= J+1,

Val1> Val,is_min((J1),Val1).

To prove PreM we drop-in the goal is_min((J),Val) and determine its effects:

asc(J1,Part,Val1)← asc(J,_,Val),\is_min(J),Val)/,item(Part,Val1),

Val1> Val,J1= J+1,is_min((J1),(Val1)).

Observe that the conjunct asc(J,_,Val),item(Part,Val1),Val1 > Val simply states the
following: take each item(Part,Val1) if there exists a Val in asc(J,_,Val) such that Val1>

Val. But this statement can be re-expressed as: take each item(Part,Val1) whose Val1 is larger
than the least of the values Val appearing in asc(J,_,Val). Thus the dropping of \is_min(J),Val)/

does not change the mapping defined by our rule, and PreM is thus proven. This reasoning
based on existential comparisons allows us to determine PreM for many interesting examples,
including several greedy algorithms.

Huffman Encoding. We generate nodes of the Huffman tree, where nodes are represented by
a three-argument predicate huff, where its first argument is the frequency value, its second
argument is either a symbol or a reference to the left subtree, and its third argument is either nil
or a reference to the right subtree.

Example 6 (Huffman Encoding)

huff(Sym,Val,nil)← freq(Sym,Val).

np(0,0,0).

np(PR,L,R)← np(OR,_,PR),huff(L,_,_),L> PR,huff(R,_,_),R> L,is_min((OR),R).
huff(V,NL,NR)← np(_,NL,NR),huff(Lval,NL,_),huff(Rval,NR,_),V= Lval+Rval.

The first recursive rule, i.e. the one with head np(PR,L,R), states that, following a np goal
with right value PR, we now have a pair (L,R). Then the first exit rule in our program transforms
the given symbol+frequency information into the bottom nodes of the tree. For example, from
the facts “freq(a,5). freq(b,9). freq(c,12). freq(d,13). freq(e,16). freq(f,45).” the
first exit rule produces: huff(5,a,nil),huff(9,b,nil),huff(12,c,nil), huff(13,d,nil),

huff(16,e,nil),huff(45,f,nil).

Now, the proper computation begins with the second exit rule, i.e., np(0,0,0). From that
the first recursive rule produces np(0,5,9), and the second rule produces atom huff(14,5,9)

(since 5+9 = 14). Next, from the atom np(0,5,9) the first recursive rule produces np(9,12,13),
whereby we obtain huff(25,12,13). We next obtain the triple np(13,14,16) and the new node
huff(30,14,16) and so on until the complete tree is constructed.

The proof of the PreM property for the first recursive rule is a variation of the argument used
for the previous example. In fact, say that we check PreM by dropping-in the additional goal
is_min((OR),PR) after the np(OR,_,PR) goal in the first rule. Now R must satisfy the constraint
that it is the least value that follows some L that follows some PR, i.e. that follows the least of
such PR values. Thus the goal dropped into the recursive rule defining np does not change its
meaning and PreM is proven.



6 Zaniolo et Al.

4 Inferring PreM from Relational Dependencies and Extrema

It is often the case that the PreM property can be inferred by considering the properties of
extrema goals and the multivalued dependencies that hold in the equivalent relational DB views
of the (function-free) atoms in the rule body. In a given interpretation I, we say that Rq is a
relational view of a predicate q(x1, . . . ,xn) if defined as Rq= {(x1, . . . ,xn)|q(x1, . . . ,xn)∈ I}. The
next examples are meant to illustrate how the well-developed theory of functional dependencies
(FDs) and multivalued dependencies (MVDs) (Maier 1983), taught in the relational schema
design chapter of DB textbooks, will simplify the task of determining PreM.

In a nutshell, the MVDs Y →−→ X and Y →−→ Z hold in the relation R(X ,Y,Z) obtained as the
natural join (i.e. the join on their common attribute Y ) of two relations R1(X ,Y ) and R2(Y,Z).
Also the FD X → Z holds in R when no two tuples exist in R having the same X-value and a
different Z-value. Complex properties of relations can be easily proven by arrow-based inferences
that exploit the formal properties of FDs and MVDs including those used in this paper. that are
listed below: (Here, X , Y , Z, and W are subsets of the attributes of the given relation; moreover
we use the notation X ,Y to denote the union of X and Y .)

Replication: if X → Y then X →−→ Y .
FD Augmentation: if X → Y then X ,Z→ Y .
MVD Augmentation: If X →−→ Y and Z ⊆W , then X ,W →−→ Y,Z.
Mixed Transitivity: If Y →−→ Z and Z→ X , then Y → X−Z.

Bill of Materials. A classical recursive application for traditional databases is Bill of Materials
(BOM), where we have the DAG of parts-subparts, assbl(Part,Subpart,Qty) describing how
a given part is assembled using various subparts, each in a given quantity. Not all subparts are
assembled, basic parts are instead supplied by external suppliers in a given number of days, as
per the facts basic(Part,Days). Simple assemblies, such as bicycles, can be put together the
very same day in which the last basic part arrives. Thus, the time needed to produce the assembly
is the maximum number of days required by the basic parts it uses.

r0 : deliv(Part,Days)← basic(Part,Days),is_max((Part),Days).
r1 : deliv(Part,Days)← deliv(Sub,Days),assbl(Part,Sub),is_max((Part),Days).

Now, to determine if PreM holds, we must study the mapping of our rule transformed by the
drop-in goal as follows:

deliv(Part,Days)←
deliv(Sub,Days),\is_max((Sub),Days)/,assbl(Part,Sub),is_max((Part),Days).

Thus we want to prove that the dropped in goal does not change the mapping defined by
this rule. In our proof we will refer to is_max((Sub),Days) as the drop-in constraint and to
is_max((Part),Days) as the original constraint. We can exploit the following properties:

1. min and max aggregates enforce constraints that are special kinds of FDs, and
2. these min/max FDs are applied to the relation instances defined by the bodies of the

rules, which are the natural joins of the two tables that are the relational views of
deliv(Sub,Days) and assbl(Part,Sub).

Therefore, let R(Sub,Days,Part) be the natural join of the binary relations Rdeliv(Sub,Days) and
Rassbl(Part,Sub) which are the relational views of deliv(Sub,Days) and assbl(Part,Sub).
Therefore, the following MVDs hold in R: Sub→−→ Days and Sub→−→ Part.
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Now, let R′ be the relation obtained from R by enforcing the constraint is_max((Part),Days),
i.e. by eliminating from R the tuples have the same Part value as another tuple, but a smaller or
equal value for Days. As a result of enforcing the max constraint upon R, we have that the FD
Part → Days holds in R′, along with the well-known properties of FDs. But in addition to this
intra-relational constraint (the FD is defined w.r.t. the other tuples in R′), the following inter-
relational max-constraint holds:

If (s,d,p) ∈ R′, then (s,d,p) ∈ R and @(s′,d′,p) ∈ R s.t. d′ > d.

We will use the notation: Part
max:R
−−→ Days to denote that both these constraints hold in R′, and

refer to this as a max FD constraint. The reasons for using this arrow-based notation follow from
the following properties that are proven in the Appendix (see Theorem 4 and its corollary).

1. If Sub→−→ Days and Sub→−→ Part hold in R they also hold in R′;

2. If Sub→−→ Part and Part
max:R
−−→ Days hold in R′ then Sub

max:R
−−→ Days also holds in R′.

The second property generalizes the mixed-transitivity property of MVDs and FDs.

Now, PreM follows directly from Sub
max:R
−−→ Days. In fact, while the imposition of the

drop-in constraint\is_max((Sub),Days)/might in general cause the exclusion from Deliv of pairs
(Part,Days) that violate this constraint, this exclusion will have no effect upon R′ which

contains no such pairs given that Sub
max:R
−−→ Days holds in R′. Thus we have the simple and

general rule to decide PreM: the property holds if the drop-in constraint is implied by the MVD
and the original constraint. We will use and refine this simple rule in the remaining examples.

Connected Components in a Graph. Starting from the exo-min program is more natural in
some applications. For instance in this application, we have an undirected graph, where an edge
connecting, say, a and b is represented by the pairs edge(a,b) and edge(b,a). Then, we can
start by computing the transitive closure of this graph, i.e., all pairs of connected nodes.

Example 7 (Connected Components in an undirected graph.)

cc(X,X)← edge(X,_).
cc(X,Z)← cc(X,Y),edge(Z,Y).

The transitive closure so obtained is quite redundant since a clique of N nodes is represented
by 2×N×N pairs. A more concise representation consists in selecting as a representative of a
clique a particular node and then just store N pairs that represent the arcs going from the selected
node to every node of the clique, including itself. For instance, if we represent the nodes by
integers, we can select the node with the lowest integer as the representative for its clique. For
that, we can use the following rule to find if a node Z belongs to a clique named X.

inclique(Z,X)← cc(X,Z),is_min((Z),X).

Then, the next question that arises naturally is whether this computation can be optimized by
transferring is_min((Z),X) into the rules of Example 7, a question that can be answered by
checking PreM using the following rule:

cc(X,Z)← cc(X,Y),\is_min((Y),X)/,edge(Z,Y),is_min((Z),X).

Here we can consider R(X,Y,Z) and observe the following MVDs hold: Y→−→ X and Y→−→ Z.

Thus the imposed constraint Z
min:R
−−→ X together with the second MVD implies that Y

min:R
−−→ X

also holds. Thus, once the first constraint is enforced, enforcing the second does not change the
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mapping. Thus, PreM holds and the re-written program is as follows (we omit the no-op goal
is_min((X),X) from the exit rule).

cc(X,X)← edge(X,_).
cc(X,Z)← cc(X,Y),edge(Z,Y),is_min((Z),X).

Minimal Distances in Directed Graph. Let us now return to our Example 2, whose had the
following recursive rule and drop-in goal we will rewrite as follows:

path(Y,Dx+Dxy)← path(X,Dx),\is_min((X),Dx)/,arc(X,Y,Dxy),is_min((Y),Dx+Dxy).

In order to prove PreM we must exploit both the MVD due to the fact that this rule computes the
join of the relational views of path(X,Dx) and arc(X,Y,Dxy) and the min-distributive properties
of the sum function. We will say that the function F(X ,Y ) is distributive w.r.t. min when
min(F(X ,Y )) = F(min(X),min(Y )). Thus in a relation R(X ,W,Z) selecting the tuple that, for a
given value of W , has the least value of X +Y is equivalent to selecting the tuple that contains
both the min value of X and the min value of Y , and such a tuple is assured to exist because
W →−→ X and W →−→ Z hold.

Theorem 2
Let R(X ,W,Z) be a relation where W →−→ X and W →−→ Z, and let F(X ,Z) be a min-distributive

function. Then, the constraints W
min:R
−−→ X and W

min:R
−−→ Z hold in the relation R′ constructed by

enforcing the constraint is_min((W ),F(X ,Z)) upon R.
Proof
Because of the MVD, if x and z are minimal X-values and Z-values associated with the same W-
value w, R must also contain a tuple (x,w,z). Since F is min-distributive this is the tuple which
produces the min value of F(x,z) for the given w, and as such is the only tuple with W-value w

that is also present in R′, which therefore also satisfies the constraints W
min:R
−−→ X and W

min:R
−−→ Z.

We will make use of this theorem, and the dual one that holds for max-distributive function, in the
next examples where we also exploit the augmentation property of min/max FDs, that basically
states that min or max FDs remain valid if we augment their left sides by adding additional

attributes. For instance since R′ in the previous example satisfies W
min:R
−−→ Z, it also satisfies

X ,W
min:R
−−→ Z, where the notation X ,W denotes the union of X and W . In fact X ,W

min:R
−−→ Z is the

conjunct of the following two properties (i) the FD X ,W → Z holds, and (ii) no tuple with the
same X and W values and a smaller Z value exists in the original R. Now, (i) is true because of
the augmentation property of FDs, and (ii) is true because of the valid constraint that no tuple
exists with the same W -value and a smaller Z-value. Therefore, with R the natural join of the
relational views of path(X,Dx) and arc(X,Y,Dxy), let us take the following steps:

Step 1 [Find MVDs in R]: X→−→ Dx and X→−→ Y,Dxy.
Step 2 [Determine min-FDs in table R′ obtained from R by application of is_min((Y),Dx+Dxy)]:

R′ satisfies: Y
min:R
−−→ Dx+Dxy.

Step 3 [Use augmentation to align MVDs and min-FDs to distribute min]:
X,Y→−→ Dx and X,Y→−→ Y,Dxy hold in R. Also: X,Y

min:R
−−→ Dx+Dxy holds in R′.

Step 4 [Distribute min-FDs, because of the constraints established in Step3]:
X,Y

min:R
−−→ Dx and X,Y

min:R
−−→ Dxy hold in R′.
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Step 5 [Use augmentation to align the MVDs in Step 1 and the min-FDs in Step 4 for mixed
transitivity and apply it]: From the second MVD in Step 1 and the first min-FD in Step 4
we infer: X→−→ X,Y,Dxy and X,Y,Dxy

min:R
−−→ Dx . From these we infer: X

min:R
−−→ Dx.

While dealing with the properties of FDs and MVDs might represent a challenge for naive
programmers, the pattern established by these examples can be mechanically applied to other
problems by naive users and compilers that verify PreM. The next example illustrates this point.

Max Probable Path. Assume that the cost argument associated with a directed arc represents
a probability (e.g., probability that road connecting two nodes is practicable). Then, we can
compute the max probability between nodes as follows:

Example 8 (Max Path Probability)
r0 : ppath(X,Y,Vxy)← arc(X,Y,Dxy),is_max((X,Y),Vxy).
r1 : ppath(X,Z,V)← ppath(X,Y,Vxy),ppath(Y,Z,Vyz),

V= Vxy∗Vyz,is_max((X,Z),V).
r2 : maxprop(X,Y,V)← ppath(X,Y,V).

Since cost arguments represent probabilities, their values range between zero and one, whereby
the max product of two costs is equal to the product of their max. Now, the programmer must
check that PreM holds on the following recursive rule:

ppath(X,Z,V)← ppath(X,Y,Vxy),\is_max((X,Y),Vxy)/,ppath(Y,Z,Vyz),\is_max((Y,Z),Vyz)/,

V= Vxy∗Vyz,is_max((X,Z),V).

So let R(X,Y,Vxy,Z,Vyz) be the natural join (i.e., on the column Y) of the relational views of
ppath(X,Y,Vxy) and ppath(Y,Z,Vyz). We now have:

Step 1 [Find MVDs in R]: Y→−→ X,Vxy and Y→−→ Z,Vyz.
Step 2 [Find max-FDs from is_max((X,Z),Vxy∗Vyz)]: X,Z

max:R
−−→ Vxy∗Vyz holds in R′.

Step 3 [Align MVDs and max-FDs]: X,Y,Z→−→ X,Vxy and X,Y,Z→−→ Z,Vyz hold in R.
Also: X,Y,Z

max:R
−−→ Vxy∗Vyz holds in R′.

Step 4 [Distribute max-FDs]: X,Y,Z
max:R
−−→ Vxy and X,Y,Z

max:R
−−→ Vyz hold in R′.

Step 5 [Align MVDs from Step 1 and max-FDs from Step 4 and apply mixed transitivity]: From
the second MVD in Step 1 and the first max-FD in Step 4, we infer: X,Y→−→ X,Y,Z,Vyz

and X,Y,Z,Vyz
max:R
−−→ Vxy. From these two we infer: X,Y

max:R
−−→ Vxy. Symmetrically, from

Y,Z→−→ X,Y,Z,Vxy and X,Y,Z,Vxy
max:R
−−→ Vyz, we infer Y,Z

max:R
−−→ Vyz.

Minimum Cost Spanning Tree. We have an undirected graph, whose edges are represented by
cedge(X,Y,C) where X< Y, and C is the cost of the edge. We proceed as in Example 7 except that
among the edges that connect different connected components, we select one having minimum
cost (but larger than those used in previous steps).

Example 9 (Minimum spanning tree à la Kruskal)

kr(0,X,X,0)← cedge(X,_,_).
cc(Z,Y)← cc(X,Y),kr(_,X,Z,_),is_min((Z),(Y)).
kr(C,X,Y,NC)← kr(OC,_,_,C),cedge(X,Y,NC),NC> C,

cc(NX,X),cc(NY,Y),NY<>NX,is_min((C),NC).
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For the recursive rule defining cc, PreM can be proven in the same way it was proven
for Example 7. For the rule defining kr, PreM can be proven by dropping in the goal
is_min((OC),C) after the first goal. But this will not modify the mapping defined by the rule,
since an NC value is larger than some value of C iff it is larger than the least of those C-values.

5 Stable Models of PreM Programs

The examples in previous sections illustrate that endo-min/max programs can often appeal to
the intuition of the programmer better than their original exo-min/max versions which they
optimize. It is only natural therefore that we ask the question whether the endo-min version
of programs have their own formal semantics. As we shall see next, the answer is yes, for most
PreM programs of practical interest, including all the programs we have considered so far: these
programs have total stable model semantics. We now summarize this important result for which
the proof is given in the appendix.

Cost Atom Derivation and Stability. The Cost-Atom Derivation Graph (CAD-graph in short) is
a labeled graph that represents the derivation of cost atoms in T ↑nγ ( /0) = T ↑n+1

γ ( /0) . It is defined
as follows:

1. For each instance of a recursive rule r used in T ↑nγ ( /0)= T ↑n+1
γ ( /0) with head H and recursive

goals G j, j ≥ 1, there is an arc labeled r: j from G j to H.
2. For each instance of exit rule r used in T ↑nγ ( /0) = T ↑n+1

γ ( /0) with head H there is an arc
labeled r:0 from the distinguished goal atom nil to H.

The CAD-graph for the min distance example of Section 2 is shown in Example 10. Since
the recursive rule in our example only contains one cost goal, the “: j” part of the arc label is
redundant and has been omitted in our graph. Competing atoms are shown vertically aligned.
Nodes at distance i from nil are those produced at the ith step of the computation. The source
of each arc shows the cost atom from step i− 1 while its label shows the rule used. Thus, the
CAD-graph succinctly describes the computation of T ↑nγ ( /0) = T ↑n+1

γ ( /0) .

Example 10 (Cost-atom derivation table&graph for Example 3.)

arc(a,b,6).arc(a,c,10).arc(b,c,2).arc(c,d,3).arc(d,c,1).

Step 1: pth(b,6), pth(c,10).

Step 2: pth(b,6), pth(c, 8), pth(d,13).

Step 3: pth(b,6), pth(c, 8), pth(d,11)

Step 4: pth(b,6), pth(c, 8), pth(d,11),

To the left of this CAD-graph we show the associated CAD-table, which displays the cost atoms
obtained at each step without showing the rules used in the derivation. Competing cost atoms
are displayed in the same column, where a horizontal bar between the old value and the new one
shows that the value has decreased and has been superseded by the new value.

Stable Models in PreM Programs. The CAD-graph for a given PreM program can be used
to decide whether the program has a stable model. In particular, the following modification of
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Example 2, illustrates, by its CAD-graph, a PreM program where its minimal model T ↑nγ ( /0) =
T ↑n+1

γ ( /0) is not a stable model.

Example 11 (arcs departing from a)

(r1) path(Y,D)← arc(a,Y,D),is_min((Y),D).
(r2) path(Y,LD)← path(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy,lb(D,LD),is_min((Y),LD).
(r3) lb(X,X)← X>= 1.

(r4) lb(X,1)← X< 1.

PreM still holds for this program and the T ↑nγ ( /0) = T ↑n+1
γ ( /0) computation produces the CAD-

graph below1. Observe that while the programs of these two examples are basically the same, and
both satisfy the PreM property, their arc fact bases are different. Indeed while in both cases the
fact base contain a cycle, the arcs in the second fact base have negative lengths, and this causes
the resulting CAD-graph, displayed in Example 12, below, to have a directed cycle.

Example 12 (Derivation table&graph for Example 11)

arc(a,b,6). arc(a,c,10). arc(b,c,2).

arc(c,d,3). arc(d,c,−10).
Step1: path(b,6), path(c,10)

Step2: path(b,6), path(c, 8), path(d,13)

Step3: path(b,6), path(c, 3), path(d,11)

Step5: path(b,6), path(c, 1), path(d, 6)

Step6: path(b,6), path(c, 1), path(d, 4)

Step7: path(b,6), path(c, 1), path(d, 4)

As stated by the following theorem (proven in the Appendix), this is an important difference:

Theorem 3
If P is an endo-min (resp. endo-max) PreM program whose CAD-graph is free of cycles, then
T ↑nγ ( /0) = T ↑n+1

γ ( /0) is a stable model for P.

Acyclic CAD-graphs. The absence of cycles in CAD-graph is assured in the following two
situations that occur frequently in actual PreM programs:

C1 Acyclic fact base. This is the situation where the fact base can be viewed as a graph that
is free of cycles. For instance, in our running example, if we remove the arc leading back
from d to c the resulting fact base is free of cycles and thus a stable model exists for both
the programs in Example 2 and Example 11.

C2 Inflationary/deflationary path. A path in the CAD graph will be called inflationary (resp.
deflationary) if the cost of each cost-atom in the path is larger (resp. smaller) than that of
each of its competing predecessor. Inflationary (resp. deflationary) paths occur when all
arcs in the underlying arc fact-base are, respectively, positive (resp. negative). Cycles can
occur when we have paths of both kinds, although this is a necessary condition but not a
sufficient one. For instance in Example 12 if we replace arc(d,c,−10) with arc(d,c,−2)
we still have that all paths are inflationary.

1 For simplicity we do not show the labels of the arcs, since it is clear the arcs departing from nil are labeled r′1 and the
others are labeled r′2.
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In all examples of practical interest, including those discussed in the previous sections, we
found that either condition C1, or condition C2 or both hold, and they are actually easy to verify
once PreM is verified. Therefore, we now have a practical test to assure that stable models exist
for Datalog programs expressing declaratively classical algorithms—stable models that can be
computed very efficiently via T ↑nγ ( /0) = T ↑n+1

γ ( /0) (Shkapsky et al. 2016).

6 Related Work

Supporting aggregates in recursion is a difficult problem which has been the topic of much
previous research work. Several approaches focused primarily on providing a formal semantics
that could accommodate the non-monotonic nature of the aggregates. In particular (Mumick et al.
1990) discussed programs that are stratified w.r.t. aggregate operators and proved that a perfect
model exists for these programs. Then, (Kemp and Stuckey 1991) defined extensions of the well-
founded semantics to programs with aggregates, and later showed that these might have multiple
and counter-intuitive stable models.

The problem of optimizing programs with extrema by early pruning of non-relevant facts was
studied in (Ganguly et al. 1991) and (Sudarshan and Ramakrishnan 1991) exploiting different
optimization conditions, and the notion of cost-monotonic extrema aggregates was introduced
by (Ganguly et al. 1995), using perfect models and well-founded semantics. More recently,
(Furfaro et al. 2002) devised an algorithm for pushing max and min constraints into recursion
while preserving query equivalence under certain specific monotonicity assumptions. A general
approach to deal with all four aggregates, was proposed by (Ross and Sagiv 1992) who advocated
the use of semantics based on specialized lattices, whereby each aggregate will then define
a monotonic mapping in its specialized lattice—an approach that was not without practical
limitations (Van Gelder 1993). A similar idea (with similar limitations) was more recently
proposed in (Swift and Warren 2010) and in several other works e.g., (Zhou et al. 2010; Zhou
et al. 2015) in the context of tabling in Prolog relying on 3-valued well-founded model semantics.

Researchers working on Answer Set Programming (ASP) have also shown much interest in
the benefits that aggregates offer in logic programs (Pelov et al. 2007; Pontelli et al. 2004; Son
and Pontelli 2007). A significant semantic analysis of the problem was proposed by (Gelfond
and Zhang 2014). In (Alviano and Leone 2016), various aggregates subclasses are identified that
are tractable in polynomial-time, which are also supported in DLV system.

A renewed interest in Big Data analytics brought a revival of Datalog as a parallelizable
language for expressing more powerful graph and data-intensive algorithms—including many
that require aggregates in recursion (Seo et al. 2013; Shkapsky et al. 2013; Wang et al. 2015).
The solution proposed here builds on the monotonic count and sum proposed in (Mazuran et al.
2013) and provides the foundation of the efficient and scalable systems discussed in (Shkapsky
et al. 2015; Yang et al. 2015; Shkapsky et al. 2016; Yang et al. 2017).

7 Conclusion and Future Work

The problem of supporting aggregates in recursive logic programs has long been the focus
of much research because of the great opportunities and very difficult challenges it presents.
Significant opportunities in BigData applications were recently demonstrated by (i) the superior
levels of scalability and performance achieved by systems that support Datalog with aggregates
(Shkapsky et al. 2016; Yang et al. 2017), and (ii) the broad spectrum of declarative algorithms
that can be expressed using aggregates in recursion, including those discussed in (Shkapsky
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et al. 2016; Yang et al. 2017; Zaniolo et al. 2017) and in this paper. The most difficult challenges
posed by aggregates in recursion are caused by their non-monotonic nature but they go beyond
the much-studied problem of providing a rigorous formal semantics since they include the
requirements that such formal semantics (a) must be conducive to efficient implementation and
(b) must be simple enough to be intuitive to and usable by everyday programmers. The PreM
property studied in this paper can answer successfully these challenges by moving the state-of-
the-art forward significantly on the three fronts of efficient implementation, formal semantics,
and usability. In this paper, we have achieved solid advances on the second front by providing
general conditions that assure that PreM endo-min/max programs have stable models and
those models are equivalent to the perfect models of their exo-min/max counterparts. On the
third front, the usability of PreM has been improved significantly by the discovery of simple
templates (including the novel ones based on FDs and MVDs) that allow users and compilers to
easily verify pre-mappability. This progress brings us closer to the goal of supporting declarative
BigData algorithms by Datalog with aggregates, but much work remains to be done in proving
the generality of the approach. Algorithms that use count and sum, viewed as maximized version
of monotonic progressive count and sum, were discussed in (Zaniolo et al. 2017) and shown
to satisfy PreM. These require simple generalizations of our MVD/FD-templates, that were
not covered in this paper because of space limitations. A second class of algorithms, such as
temporal coalescing, can be expressed under PreM by using specialized aggregates that will
require new templates to validate them. Finally, we have procedural algorithms that cannot be
directly mapped into declarative algorithms satisfying PreM—although that might be possible
under revised formulations for those algorithms, as this paper has done for greedy algorithms.
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Appendix A MVDs and Extrema FD Constraints

Assuming that with n and m denoting positive integers let us consider a relation
R(X1, . . . ,Xn,Y1, . . . ,Ym,C), and let R′(X1, . . . ,Xn,Y1, . . . ,Ym,C) be the relation obtained from R

by enforcing the min-FD Y
min:R
−−→ C, i.e., by deleting the tuples in R that violate the constraint

is_min((Y ),C). We have the following theorem:

Theorem 4
If X1, . . . ,Xn→−→Y1, . . . ,Ym holds in R(X1, . . . ,Xn,Y1, . . . ,Ym,C) and R′(X1, . . . ,Xn,Y1, . . . ,Ym,C) is

obtained from R by enforcing Y1, . . . ,Ym
min:R
−−→C, then X1, . . . ,Xn

min:R′
−−→C holds in R′.

Proof
It suffices to prove that R′ cannot contain two tuples ta = (x1, . . . ,xn,y1, . . . ,ym,c1) and tb =

(x1, . . . ,xn,y′1, . . . ,y
′
m,c2) where c2 > c1. In fact if these two tuples are in R′ they must also be in R

where the fact that X1, . . . ,Xn→−→ Y1, . . . ,Ym holds implies that tuples tc = (x1 . . .xn,y1, . . .ym,c2)

and td = (x1 . . .xn,y′1, . . .y
′
m,c1) exist in R as well. But the enforcement of the min constraint to

derive R′ implies that tc and tb will be deleted, and the only remaining tuples are those with the
least C value of c1.

Corollary. As a direct consequence of this theorem we have that since X →C now holds in R′

so do the original MVDs X →−→C and X →−→ Y .

Appendix B Stable Models for Min and Max Programs

In Section 2 of this paper, we established a clear relationship between T ↑nγ ( /0) = T ↑n+1
γ ( /0) and

the perfect model of the exo-min version of the program. Here we seek to elucidate the strong
relationship that exists between T ↑nγ ( /0) = T ↑n+1

γ ( /0) and the stable model of an endo-min (endo-
max) program.

B.1 Stability Definition
We next characterize the semantics of our endo-min and endo-max programs by the stable-
model semantics of equivalent programs that use negation, and then provide efficient algorithms
to verify such semantics. We begin by recasting and endo-min or endo-max programs into
equivalent programs that use negation, called the negation based-equivalents (n.b.e ) of the
original programs. Also, if P the original program its n.b.e will be denoted as nbe(P). Take
for instance the following program consisting of our original Example 2 and a set of five facts.

Example 13 (arcs departing from a)

r6 : pth(Y,D)← arc(a,Y,D),is_min((Y),D).
r7 : pth(Y,D)← pth(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy,is_min((Y),D).
arc(a,b,6). arc(a,c,10)

arc(b,c,2). arc(c,d,3).

arc(d,c,1).

Observe that the rules of this program have the PreM property and, for the given set of facts,
the computation of T ↑nγ ( /0) converges after a finite number of step producing the following pth

atoms: { pth(b,6), pth(c,8), pth(d,11)}. The n.b.e for above program is as follows:
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Example 14 (The n.b.e. of the program in Example 13)

r8 : cpth(Y,D)← arc(a,Y,D).

r9 : cpth(Y,D)← pth(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy.

r10 : smlr_pth(Y,D)← cpth(Y,D),cpth(Y,D1),D1< D.

r11 : pth(Y,D)← cpth(Y,D),¬smlr_pth(Y,D).
arc(a,b,6). arc(a,c,10)

arc(b,c,2). arc(c,d,3).

arc(d,c,1).

Thus instead of is_min((Y),D), for each cost atom produced in r8 and r9 we use in
r10 to identify those that, for the same Y value have a smaller cost and exclude them from
pth in r11. Observe that nbe(P) contains all the predicates of P, which will be called
core predicates, plus new ones that will be called ancillary predicates. In the example at
hand, pth and arc are core predicates and smlr_pth and cph are ancillary predicates.
Now, with I an interpretation of P, nbe(I) will denote the interpretation of I obtained by
extending I using the rules in nbe(P) defining ancillary predicates. Thus, for the example
at hand, given {pth(b,6), pth(c,8), pth(d,11)} we use rule r8 and r9 to derive
cpth(b,6), cpth(c,10), cpth(c,8), cpth(d,11), cpth(c,12).

Then, the interpretation I of an endo-min program P will be said to be a stable model for P if
nbe(I) is a stable model for nbe(P). For instance, given the following core atoms:

M1 = {arc(a,b,6), arc(a,c,10), arc(b,c,2), arc(c,d,3), arc(d,c,1),
pth(b,6), pth(c,8), pth(d,11)},

the n.b.e expansion of these atoms, i.e. M2 = nbe(M1), is as follows:
M2 = {arc(a,b,6), arc(a,c,10), arc(b,c,2), arc(c,d,3), arc(d,c,1),

cpth(b,6), cpth(c,10), cpth(c,8), cpth(d,11), cpth(c,12)

smlr_pth(c,10), smlr_pth(c,12),
pth(b,6), pth(c,8), pth(d,11)}.

Therefore according to our definition, M1 will be said to be stable model for the program in
Example 13 iff M2 is a stable model for the program in Example 14.

We have used here Example 2 for illustrative purposes, but it is clear that the definition of
nbe(P) and the fact that its stable model defines the stable model of the original P, holds for any
endo-min program P (and conversely for endo-max programs). Dual notions and definitions hold
for endo-max programs.

B.2 Verifying Stability

We will next address the two related problems of (i) verifying when a given interpretation is a
stable model for the program at hand and (ii) identifying endo-min and endo-max programs for
which a stable model is guaranteed to exists.

In general, to verify that a given interpretation M is stable for an endo-min program P, we
apply the stability transformation, which builds the redux of ground(P) w.r.t. M, denoted as
groundM(P), by (a) first removing all the rules with goal ¬q if q ∈ M, and then (b) removing
all negated goals from the remaining rules. If the the least fixpoint of the positive ground(P) so
constructed is equal to M, then this is a stable model for P. However for endo-min and endo-max
programs we do not need to instantiate the rules in P since the same mapping as that defined
by ground(P) can be obtained by transforming P as follows: (i) leave the positive rules in P
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unchanged, (ii) assert a new fact q_inM for each atom q ∈ M, and (iii) replace each negated goal
¬q in the rules of P by a goal ¬q_inM. The program so obtained will be called the symbolic
redux of P.

For instance, the symbolic redux of for our example can constructed by (i) leaving r10
unchanged, since it has no negated goal, and by (ii) adding a fact smlr_pth_inM(Y,D) for
each instance of smlr_pth(Y,D) on the candidate model M, and (iii) replacing the goal
¬smlr_pth(Y,D) in r11 with ¬smlr_pth_inM(Y,D). Therefore, we obtaining the following
negation-stratified program, where we omit listing rule r10 which no longer plays a role in the
computation of pth and cpth. For brevity, we also omit listing the arc facts.

Example 15 (Checking stability)

r8 : cpth(Y,D)← arc(a,Y,D).

r9 : cpth(Y,D)← pth(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy.

r10 : . . .← . . .

r11 : pth(Y,D)← cpth(Y,D),¬smlr_pth_inM(Y,D).
smlr_pth_inM(c,10). smlr_pth_inM(c,12).

We can now compute the perfect model for this stratified program, and find that it is equal to M2.
Thus M2 is a stable model for Example 15 and M1 is therefore a stable model for Example 14

B.3 Direct Stability Verification

We can optimize the rules of of Example 15 to produce a direct and faster computation for the
core pth atoms, and then use the other rules to derive the ancillary predicate from the core atoms.
In fact if the set of core atoms so obtained is exactly the same as those in the original M1 then
we are guaranteed that we will also obtain back the same M2 proving stability.

Optimized Stability Verification. A further optimization in the computation of pth can be
obtained from the stratified program in Example 14 by merging the computation of r8 and r9
with r11 producing the following rules that can deliver a direct verification for core predicates of
the program at hand (for brevity, we do not list the arc facts):

Example 16 (Optimized Verification Program)

r′8 : pth(X,D)← arc(a,Y,D),¬smlr_inM(X,D)
r′9 : pth(X,D)← pth(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy,¬smlr_pth_inM(X,D).
smlr_pth_inM(c,10). smlr_pth_inM(c,12).

The optimized stability verification just discussed can be use to verify that an arbitrary
interpretation I is a stable model for the given program. However consider the situation where I is
extreme, i.e. it that satisfies the condition γ(I) = I, where were γ stands for min or max. Observe
now that in all PreM programs M = T ↑nγ ( /0) = T ↑n+1

γ ( /0) is extreme since γ(T ↑n( /0)) = T ↑n( /0).
Then we have that the stability check for T ↑nγ ( /0) = T ↑n+1

γ ( /0) a PreM program P can be
performed by a positive program P′, called direct verification program, constructed as follows:

1. make the following positive assertions: assert as facts all the atoms in M under a new
distinguished name, whereby an atom of M having name q will be renamed q_inM, and

2. in the rules of P, replace every negated goals ¬smlr_q_inM(. . .) with the positive goal
q_inM(. . .).
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Thus, the direct verification program for Example 16 is as follows (arc facts omitted):

r′′8 : pth(Y,D)← arc(a,Y,D),pth_in_M(X,D)
r′′9 : pth(Y,D)← pth(X,Dx),arc(X,Y,Dxy),D= Dx+Dxy,pth_in_M(X,D).

pth_inM(b,6). pth_inM(c,8). pth_inM(d,11).

To prove the equivalence of this program to that of Example 16, observe that¬smlr_pth_inM(X,D)
is satisfied in the following three cases:

(i) there is a positive assertion (pth_inM(X,D). or
(ii) there is a positive assertion pth_in(X,D′) where D′ > D, or
(iii) there is no positive assertion having the same first argument x (the group-by argument).

Now, when verifying Now, when verifying M =T ↑nγ ( /0) = T ↑n+1
γ ( /0) which is extreme e have

that (ii) and (ii) are always false, and there only remains condition (i) which checks that
pth_inM(X,D) ∈ M. This conclude our proof: the direct verification program, which is positive,
can be used to check stability of T ↑nγ ( /0) = T ↑n+1

γ ( /0) for a PreM program.
Since the direct stability verification program for a candidate model M uses the original exo-

rules modified with the addition of the final goal that discards atoms that are not in M, we
will denote by TM the ICO of the direct stability verification program, which can be defined
as TM(I) = M ∩ T (I), where T is the ICO for the original exo-min program. These properties
and the transformations we have illustrated with the help of our running example hold for any
exo-min or exo-max PreM program. Thus we can state the following:

Theorem 5
If P is an endo-min or endo-max program with ICO Tγ , then M =T ↑nγ ( /0) = T ↑n+1

γ ( /0) is a stable
model for P iff T ↑ωM ( /0) = M.

For instance, for our example, the direct stability-verification computation for the candidate
stable model M = pth(b,6), pth(c,8), pth(d,11) derives the following atoms:

Step1: pth(b,6),
Step2: pth(b,6), pth(c,8),
Step3: pth(b,6), pth(c,8), pth(d,11)

Step4: pth(b,6), pth(c,8), pth(d,11)

Thus, we obtain back our original M which therefore is a stable model for Example 2.
The direct verification algorithm derives extreme atoms using extreme rules, where an atom

is called extreme if it belongs to T ↑nγ ( /0) = T ↑n+1
γ ( /0) . Also: an exit rule instance will be called

extreme if its head is extreme, and a recursive rule instance will be called extreme if its heads
and each of its cost goals are extreme. Now, extreme rule instances play an important role in the
notion of extreme derivation discussed next.

B.4 Assuring Model Stability in PreM Programs

Thus, we would like to give the recursive definition of derivation for a cost atom, and also define
the derivation-level at which a cost-atom is produced.

Definition 2 (Derivations and Extreme Derivations)
(i) Each instance of an exit rule used in Tγ( /0) defines a level-1 derivation for its head cost

atom, and
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(ii) If there is an instance of a recursive rule r having as head the cost atom H, which belongs
to T ↑ j

γ ( /0) but not to T ↑ j−1
γ ( /0), then this rule instance together with the derivations of each

of its coast goals, defines a jth level derivation for H.
(iii) A derivation of cost atom will be called extreme if each rule instance used in the derivation

is extreme.
Then we have the following theorem.

Theorem 6
Let T be the ICO of an endo-min or endo-max program P having the PreM property. Then
T ↑nγ ( /0) = T ↑n+1

γ ( /0) is stable model for P iff there exists an extreme derivation for each atom in
T ↑nγ ( /0) = T ↑n+1

γ ( /0) .
Proof
Observe that every extreme derivation for a cost atom is also a valid derivation for the same cost
atom in the direct verification algorithm, computing T ↑ωM ( /0). Conversely, every valid derivation
of a cost atom in T ↑ωM ( /0) an extreme derivation for T ↑nγ ( /0) = T ↑n+1

γ ( /0) .

Examples 10 and 12 show that the validity of PreM does not guarantee that the minimal model
produced by T ↑nγ ( /0) = T ↑n+1

γ ( /0) is stable, inasmuch as different fact bases might or might not
produce a stable model, and the direct Verification Algorithm provides simple and efficient tool
for verifying stability. However, in most applications we must and can do even better and support
programmers who want to know a priori that their declarative algorithm will work correctly for
the application and data set it was designed for. Therefore, we will next provide simple conditions
that guaranteed that PreM programs actually have total stable models. A very useful sufficient
conditions is that the CAD-graph does not contain any cycle as state in Theorem 3, for which we
now provide the proof.

Theorem 7 (Same as Theorem 3)
If P is an endo-min (resp. endo-max) PreM program whose CAD-graph is free of cycles, then
T ↑nγ ( /0) = T ↑n+1

γ ( /0) is a stable model for P.

Proof
Let C be a cost atom in T ↑nγ ( /0) = T ↑n+1

γ ( /0) . Since there can be several derivations for C, consider
a final one, i.e. one that has level j and there is no derivation of C at level larger than j. Thus C
has been produced by the instance of a rule r, let us call it inst(r) having C as its head. If some
goal of inst(r) is not extreme, let us replace it in i(r) by its final competitor: the final competitor
in its class must have a level which is less than j otherwise j cannot be final derivation level for
C. Moreover, this final competitor is extreme and, because of PreM, the instance of r obtained
by replacing the non-extreme goal with this extreme one is true. By applying this process to each
non-extreme goal in i(r) we obtain an extreme instance of r that has C has its head and where
each of its goals is extreme. Moreover, these extreme goals have a final level that is less than
j. Given that all our derivations are finite and are free of cycles, the repeated application of this
inductive reasoning takes us down to the bottom level delivering an extreme derivation for C.
Thus there is an extreme derivation for each cost atom in T ↑nγ ( /0) = T ↑n+1

γ ( /0) .

As discussed in Section 5, the acyclicity of the CAD-graph is guaranteed when the underlying
fact base is acyclic or all the paths in the CAD-graph are either inflationary or deflationary. Since
these conditions hold for all declarative algorithms discussed in this paper, their exo-min or exo-
max programs have stable models.
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