
hofbauer_wst2018_final.pdf

Embracing Infinity – Termination of String
Rewriting by Almost Linear Weight Functions
Dieter Hofbauer

ASW – Berufsakademie Saarland, Germany
d.hofbauer@asw-berufsakademie.de

Abstract
Weight functions are among the simplest methods for proving termination of string rewrite sys-
tems, and of rather limited applicability. In this working paper, we propose a generalized ap-
proach. As a first step, syllable decomposition yields a transformed, typically infinite rewrite sys-
tem over an infinite alphabet, as the title indicates. Combined with generalized weight functions,
termination proofs become feasible also for systems that are not necessarily simply terminating.
The method is limited to systems with linear derivational complexity, however, and this working
paper is restricted to original alphabets of size two. The proof principle is almost self-explanatory,
and if successful, produces simple proofs with short proof certificates, often even shorter than
the problem instance. A prototype implementation was used to produce nontrivial examples.

Digital Object Identifier 10.4230/LIPIcs...

1 Preliminaries

As usual, a string as a sequence of letters is denoted by a0 . . . an or by (a0, . . . , an) in case
the former notation is possibly ambiguous. The length of a string x is |x|, and Z denotes
the set of integers and N the set of non-negative integers. The derivation height function
modulo some terminating rewrite system R over alphabet Σ maps a string x ∈ Σ∗ to
dhR(x) = max{n ∈ N | ∃y ∈ Σ∗ : x→n

R y}. The derivational complexity dcR : N→ N of R
is defined as dcR(n) = max{dhR(x) | |x| ≤ n}, cf. [6].

2 Syllable Decomposition

Decomposing strings by splitting at occurrences of a distinguished letter defines a natural
bijection between strings over the original alphabet and strings over a different alphabet,
which is typically infinite. This syllable decomposition is used, for instance, in [8] for defining
the Kachinuki order, which coincides on strings with the recursive path order from [2]. There,
the syllable decomposition is recursively continued, whereas in this paper it appears only as
a single first step, similar to the approach in [4].

I Definition 1. The syllable decomposition of a string x ∈ Σ∗ with respect to a letter a ∈ Σ is
the string splita(x) = (x1, x2, . . . , xn) ∈ Γ+ with Γ = (Σ\{a})∗ such that x = x1ax2a . . . axn.

Here, a is called the split letter. Note that the above decomposition is unique and that
| splita(x)| ≥ 1. The alphabet of the resulting string is Γ = (Σ \ {a})∗, which is infinite
except for the trivial case Σ = {a}. In this paper, we consider the simple case of a two-letter
alphabet, Σ = {a, b} say. Therefore, an element of Γ = {bn | n ∈ N} is uniquely determined
by its length.

I Definition 2. For a string x ∈ Σ∗ and a letter a ∈ Σ with splita(x) = (x1, . . . , xn) let
slita(x) = (|x1|, . . . , |xn|) ∈ N+.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...

http://creativecommons.org/licenses/by/3.0/

http://www.dagstuhl.de/lipics/

http://www.dagstuhl.de

XX:2 Termination of String Rewriting by Almost Linear Weight Functions

This natural bijection between Γ and N can be extended to string rewriting: For a
rewrite system R over Σ there is a rewrite system slita(R) over N so that slita : Σ∗ → N+

is an isomorphism between the relational structures (Σ∗,→R) and (N+,→slita(R)). As a
consequence, termination of R is equivalent to termination of slita(R). Just as the underlying
alphabet N, the rewrite system slita(R) is infinite in order to properly handle contexts of
rule application.

In the sequel, for p, q ∈ N and (k1, . . . , kn) ∈ N+, we use the overloaded notation
p+(k1, k2, . . . , kn−1, kn)+q = (p+k1, k2, . . . , kn−1, kn+q). Note that p+(k1)+q = (p+k1+q).

I Definition 3. For a rewrite rule `→ r over alphabet Σ and a ∈ Σ define the set of rewrite
rules slita(`→ r) = {p+ slita(`) + q → p+ slita(r) + q | p, q ∈ N} over alphabet N, and for a
rewrite system R over Σ let slita(R) = ∪`→r∈R slita(`→ r).

I Example 4. For the one-rule rewrite system R = {aa→ aba} over alphabet {a, b} we get
splita(R) = {(ε, ε, ε)→ (ε, b, ε)}, thus slita(R) = {(p, 0, q)→ (p, 1, q) | p, q ∈ N}.

I Example 5. Using a different split letter, for the system R in Example 4 we obtain
splitb(R) = {(aa)→ (a, a)}, thus slitb(R) = {(p+ 2 + q)→ (p+ 1, 1 + q) | p, q ∈ N}. Note
that slitb(aaa) = (3) cannot be reduced by rule (2) → (1, 1), but instead by the two rules
(3)→ (2, 1) and (3)→ (1, 2), corresponding to the two possible applications of R to aaa, first
aaa→R abaa where slitb(abaa) = (1, 2), and second aaa→R aaba where slitb(aaba) = (2, 1).

I Lemma 6. For an alphabet Σ of size two and a ∈ Σ, slita is a bijection between Σ∗ and N+.
Further, for a rewrite system R over Σ and x, y ∈ Σ∗, x→R y iff slita(x)→slita(R) slita(y).

As an immediate consequence, we obtain

I Theorem 7. For an alphabet Σ of size two and a ∈ Σ, termination of R over Σ and
termination of slita(R) over N are equivalent.

3 Termination by Almost Linear Weight Functions

Weight functions are among the simplest methods for proving termination of rewrite systems.
In the case of string rewriting, a weight function maps letters to numbers, in this paper
simply natural numbers, and a weight function w : Σ→ N is additively extended to a weight
function on strings w : Σ∗ → N by w(ε) = 0 and w(ax) = w(a) + w(x) for a ∈ Σ, x ∈ Σ∗.

I Lemma 8. For a rewrite system R over Σ and a weight function w : Σ→ N, if w(`) > w(r)
for each rule `→ r in R, then R is terminating, and R has linear derivational complexity.

I Example 9. For R̄ = {aba→ aa}, the inverse of Example 4, choose the weight function
w : {a, b} → N where w(a) = 0 and w(b) = 1. Then w(aba) = 1 > 0 = w(aa), so for
arbitrary strings x, y ∈ Σ∗, x →R̄ y implies w(x) > w(y). As (N, >) is well-founded, this
implies termination of R̄. Similarly, choosing w(a) = w(b) = 1 would reflect the fact that R̄
is length-decreasing.

This method, however, is of rather limited applicability. On the one hand, the rewrite
system has to be simply terminating (see [1], e. g., and [7] for an in-depth survey), on the
other hand its derivational complexity has to be linear. The variant proposed in this paper
removes the first restriction, but not the second one.

I Example 10. No weight function proves termination of R = {aa→ aba} from Example 4
since R is not simply terminating. Instead, consider S = slita(R) = {(p, 0, q)→ (p, 1, q)} and

D. Hofbauer XX:3

the weight function w : N→ N where w(0) = 1 and w(n) = 0 for n 6= 0. Note that N is the
alphabet of S, thus the domain of w, and also the codomain of w as a weight function. Then
w((p, 0, q)) = w(p)+w(0)+w(q) = w(p)+1+w(q) > w(p)+0+w(q) = w(p)+w(1)+w(q) =
w((p, 1, q)), and again, for x, y ∈ N+, x→S y implies w(x) > w(y), proving termination of
S, thus termination of R by Theorem 7.

In the rest of this section, this approach is further explained and justified. As Lemma 8
puts no restriction whatsoever on the weight function, this approach also applies to infinite
alphabets and infinite rewrite systems. However, in order to obtain both finite proof obliga-
tions and finite proof certificates, only restricted classes of functions come into consideration.
In this paper we suggest almost linear functions as a first approach; possible extensions are
discussed in Section 6. Here, we define an almost linear function as a linear function with a
finite set of possible exceptions.

I Definition 11. An almost linear function is the union of a function e : E → Z with finite
domain E ⊆ Z and a linear function h : Z \ E → Z with h(n) = an+ b for a, b ∈ Z.

As a short-hand notation for such a function f with e = {(p1, q1), . . . , (pk, qk)} we use
f : p1 7→ q1, . . . , pk 7→ qk, else n 7→ an+ b, or simply f : n 7→ an+ b in case e = ∅.

I Example 12. (Example 10 cont’d) This introductory example used w : 0 7→ 1, else n 7→ 0.

I Example 13. (Example 5 cont’d) For slitb(R) = {(p+ 2 + q)→ (p+ 1, 1 + q) | p, q ∈ N}
the almost linear weight function w : 0 7→ 0, else n 7→ n− 1 succeeds: For p, q ∈ N we get
w(p+ 2 + q) = p+ 2 + q − 1 > p+ q = w(p+ 1) + w(1 + q).

To be suitable as a weight function w : N → N, an almost linear function f has to be
non-negative on N, i. e., f(N) ⊆ N. This property is easily verified, as follows.

I Lemma 14. An almost linear function as in Def. 11 is non-negative on N if and only if
e(E ∩ N) ⊆ N and either a = 0 and b ≥ 0, or a > 0 and {n ∈ N | an+ b < 0} ⊆ E.

I Example 15. Both functions from Examples 12 and 13 are non-negative on N.

As an immediate consequence of Lemma 8 and Theorem 7 we state

I Theorem 16. For an alphabet Σ of size two, a ∈ Σ, a rewrite system R over Σ, and an
almost linear function w, if w is non-negative on N and w(`) > w(r) for each rule `→ r in
slita(R), then R is terminating.

Concerning derivational complexity, we obtain the following result (slightly less trivial, as
it depends on Definition 11).

I Theorem 17. Under the assumptions of Theorem 16, R has linear derivational complexity.

The class of almost linear functions enjoys some simple closure properties that turn out
to be useful for verifying inequalities resulting from interpreted rewrite rules.

I Lemma 18. For an almost linear function f and a constant c ∈ Z, also λn.f(n) + c and
λn.f(n+ c) are almost linear functions.

I Remark. Note that both functions are always non-negative on N in case f has this property
and c ∈ N. Further note that the coefficients of the linear part of all three functions f ,
λn.f(n) + c and λn.f(n+ c) coincide.

XX:4 Termination of String Rewriting by Almost Linear Weight Functions

When an almost linear weight function w is used to interpret rules in slita(R), a criterion
is needed to ensure, for any given rule ` → r in R, that each rule `′ → r′ in slita(` → r)
satisfies w(`′) > w(r′). This can be achieved in a uniform way, as sketched in the following.

I Lemma 19. Let f1, f2 be almost linear functions with exceptions ei : Ei → Z and linear
parts hi(n) = an+ bi for i ∈ {1, 2}, as in Definition 11. Then ∀n ∈ N : f1(n) > f2(n) if and
only if b1 > b2 and ∀n ∈ E1 ∩ N : e1(n) > f2(n) and ∀n ∈ E2 ∩ N : f1(n) > e2(n).

Note that we assume that the coefficients of h1 and h2 coincide, cf. the remark after
Lemma 18. A uniform comparison of all rules in slita(`→ r) amounts to verify slightly more
complex conditions, as the left or right hand side corresponds to one almost linear function
or the sum of two such functions, depending on p+ q alone, or on both p and q, respectively,
by Lemma 18. For this purpose, the case distinction from Lemma 19 can be generalized
accordingly; details will be provided in a full version of this paper.

I Example 20. Let R be Zantema_06/17 from the Termination Problems Database [9].
Here, the weight function w : 0 7→ 0, 1 7→ 1, else n 7→ 4n−5 succeeds. Among the 15 rules are
aaaaa→ aaabaaa and aba→ bbb, so slitb(R) contains {(p+ 5 + q)→ (p+ 3, q+ 3) | p, q ∈ N}
and {(p+ 1, 1 + q)→ (p, 0, 0, q) | p, q ∈ N}. For the first set, exceptions in w are irrelevant as
p+ 5 + q > 1, p+ 3 > 1 and 3 + q > 1, so is suffices to check w(p+ 5 + q) = 4(p+ 5 + q)− 5 =
4(p+q)+15 > 4(p+q)+14 = 4(p+3)−5+4(3+q)−5 = w(p+3)+w(3+q). For the second
set, exceptions have to be taken into account, resulting in five cases: p = q = 0, p = 0 and
q = 1, p = 1 and q = 0, p = q = 1, and finally p, q > 1. For the case p = q = 1, for instance,
we get w((1 + 1, 1 + 1)) = w(2) +w(2) = 6 > 2 = w(1) +w(0) +w(0) +w(1) = w((1, 0, 0, 1)).

4 More Examples from the Termination Problems Database

All examples in this section are taken from the Termination Problems Database [9].

I Example 21. A successful weight function for Bouchare_06/11 was found with splita and
w : 0 7→ 5, 1 7→ 4, 2 7→ 16, 3 7→ 17, 4 7→ 27, 5 7→ 30, 6 7→ 38, else n 7→ 6n+ 1. Note the large
number of exceptions in this and in particular in the following example.

I Example 22. The system ICFP_2010/136497 remained unsolved during the termination
competitions1 in 2016 and 2017. Here, split1 together with w : 0 7→ 0, 1 7→ 24, 2 7→ 42, 3 7→
60, 4 7→ 76, 5 7→ 93, 6 7→ 109, 7 7→ 125, 8 7→ 142, else n 7→ 17n+ 5 succeeds.

I Example 23. For Bouchare_06/14 both splita together with w : 0 7→ 6, else n 7→ 10n− 1
and splitb together with w : 0 7→ 6, 3 7→ 13, else x 7→ 3x+ 2 succeed. This example indicates
a trade-off between a higher coefficient in the linear part versus more exceptions.

5 Implementation

Most weight functions in this paper have been generated by an experimental prototype
implementation within the class library of the termination prover MultumNonMulta, see [5].
The experiments performed show the rather limited applicability of the approach, and on
the other hand its strength since proofs are (mostly) found instantaneously. The problem set
SRS_Standard in TPDB Version 10.5 [9] contains 358 rewrite systems over a two-letter alpha-
bet; 22 of them could be solved by our protoype. The simplest way to implement the search

1 See http://termination-portal.org/wiki/Termination_Competition

D. Hofbauer XX:5

for an almost linear weight function consists in completely enumerating all such functions
within given bounds for the coefficient and the constant of the linear part and the domain and
codomain of the exception part. For examples with many exceptions as in the Examples 21
and 22, a more elaborate algorithm was applied, involving integer constraint solving using
the GNU Linear Programming Kit (GLPK, see www.gnu.org/software/glpk/).

6 Discussion and Extensions

Just as with the approach in this paper, a termination proof by match-bounds [3] implies
linear derivational complexity, so the relation between both methods might be of interest.
As it turns out, both are orthogonal: The system {aa → a} is not match-bounded, but
length-reducing. Conversely, the system {aabb → bbbaaa} is match-bounded [3], but it is
easily shown that no almost linear function can prove termination of this system.

Further extending the class of weight functions can expand the scope of application of
this approach. For instance, the one linear part could be replaced by several linear functions,
applied periodically. The following example shows a simple instance of this idea.

I Example 24. No almost linear weight function was found that proves termination of
R = {abb → a, aa → bbb, bba → aba} (Bouchare_06/05). However, even without any
exceptions, w : 2n 7→ n+ 3, 2n+ 1 7→ n constitutes a simple termination proof (found and
checked manually; an implementation is work in progress).

Other possible extensions of the approach presented here include relative termation proofs
and applications to ring (or: cycle) rewriting, cf. [10].

References
1 N. Dershowitz. A note on simplification orderings. Inf. Process. Lett. 9(5):212–215, 1979.
2 N. Dershowitz. Orderings for term-rewriting systems, Theor. Comput. Sci. 17:279–301,

1982.
3 A. Geser, D. Hofbauer, J. Waldmann. Match-bounded string rewriting systems. Appl.

Algebra Eng. Commun. Comput. 15(3-4):149–171, 2004.
4 A. Geser, D. Hofbauer, J. Waldmann. Semantic Kachinuki order. Proc. 16th Int. Workshop

on Termination (WST), 2018.
5 D. Hofbauer. MultumNonMulta: System description. Proc. 15th Int. Workshop on Ter-

mination (WST), 2016.
6 D. Hofbauer, C. Lautemann. Termination proofs and the length of derivations. Proc. 3rd

Int. Conf. on Rewriting Techniques and Applications (RTA), Springer LNCS, Vol. 355, pp.
167–177, 1989.

7 A. Middeldorp, H. Zantema. Simple termination of rewrite systems. Theor. Comput. Sci.
175(1):127–158, 1997.

8 K. Sakai. Knuth-Bendix algorithm for Thue system based on Kachinuki ordering. ICOT
Technical Memorandum TM-0087, Institute for New Generation Computer Technology,
1984.

9 TPDB, The Termination Problems Database, Version 10.5. termination-portal.org/
wiki/TPDB/

10 H. Zantema, H. J. S. Bruggink, B. König. Termination of cycle rewriting. Proc. Int. Conf.
RTA-TLCA, Springer LNCS, Vol. 8560, pp. 476–490, 2014.

termination-portal.org/wiki/TPDB/

termination-portal.org/wiki/TPDB/

		Preliminaries

		Syllable Decomposition

		Termination by Almost Linear Weight Functions

		More Examples from the Termination Problems Database

		Implementation

		Discussion and Extensions

hofbauer_wst2018_final.tex
\documentclass[a4paper,UKenglish]{lipics-v2016}
%This is a template for producing LIPIcs articles.
%See lipics-manual.pdf for further information.
%for A4 paper format use option "a4paper", for US-letter use option "letterpaper"
%for british hyphenation rules use option "UKenglish", for american hyphenation rules use option "USenglish"
% for section-numbered lemmas etc., use "numberwithinsect"

\usepackage{microtype}%if unwanted, comment out or use option "draft"

%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory

\bibliographystyle{plainurl}% the recommended bibstyle

% Author macros::begin %%
\title{Embracing Infinity -- Termination of String Rewriting by Almost Linear
Weight Functions}
\titlerunning{Termination of String Rewriting by Almost Linear Weight Functions} %optional, in case that the title is too long; the running title should fit into the top page column

%% Please provide for each author the \author and \affil macro, even when authors have the same affiliation, i.e. for each author there needs to be the \author and \affil macros
\author{Dieter Hofbauer}
\affil{ASW -- Berufsakademie Saarland, Germany \\
 \texttt{d.hofbauer@asw-berufsakademie.de}}
\authorrunning{D.\ Hofbauer} %mandatory. First: Use abbreviated first/middle names. Second (only in severe cases): Use first author plus 'et. al.'

% \Copyright{John Q. Open and Joan R. Access}%mandatory, please use full first names. LIPIcs license is "CC-BY"; http://creativecommons.org/licenses/by/3.0/

% \subjclass{Dummy classification -- please refer to \url{http://www.acm.org/about/class/ccs98-html}}% mandatory: Please choose ACM 1998 classifications from http://www.acm.org/about/class/ccs98-html . E.g., cite as "F.1.1 Models of Computation".
%\keywords{Dummy keyword -- please provide 1--5 keywords}% mandatory: Please provide 1-5 keywords
% Author macros::end %%%

%Editor-only macros:: begin (do not touch as author)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \EventEditors{John Q. Open and Joan R. Acces}
% \EventNoEds{2}
% \EventLongTitle{42nd Conference on Very Important Topics (CVIT 2016)}
% \EventShortTitle{CVIT 2016}
% \EventAcronym{CVIT}
% \EventYear{2016}
% \EventDate{December 24--27, 2016}
% \EventLocation{Little Whinging, United Kingdom}
% \EventLogo{}
% \SeriesVolume{42}
% \ArticleNo{23}
% Editor-only macros::end %%%

\usepackage{amsmath,amssymb}
\usepackage{enumerate}

\newcommand{\emptystring}{\epsilon}
\newcommand{\dht}{\operatorname{dh}}
\newcommand{\dc}{\operatorname{dc}}
\renewcommand{\split}{\operatorname{split}}
\newcommand{\slit}{\operatorname{slit}}
\newcommand{\nat}{\mathbb{N}}
\renewcommand{\int}{\mathbb{Z}}

\begin{document}

\maketitle

\begin{abstract}
Weight functions are among the simplest methods for proving termination of
string rewrite systems, and of rather limited applicability.
In this working paper, we propose a generalized approach.
As a first step, syllable decomposition yields a transformed, typically
infinite rewrite system over an infinite alphabet, as the title indicates.
Combined with generalized weight functions, termination proofs become feasible
also for systems that are not necessarily simply terminating.
The method is limited to systems with linear derivational complexity,
however, and this working paper is restricted to original alphabets of size
two. The proof principle is almost self-explanatory,
and if successful, produces simple proofs with short proof certificates,
often even shorter than the problem instance.
A prototype implementation was used to produce nontrivial examples.
\end{abstract}

\section{Preliminaries}

As usual, a string as a sequence of letters is denoted by $a_0 \dots a_n$
or by (a_0, \dots, a_n) in case the former notation is possibly ambiguous.
The \emph{length} of a string x is $|x|$, and
\int denotes the set of integers and \nat the set of non-negative integers.
The \emph{derivation height} function modulo some terminating
rewrite system R over alphabet Σ maps a string $x \in \Sigma^\ast$ to
$\dht_R(x) = \max\{ n \in \nat \mid \exists y \in \Sigma^\ast: x \to_R^n y \}$.
The \emph{derivational complexity} $\dc_R : \nat \to \nat$
of R is defined as $\dc_R(n) = \max\{ \dht_R(x) \mid |x| \leq n \}$,
cf.~\cite{HofbauerLautemann1989}.

\section{Syllable Decomposition}

Decomposing strings by splitting at occurrences of a distinguished letter
defines a natural bijection between strings over the original alphabet and
strings over a different alphabet, which is typically infinite.
This syllable decomposition is used, for instance, in~\cite{Sakai1984}
for defining the Kachinuki order, which coincides on strings with the
recursive path order from~\cite{Dershowitz1982}.
There, the syllable decomposition is recursively continued, whereas in this
paper it appears only as a single first step,
similar to the approach in~\cite{GeserHofbauerWaldmann2018}.

\begin{definition}
 The syllable decomposition of a string $x \in \Sigma^\ast$ with respect to a
 letter $a \in \Sigma$ is the string
 $\split_a(x) = (x_1,x_2,\dots,x_n) \in \Gamma^+$
 with $\Gamma = (\Sigma\setminus\{a\})^\ast$
 such that $x = x_1 a x_2 a \dots a x_n$.
\end{definition}

Here, a is called the \emph{split letter}.
Note that the above decomposition is unique and that $|\split_a(x)| \geq 1$.
The alphabet of the resulting string is $\Gamma = (\Sigma\setminus\{a\})^\ast$,
which is infinite except for the trivial case $\Sigma = \{a\}$.
In this paper, we consider the simple case of a two-letter alphabet,
$\Sigma = \{a,b\}$ say.
Therefore, an element of $\Gamma = \{b^n \mid n \in \nat \}$
is uniquely determined by its length.

\begin{definition}
 For a string $x \in \Sigma^\ast$ and a letter $a \in \Sigma$ with
 $\split_a(x) = (x_1,\dots,x_n)$ let
 $\slit_a(x) = (|x_1|,\dots,|x_n|) \in \nat^+$.
\end{definition}

This natural bijection between Γ and \nat can be extended to string
rewriting:
For a rewrite system R over Σ there is a rewrite system $\slit_a(R)$
over \nat so that $\slit_a : \Sigma^\ast \to \nat^+$ is an isomorphism
between the relational structures
$(\Sigma^\ast, {\to_R})$ and $(\nat^+, {\to_{\slit_a(R)}})$.
As a consequence, termination of R is equivalent to termination of
$\slit_a(R)$.
Just as the underlying alphabet \nat, the rewrite system $\slit_a(R)$
is infinite in order to properly handle contexts of rule application.

In the sequel, for $p, q \in \nat$ and $(k_1, \dots, k_n) \in \nat^+$,
we use the overloaded notation
$p + (k_1, k_2, \dots, k_{n-1}, k_n) + q =
(p + k_1, k_2, \dots, k_{n-1}, k_n + q)$.
Note that $p + (k_1) + q = (p + k_1 + q)$.

\begin{definition}
 For a rewrite rule $\ell \to r$ over alphabet Σ
 and $a \in \Sigma$ define the set of rewrite rules
 $\slit_a(\ell \to r) =
 \{ p + \slit_a(\ell) + q \to p + \slit_a(r) + q \mid p, q \in \nat \}$
 over alphabet \nat,
 and for a rewrite system R over Σ let
 $\slit_a(R) = \cup_{\ell \to r \in R} \slit_a(\ell \to r)$.
\end{definition}

\begin{example}\label{aa-aba-1}
For the one-rule rewrite system $R = \{ aa \to aba \}$
over alphabet $\{a,b\}$ we get
$\split_a(R) = \{(\emptystring, \emptystring, \emptystring) \to
(\emptystring,b,\emptystring) \}$, thus
$\slit_a(R) = \{(p, 0, q) \to (p,1,q) \mid p,q \in \nat \}$.
\end{example}

\begin{example}\label{aa-aba-2}
Using a different split letter, for the system R in Example~\ref{aa-aba-1}
we obtain $\split_b(R) = \{(aa) \to (a,a) \}$, thus
$\slit_b(R) = \{(p+2+q) \to (p+1, 1+q) \mid p,q \in \nat \}$.
Note that $\slit_b(aaa) = (3)$ cannot be reduced by rule $(2) \to (1,1)$,
but instead by the two rules $(3) \to (2,1)$ and $(3) \to (1,2)$,
corresponding to the two possible applications of R to aaa,
first $aaa \to_R abaa$ where $\slit_b(abaa) = (1,2)$,
and second $aaa \to_R aaba$ where $\slit_b(aaba) = (2,1)$.
\end{example}

\begin{lemma}
For an alphabet Σ of size two and $a \in \Sigma$,
\slit_a is a bijection between Σ^\ast and \nat^+.
Further, for a rewrite system R over Σ and $x, y \in \Sigma^\ast$,
$x \to_R y$ iff $\slit_a(x) \to_{\slit_a(R)} \slit_a(y)$.
\end{lemma}

As an immediate consequence, we obtain

\begin{theorem}\label{terminationIff}
For an alphabet Σ of size two and $a \in \Sigma$,
termination of R over Σ and
termination of $\slit_a(R)$ over \nat are equivalent.
\end{theorem}

\section{Termination by Almost Linear Weight Functions}

Weight functions are among the simplest methods for proving termination of
rewrite systems.
In the case of string rewriting, a weight function maps letters to
numbers, in this paper simply natural numbers, and a weight function
$w : \Sigma \to \nat$ is additively extended to a weight function on strings
$w : \Sigma^\ast \to \nat$ by $w(\emptystring) = 0$ and $w(ax) = w(a) + w(x)$
for $a \in \Sigma$, $x \in \Sigma^\ast$.

\begin{lemma}\label{termination-by-weight}
For a rewrite system R over Σ
and a weight function $w : \Sigma \to \nat$,
if $w(\ell) > w(r)$ for each rule $\ell \to r$ in R,
then R is terminating, and R has linear derivational complexity.
\end{lemma}

\begin{example}
For $\bar{R} = \{aba \to aa\}$, the inverse of Example~\ref{aa-aba-1},
choose the weight function $w : \{a,b\} \to \nat$
where $w(a) = 0$ and $w(b) = 1$.
Then $w(aba) = 1 > 0 = w(aa)$,
so for arbitrary strings $x, y \in \Sigma^\ast$,
$x \to_{\bar{R}} y$ implies $w(x) > w(y)$.
As $(\nat, {>})$ is well-founded, this implies termination of \bar{R}.
Similarly, choosing $w(a) = w(b) = 1$ would reflect the fact that \bar{R} is
length-decreasing.
\end{example}

This method, however, is of rather limited applicability.
On the one hand, the rewrite system has to be simply terminating
(see~\cite{Dershowitz1979}, e.~g., and~\cite{MiddeldorpZantema1997} for an
in-depth survey),
on the other hand its derivational complexity has to be linear.
The variant proposed in this paper removes the first restriction, but not the
second one.

\begin{example}\label{aa-aba-1contd}
No weight function proves termination of $R = \{aa \to aba\}$
from Example~\ref{aa-aba-1} since R is not simply terminating.
Instead, consider $S = \slit_a(R) = \{ (p,0,q) \to (p,1,q) \}$ and the weight
function $w : \nat \to \nat$ where $w(0) = 1$ and $w(n) = 0$ for $n \neq 0$.
Note that \nat is the alphabet of S, thus the domain of w, and also the
codomain of w as a weight function.
Then $w((p,0,q)) = w(p) + w(0) + w(q) = w(p) + 1 + w(q) >
w(p) + 0 + w(q) = w(p) + w(1) + w(q) = w((p,1,q))$, and again,
for $x, y \in \nat^+$,
$x \to_S y$ implies $w(x) > w(y)$, proving termination of S,
thus termination of R by Theorem~\ref{terminationIff}.
\end{example}

In the rest of this section, this approach is further explained and justified.
As Lemma~\ref{termination-by-weight} puts no restriction whatsoever on the
weight function, this approach also applies to infinite alphabets and infinite
rewrite systems.
However, in order to obtain both finite proof obligations and finite proof
certificates, only restricted classes of functions come into consideration.
In this paper we suggest \emph{almost linear functions} as a first approach;
possible extensions are discussed in Section~\ref{extensions}.
Here, we define an almost linear function as a linear function with a finite
set of possible exceptions.

\begin{definition}\label{def-alf}
An \emph{almost linear function} is the union of
a function $e : E \to \int$ with finite domain $E \subseteq \int$ and
a linear function $h : \int \setminus E \to \int$
with $h(n) = an + b$ for $a,b \in \int$.
\end{definition}

As a short-hand notation for such a function f with
$e = \{(p_1,q_1), \dots, (p_k,q_k)\}$ we use
$f : p_1 \mapsto q_1, \dots, p_k \mapsto q_k$, else $n \mapsto an + b$,
or simply $f : n \mapsto an + b$ in case $e = \emptyset$.

\begin{example}\label{aa-aba-1contdcontd}
 (Example~\ref{aa-aba-1contd} cont'd)
 This introductory example used
 $w : 0 \mapsto 1$, else $n \mapsto 0$.
\end{example}

\begin{example}\label{aa-aba-2contd} (Example~\ref{aa-aba-2} cont'd)
 For $\slit_b(R) = \{(p+2+q) \to (p+1, 1+q) \mid p,q \in \nat \}$
 the almost linear weight function
 $w : 0 \mapsto 0$, else $n \mapsto n-1$
 succeeds: For $p,q \in \nat$
 we get $w(p+2+q) = p+2+q-1 > p+q = w(p+1) + w(1+q)$.
\end{example}

To be suitable as a weight function $w : \nat \to \nat$, an almost linear
function f has to be \emph{non-negative on \nat},
i.~e., $f(\nat) \subseteq \nat$.
This property is easily verified, as follows.

\begin{lemma}
An almost linear function as in Def.~\ref{def-alf} is non-negative
on \nat if and only if $e(E \cap \nat) \subseteq \nat$ and
either $a = 0$ and $b \geq 0$,
or $a > 0$ and $\{n \in \nat \mid an + b < 0 \} \subseteq E$.
\end{lemma}

\begin{example}
 Both functions from Examples~\ref{aa-aba-1contdcontd}
 and~\ref{aa-aba-2contd} are non-negative on \nat.
\end{example}

As an immediate consequence of Lemma~\ref{termination-by-weight} and
Theorem~\ref{terminationIff} we state

\begin{theorem}\label{theorem-main}
 For an alphabet Σ of size two, $a \in \Sigma$, a rewrite system R
 over Σ, and an almost linear function w,
 if w is non-negative on \nat and
 $w(\ell) > w(r)$ for each rule $\ell \to r$ in $\slit_a(R)$,
 then R is terminating.
\end{theorem}

Concerning derivational complexity, we obtain the following result
(slightly less trivial, as it depends on Definition~\ref{def-alf}).

\begin{theorem}\label{theorem-main-linear-dc}
 Under the assumptions of Theorem~\ref{theorem-main},
 R has linear derivational complexity.
\end{theorem}

The class of almost linear functions enjoys some simple closure properties
that turn out to be useful for verifying inequalities resulting from
interpreted rewrite rules.

\begin{lemma}\label{alf-closure}
For an almost linear function f and a constant $c \in \int$, also
$\lambda n . f(n) + c$ and $\lambda n . f(n + c)$ are almost linear
functions.
\end{lemma}

\begin{remark}
Note that both functions
are always non-negative on \nat
in case f has this property and $c \in \nat$.
Further note that the coefficients of the linear part of all three functions
f, $\lambda n . f(n) + c$ and $\lambda n . f(n + c)$ coincide.
\end{remark}

When an almost linear weight function w is used to interpret rules in
$\slit_a(R)$, a criterion is needed to ensure, for any given rule $\ell \to r$
in R, that each rule
$\ell' \to r'$ in $\slit_a(\ell \to r)$ satisfies $w(\ell') > w(r')$.
This can be achieved in a uniform way, as
sketched in the following.

\begin{lemma}\label{decide-alf-greater}
 Let f_1, f_2 be almost linear functions with exceptions $e_i : E_i \to
 \int$ and linear parts $h_i(n) = a n + b_i$ for $i \in \{1,2\}$,
 as in Definition~\ref{def-alf}.
 Then $\forall n \in \nat : f_1(n) > f_2(n)$ if and only if
 $b_1 > b_2$ and
 $\forall n \in E_1 \cap \nat : e_1(n) > f_2(n)$ and
 $\forall n \in E_2 \cap \nat : f_1(n) > e_2(n)$.
\end{lemma}

Note that we assume that the coefficients of h_1 and h_2 coincide,
cf.\ the remark after Lemma~\ref{alf-closure}.
A uniform comparison of all rules in $\slit_a(\ell \to r)$ amounts to
verify slightly more complex conditions, as the left or right hand side
corresponds to one almost linear function or the sum of two such functions,
depending on $p+q$ alone, or on both p and q, respectively,
by Lemma~\ref{alf-closure}.
For this purpose, the case distinction from Lemma~\ref{decide-alf-greater} can
be generalized accordingly; details will be provided in a full version of this
paper.

\begin{example}
Let R be \texttt{Zantema_06/17} from the Termination Problems
Database~\cite{TPDB}.
Here, the weight function
$w : 0 \mapsto 0, 1 \mapsto 1$, else $n \mapsto 4n-5$
succeeds.
Among the 15 rules are
$a a a a a \to a a a b a a a$ and $ a b a \to b b b$,
so $\slit_b(R)$ contains
$\{ (p+5+q) \to (p+3, q+3) \mid p, q \in \nat \}$ and
$\{ (p+1, 1+q) \to (p, 0, 0, q) \mid p, q \in \nat \}$.
For the first set, exceptions in w are irrelevant as $p+5+q > 1$, $p+3 > 1$
and $3+q > 1$, so is suffices to check
$w(p+5+q) = 4(p+5+q)-5 = 4(p+q)+15 >
4(p+q)+14 = 4(p+3)-5 + 4(3+q)-5 = w(p+3) + w(3+q)$.
For the second set, exceptions have to be taken into account, resulting in
five cases: $p = q = 0$, $p = 0$ and $q = 1$, $p = 1$ and $q = 0$,
$p = q = 1$, and finally $p,q > 1$.
For the case $p = q = 1$, for instance, we get
$w((1+1, 1+1)) = w(2) + w(2) = 6 > 2 = w(1) + w(0) + w(0) + w(1) = w((1, 0, 0, 1))$.
\end{example}

\section{More Examples from the Termination Problems Database}

All examples in this section are taken from the Termination Problems
Database~\cite{TPDB}.

\begin{example}\label{expl-large1}
A successful weight function for \texttt{Bouchare_06/11} was found with
\split_a and
$w : 0 \mapsto 5, 1 \mapsto 4, 2 \mapsto 16, 3 \mapsto 17, 4 \mapsto 27,
5 \mapsto 30, 6 \mapsto 38$, else $n \mapsto 6n+1$.
Note the large number of exceptions in this and in particular in the following
example.
\end{example}

\begin{example}\label{expl-large2}
The system \texttt{ICFP_2010/136497} remained unsolved during the termination
competitions\footnote{%
See \texttt{http://termination-portal.org/wiki/Termination_Competition}
}
in 2016 and 2017.
Here, \split_1 together with $w : 0 \mapsto 0, 1 \mapsto 24, 2 \mapsto 42,
3 \mapsto 60, 4 \mapsto 76, 5 \mapsto 93, 6 \mapsto 109, 7 \mapsto 125,
8 \mapsto 142$, else $n \mapsto 17n+5$
succeeds.
\end{example}

\begin{example}
For \texttt{Bouchare_06/14} both
\split_a together with $w : 0 \mapsto 6$, else $n \mapsto 10n-1$ and
\split_b together with $w : 0 \mapsto 6, 3 \mapsto 13$, else $x \mapsto 3x+2$
succeed. This example indicates a trade-off between
a higher coefficient in the linear part versus more exceptions.
\end{example}

\section{Implementation}\label{sec-impl}

Most weight functions in this paper have been generated by an experimental
prototype implementation within the class library of the termination prover
\emph{MultumNonMulta}, see~\cite{Hofbauer2016}.
The experiments performed show the rather limited applicability of the
approach, and on the other hand its strength since proofs are (mostly) found
instantaneously.
The problem set \texttt{SRS_Standard} in TPDB Version~10.5~\cite{TPDB}
contains 358 rewrite systems over a two-letter alphabet; 22 of them could be
solved by our protoype.
The simplest way to implement the search for an almost linear weight function
consists in completely enumerating all such functions within given bounds for
the coefficient and the constant of the linear part and the domain and
codomain of the exception part.
For examples with many exceptions as in the Examples~\ref{expl-large1}
and~\ref{expl-large2}, a more elaborate
algorithm was applied, involving integer constraint solving using the GNU
Linear Programming Kit (GLPK, see \texttt{www.gnu.org/software/glpk/}).

\section{Discussion and Extensions}\label{extensions}

Just as with the approach in this paper, a termination proof by
match-bounds~\cite{GeserHofbauerWaldmann2004} implies linear derivational
complexity, so the relation between both methods might be of interest.
As it turns out, both are orthogonal:
The system $\{ aa \to a \}$ is not match-bounded, but length-reducing.
Conversely, the system
$\{ aabb \to bbbaaa \}$ is match-bounded~\cite{GeserHofbauerWaldmann2004},
but it is easily shown that no almost linear function can prove termination of
this system. \\

Further extending the class of weight functions can expand the scope of
application of this approach.
For instance, the one linear part could be replaced by several linear
functions, applied periodically.
The following example shows a simple instance of this idea.

\begin{example}\label{expl-modulo}
No almost linear weight function was found
that proves termination of
$R = \{ a b b \to a , a a \to b b b , b b a \to a b a \}$
(\texttt{Bouchare_06/05}).
However, even without any exceptions,
$w : 2n \mapsto n+3$, $2n+1 \mapsto n$
constitutes a simple termination proof (found and checked manually; an
implementation is work in progress).
\end{example}

Other possible extensions of the approach presented here include
relative termation proofs
and applications to ring (or: cycle) rewriting, cf.~\cite{ZantemaBrugginkKoenig2014}.

\begin{thebibliography}{1}

\bibitem{Dershowitz1979}
N.~Dershowitz.
\newblock \textsl{A note on simplification orderings}.
\newblock Inf.~Process.~Lett.\ 9(5):212--215, 1979.

\bibitem{Dershowitz1982}
N.~Dershowitz.
\newblock \textsl{Orderings for term-rewriting systems},
\newblock Theor.~Comput.~Sci.\ 17:279--301, 1982.

\bibitem{GeserHofbauerWaldmann2004}
A.~Geser, D.~Hofbauer, J.~Waldmann.
\newblock \textsl{Match-bounded string rewriting systems}.
\newblock Appl.\ Algebra\ Eng.\ Commun.\ Comput.\ 15(3-4):149--171, 2004.

\bibitem{GeserHofbauerWaldmann2018}
A.~Geser, D.~Hofbauer, J.~Waldmann.
\newblock \textsl{Semantic Kachinuki order}.
\newblock Proc.\ 16th Int.\ Workshop on Termination (WST), 2018.

\bibitem{Hofbauer2016}
D.~Hofbauer.
\newblock \textsl{MultumNonMulta: System description}.
\newblock Proc.\ 15th Int.\ Workshop on Termination (WST), 2016.

\bibitem{HofbauerLautemann1989}
D.~Hofbauer, C.~Lautemann.
\newblock Termination proofs and the length of derivations.
\newblock Proc.\ 3rd Int.\ Conf.\ on Rewriting Techniques and
 Applications (RTA), Springer LNCS, Vol.\ 355, pp.\ 167--177, 1989.

\bibitem{MiddeldorpZantema1997}
A.~Middeldorp, H.~Zantema.
\newblock \textsl{Simple termination of rewrite systems}.
\newblock Theor.~Comput.~Sci.\ 175(1):127--158, 1997.

\bibitem{Sakai1984}
\newblock K.~Sakai.
\newblock \textsl{Knuth-Bendix algorithm for Thue system based on Kachinuki
 ordering}.
\newblock ICOT Technical Memorandum TM-0087,
 Institute for New Generation Computer Technology, 1984.

\bibitem{TPDB}
TPDB, The Termination Problems Database, Version~10.5.
\newblock \url{termination-portal.org/wiki/TPDB/}

\bibitem{ZantemaBrugginkKoenig2014}
H.~Zantema, H.~J.~S.~Bruggink, B.~KÃ¶nig.
\newblock \textsl{Termination of cycle rewriting}.
\newblock Proc.\ Int.\ Conf.\ RTA-TLCA,
Springer LNCS, Vol.\ 8560, pp.\ 476--490, 2014.

\end{thebibliography}

\end{document}

