
GPO: A Path Ordering for Graphs
Nachum Dershowitz1 and Jean-Pierre Jouannaud2

1 Tel Aviv University, Tel Aviv, Israel
2 École Polytechnique, Palaiseau, France

Abstract
We generalize term rewriting techniques to finite, directed, ordered multigraphs. We define well-
founded monotonic graph rewrite orderings inspired by the recursive path ordering on terms.
Our graph path ordering provides a building block for rewriting with such graphs, which should
impact the many areas in which computations take place on graphs.

1 Introduction and Motivation

We are interested in well-founded orderings that can be used to show termination of rewriting
on first-order terms having both sharing and back-arrows, that is, in rooted graphs (actually,
multigraphs), each vertex of which is labeled by a function symbol whose arity governs
the number of vertices it relates to in the graph via an outgoing edge. Different target
applications require different properties: totality is crucial for operaders, while monotonicity
with respect to the graph structure is important for graph rewriters.

The recursive path ordering (RPO) is recursively generated from an order on the set
of function symbols, called “precedence”. RPO is compatible with term structure; it’s well-
founded when the precedence is; it’s increasing when the precedence increases; and – last
but not least – its behavior is intuitive and can be easily and efficiently implemented. One
main aspect of its definition is that comparing two terms with the same head symbol reduces
to a comparison of their respective subterms via a lexicographic or multiset extension of the
order on their subterms organized as lists or multisets, respectively. The type of extension
assigned to a head symbol is called its status. When statuses are lexicographic and the
precedence total, RPO itself becomes total.

We propose a generalization of RPO to ordered, labeled, rooted graphs. The ordering we
end up with, GPO, has the very same definition as RPO, but the computation of the head
and tail of a multigraph shares little resemblance with the case of trees, for which the head
is the top function symbol labeling the root of the tree and the tail is the list of its subtrees.
A key property of our decomposition is that isomorphic multigraphs have isomorphic heads
and tails. This alone ensures that the order is compatible with multigraph isomorphism.
GPO has many of the properties that are important for its various potential users. It is
well-founded, total on graph expressions up to isomorphism, and monotonicity is testable.

2 Drags: Finite, Directed, Labeled Multigraphs

This section is a quick presentation of the algebra of drags (developed in a paper of the
authors submitted to TermGraph 2018). Drags are finite directed multi-rooted graphs with
labelled vertices and multiple edges. Let’s assume that outgoing neighbors (vertices at the
other end of outgoing edges) are ordered (from left to right, say) and that their number is
fixed, depending solely on the label of the vertex: we presuppose a set of function symbols
Σ, whose elements f ∈ Σ used as labels are equipped with a fixed arity, and a denumerable
set of variable symbols Ξ disjoint from Σ, whose arity is 0. We call these finite directed
rooted labelled graphs, drags. The successors of a vertex labeled f in a drag are implicitly

© N. Dershowitz & J.-P. Jouannaud;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A Path Ordering for Graphs

interpreted as the arguments of the function symbol f . In contrast with the standard cate-
gorical approach, this multi-graph model is very standard. The novelty is that we allow for
arbitrarily many roots and arbitrarily complex cycles.

We use vertical bars | · | to denote various quantities, such as length of lists, size of sets or
expressions, and arity of function symbols. We use ∅ for an empty list, set or multiset; ∪ for
list concatenation as well as set and multiset union; and \ for list, set or multiset difference.
We identify a singleton list, set or multiset with its single element.

A (closed) drag is a tuple ⟨V, R, L, X⟩, where V is the finite set of vertices; R is a finite
list of vertices, called roots, and R(n) is the nth root in the list; L : V → Σ is the labeling
function, mapping vertices to labels from some vocabulary Σ; and X : V → V ∗ is the
successor function, mapping each vertex v ∈ V to a list of vertices in V whose length equals
the appropriate arity |L(v)|. Given b ∈ X(a), then (a, b) is an edge with source a and target
b. We also write aXb. The transitive closure X∗ of the relation X is called accessibility. A
vertex v is said to be accessible if rX∗v for some root r. A drag is clean if all its vertices
are accessible. A root r is maximal if ∀r′ ∈ R. r′X∗r implies rX∗r′. An open drag is a drag
over the set Σ ∪ Ξ, where Ξ is a set of variables. The vertices labeled by a function symbol
in Σ are internal; those labeled by a variable are called sprouts. When non-empty, the set
S of sprouts will be added at the end of the tuple: ⟨V, R, L, X, S⟩. An open drag is linear if
different sprouts have different labels. It is cyclic if R∩S =∅ and ∀v ∈V \S. ∃r∈R. vX∗r.

Given drag D, we use Acc(D) for its set of accessible vertices; R(D) for its set of
roots; R(D)max for the subset of maximal roots; S(D) for its set of sprouts; Var(D) for
the set of variables labeling its sprouts; Dr

s to indicate its roots and sprouts; and D↓ for
the clean drag obtained by removing inaccessible vertices and related edges. Given a drag
U = ⟨V, R, L, X, S⟩, and a subset W of its vertices, the subdrag U|W of U generated by W

is the drag ⟨V ′, R′, L′, X ′, S′⟩ where (i) V ′ is the least superset of W that is closed under
X; (ii) L′, X ′, S′ are the restrictions of L, X, S to V ′; (iii) R′ is (R ∩ V ′) ∪ (X(V \ V ′) ∩ V ′).
A subdrag is clean by construction. Its roots are obtained by adding as new roots those
vertices which have an incoming edge in U that is not in U|W . The order of elements in
this additional list does not really matter for now. In particular, restricting a drag D to
its maximal roots, yields D↓. On the other hand, restricting any drag to an empty set of
vertices, yields the empty drag ∅def=1∅∅ = (∅,∅,∅,∅,∅).

An isomorphism from D = ⟨V, R, L, X, S⟩ to D′ = ⟨V ′, R′, L′, X ′, S′⟩ is a one-to-one
mapping o : Acc(V) 7→ Acc(V ′) such that (i) o restricts to bijections between the lists of roots
and sets of accessible sprouts; (ii) ∀v ∈ Acc(V) \ S. L(v) = L′(o(v)) and X(v) = X ′(o(v)).
We write D =o D′, or simply D = D′ when D and D′ are isomorphic drags. We write
D ≃o D′, or simply D ≃ D′, and say that D, D′ are quasi-isomorphic if o restricts to a
bijection between the multisets (instead of lists) of roots. We write D ≡ D′ and D ∼= D′

instead of D = D′ and D ≃ D′ in case o is the identity. Drag D isomorphic (with ≡) to D↓.
The key is that we equip drags with a binary composition operator, which connects the

sprouts of each drag with the roots of the other. Denote by Dom(ξ) and Im(ξ) the domain
(of definition) and image of a (partial) function ξ, using ξA→B for its restriction going from
subset A of its domain to subset B of its image, omitting →B when irrelevant. Both are
sets. hence Im(ξ) may differ from ξ(R), which is a list with possibly repetitions when R is a
list itself. Let D = ⟨V, R, L, X, S⟩ and D′ = ⟨V ′, R′, L′, X ′, S′⟩ be open drags. A switchboard
ξ for (D, D′) is a pair ⟨ξD : S → [1 .. |R′|], ξD′ : S′ → [1 .. |R|]⟩ of partial injective functions
(we also say that (D′, ξ) is an extension of D), such that (i) ∀s, t ∈ S. s ∈ Dom(ξD) and
L(s) = L(t) imply t ∈ Dom(ξD) and D|R′(ξD(s)) ≃ D|R′(ξD(t)); (ii) ∀s, t ∈ S′. s ∈ Dom(ξD′)
and L′(s) = L′(t) imply t ∈ Dom(ξD′) and D′

|R(ξD′ (s)) ≃ D′
|R(ξD′ (t)).

N. Dershowitz, J.-P. Jouannaud 3

A switchboard ξ for (D, D′) is directed if one of ξD and ξD′ has an empty domain. The
pair (D′, ξD′) is called a context extension of D when Dom(ξD) = ∅, and a substitution
extension of D when Dom(ξD′) = ∅.

It is a rewriting switchboard if ξD′ is linear and surjective and ξD is total. Then the pair
(D′, ξ) is called a rewriting extension of D. Directed switchboards correspond to the tree
case, with all connections from one drag to the other. Rewriting switchboards allow one to
“encompass” drag D′ in drag D.

A switchboard induces a binary composition operation on open drags, the precise defi-
nition of which we omit. The essence is that the (disjoint) union of the two drags is formed,
but with sprouts in the domain of the switchboards merged with the vertices referred to in
the switchboard images. This necessitates renaming the targets of edges that had pointed to
the sprouts. Our definition of switchboard being (almost) symmetric, composition is itself
symmetric provided all roots of the resulting drag originate from the same side. Otherwise,
composition yields drags that are equal up to a cyclic permutation of their roots. Com-
position of drags is quasi-commutative, and becomes commutative for switchboards whose
context or substitution is surjective, e.g. rewriting switchboards.

The identity is a linear open drag whose all vertices are its sprouts and set of edges is
empty. We denote it by 1Y

Z , where Y ⊆ Z∗ is its list of roots. We use ∅ for the drag 1∅Z ,
which is isomorphic to 1∅∅, and is called the empty drag for that reason.

▶ Lemma 1. Given a drag D and a subset of vertices W ⊆ V , there exists a linear drag A,
called antecedent, and a total, surjective, and directed switchboard ζ such that D = A⊗ζD|W .

The fact that the switchboard ξ is directed expresses the property that decomposing a drag
into a subdrag and its antecedent does not break any of its cycles. Note that ξ induces an
order on the roots of the subdrag which are not roots of the whole drag.

Just as a tree can be decomposed into a head node f and subtrees, a drag has a head,
which is intended to be the largest cycle containing the maximal roots of the drag – also the
smallest nontrivial antecedent of the drag – and one tail, possibly a list of several connected
components. The tail ∇D of a drag D = ⟨V, R, L, X, S⟩ is the subdrag generated by the set
of vertices V \ {v ∈ V : vX∗R(D)max}. Furthermore, for drag D, there exists a linear drag
D̂, called head of D, and a directed switchboard ζ such that D = D̂ ⊗ζ ∇D. The head of a
drag is therefore the antecedent of its tail.

Note that ξ is a bijection between the sprouts of the head and the roots of the tail that
were not already roots of the drag D. We assume that the sprouts of the head are ordered
with respect to a depth first search initialized with its list of roots. This order on the sprouts
of the head induces, via the switchboard ξ, an order on the roots of the associated tail that
were not roots of the original drag. The tail is therefore now canonically determined. In short,
isomorphic drags have isomorphic heads and tails. The crucial point is that decomposition
into head and tail is canonical and faithful because drags are multi-rooted. Uni-rooted drags
cannot represent horizontal sharing, in contrast to vertical sharing which can sometimes be
preserved with uni-rooted drags. Moreover, the fact that tails are quasi-isomorphic does not
hamper faithfulness: different orders of new roots for the tails yield different switchboards
but the order of roots resulting from the composition does not depend upon those orders.

Next, we investigate further ways of decomposing a drag, possibly breaking its cycles.
Can a drag D be seen as the composition of a given drag U with some context W via some
switchboard ξ? In this case, we say that D matches U , W and ξ being the matching context
and switchboard. The idea is that W splits into three: vertices that are accessible from some
sprout of U and can access some of its roots define a drag B; those accessible from some

WST

4 A Path Ordering for Graphs

sprout of U but which cannot access any of its roots define a drag C that is a substitution
extension of U ; those which are not accessible from the sprouts of U form the remaining
part A, which is a context extension of U .

An extension (B, ξ) of a clean drag U is cyclic if B is a linear drag generated by Im(ξU),
B⊗ξU is a clean nonempty drag, and for all t∈V , there exists s∈Dom(ξB) such that tX∗s.
The extension is trivial if B is an identity drag and total if ξB is surjective. This condition
resembles the one for cyclic drags, but doesn’t imply that B ⊗ξ U is cyclic because not all
internal vertices of U may reach a root of B ⊗ξ U . Only total extensions are cyclic.

The conditions for being a cyclic extension impose that ξU is surjective on R\S as a
set so as to generate B. Identity cyclic extensions of U are of the form (1Z

Y , ι), where the
variables in Y are one-to-one with those in Dom(ιU) ⊆ Var(U), and ι1 : Y → [1 .. |R|] is an
arbitrary map. The rôle of cyclic extensions is to modify the structure of U by connecting
some of its sprouts to some of its roots. Unfortunately, identity cyclic extensions suffice for
that purpose only in special cases. Identity extensions allow one to change the structure of a
drag without changing its internal nodes. If the drag has a single root, it is easy to see that
identity extensions are enough to predict all forms that a drag may take under composition
with an extension. This is not true for multi-rooted drags, since identity cyclic extensions
cannot reach two different roots from the same sprout.

▶ Theorem 2. Let U, W be clean nonempty drags and ξ be a switchboard for (W, U). If ξW

is surjective on R(U)max, then, there exist drags A, B, C and switchboards ζ, θ such that
(i) (B, ⟨ξB , ξU→B⟩) is a cyclic extension of U denoted by (B, ξ); (ii) (C, θ) is a substitution
extension of B ⊗ξ U ; (iii) (A, ζ) is a context extension of (B ⊗θ U) ⊗η C; (iv) W ⊗ξ U =
A ⊗ζ ((B ⊗θ U) ⊗η C); (v) C is empty if all internal nodes of W reach one of its sprouts.

A graph rewrite rule is a pair of open clean drags written L → R such that |R(L)| =
|R(R)| and Var(R) ⊆ Var(L). A graph rewrite system is a set of graph rewrite rules. Let
R be a graph rewrite system. We say that a nonempty clean drag D rewrites to a clean
drag D′, and write D −→R D′ iff D = W ⊗ξ L and D′ = (W ⊗ξ R)↓ for some drag rewrite
rule L → R ∈ R and rewriting extension (W, ξ) of L, such that ξL is linear if L is linear.
We have: (1) If U −→R V , then Var(V) ⊆ Var(U). (2) Assume U, V, W are three open
drags such that the pair (U, V) is a rewrite and ξ is a switchboard for (W, U). Then, ξ is
a switchboard for (W, V). (3) Assume U −→R V . Then, U = A ⊗ζ ((B ⊗ξ L) ⊗θ C) and
V ≡ A ⊗ζ ((B ⊗ξ L) ⊗θ C) for some A, B, C and ζ, ξ, θ such that (A, ζ), (B, ξ) and (C, θ)
are context, cyclic and substitution extensions, resp.

3 GPO: Graph Path Ordering

A rewrite ordering is a well-founded ordering ≻ of the set of drags that is (i) compatible with
drag isomorphism: for all U, U ′, V, V ′ such that U ≻ V , U ≡ U ′ and V ≡ V ′, then U ′ ≻ V ′;
(ii) monotonic: for all (U, V) such that U ≻ V and for all context extensions (A, ξ) of U ,
then A ⊗ξ U ≻ A ⊗ξ V ; (iii) stable: for all (U, V) such that U ≻ V and for all substitution
extensions (C, ξ) of U , then U ⊗ξ C ≻ V ⊗ξ C. Apart from compatibility with isomorphism,
the notion of rewrite ordering is the same as the usual one. Monotonicity is the usual property
since a directed switchboard turns the context A into a usual context. Stability corresponds
to the usual stability property, but substitution extensions can introduce sharing.

▶ Theorem 3. A graph rewrite system R terminates iff there’s a graph rewrite ordering ≻
s.t. for all rules L→R∈R, then B ⊗ξ L≻ B ⊗ξ R for all cyclic extensions (B, ξ) of L.

N. Dershowitz, J.-P. Jouannaud 5

We need the analog for drags of the precedence on function symbols used by RPO: A
head order for a drag rewrite system R is a quasi-order ·≥ on clean cyclic drags whose strict
part ·> is well-founded. (i) A head order is compatible if two cyclic drags that are isomorphic
up to their lists of roots are equivalent in the quasi-order. (ii) It is total if ·≥ is total and
its equivalence .= is exactly cyclic drag isomorphism up to their lists of roots. (iii) It is
subcyclic if W = A ⊗ξ B, and B is a cyclic drag that is not isomorphic to an identity drag,
then W ·> A. (iv) And it is cyclic monotonic if for all cyclic drags U, V and for all cyclic
extensions (C, ξ) of U , U ·> V implies C ⊗ξ U ·≥C ⊗ξ V .

Cyclic monotonicity tells us that the order between cycles is preserved by growing them.
Monotonicity/stability of drag orders and cyclic monotonicity of head orders are comple-
mentary: the former extends a drag by preserving its head, while the latter extends heads.

▶ Definition 4 (Graph Path Order (GPO)). Given two drags s, t and a head order ·≥, we
define s ≻ t (under GPO), iff any of the following holds:

[∇] ∇s ⪰ t [·>] ŝ ·> t̂ and s ≻ ∇t [.=] ŝ
.= t̂, s ≻ ∇t and ∇s ≻ ∇t.

GPO is defined by induction on the pair ⟨s, t⟩ via the lexicographic extension of the
subdrag order: Let t � u if u = ∇t. (1) The subdrag order �+ is well-founded on nonempty
open drags. (2) The empty drag is minimal in ≻. (3) � ⊆ ≻. (4) If U ≻ V , then Var(U) ⊆
Var(V). (5) GPO (≻) is transitive.

Let U , V and W = ⟨V, R, L, X, S⟩ be open drags such that Var(V) ⊆ Var(U). Two
switchboards ξ, ξ′ for (W, U) and (W, V) are coherent if ∀s, t, n, p. ξU (s) = n, ξ′

V (t) = p,
L(s) = x, and L(t) = x imply R(W)(n) = R(W)(p). Let U, V, W be open drags such that
U ≻ V , and ξ, ξ′ be two coherent switchboards for (W, U) and (W, V) respectively. Then, ξ

is a switchboard for (W, V) such that W ⊗ξ V = W ⊗ξ′ V .
GPO is a strict ordering compatible with drag isomorphism. This justifies our way of

building compatibility into a path ordering via a careful definition of subdrags instead of us-
ing a normal-form representation of congruence classes of drags. If the drag ∇t is terminating
with respect to ≻, then the drag t = g(t) is.

▶ Theorem 5. (1) GPO is well-founded. (2) If the head order is total, then GPO is total
on equivalence classes of drags modulo isomorphism. (3) GPO is monotonic. (4) GPO is
stable: if U ≻ V , then U ⊗ξ C ≻ V ⊗ C for all substitution extensions (C, ξ) of U .

We define a head order that is total but not subcyclic, and another, partial subcyclic one.
Let ≥ be a total precedence on Σ, whose strict part is well-founded, and U = ⟨V, R, L, X⟩, a
clean drag from which the sprouts and their incoming edges have been removed. Represent
a drag as a list of function symbols. The interpretation JUK of U = ⟨V, R, L, X⟩, is a list of
symbols in Σ defined as follows: If Acc(U) = ∅, then JUK def= ∅. Otherwise, JUK def= L(r)∪JW K,
where R = r ∪ R′ and W = (V \ r, (X(r) \ r) ∪ R′, L′, X ′), L′, X ′ being the restrictions of
L, X to V ′, respectively. In words, JUK collects the function symbols labeling the internal
nodes of a drag by traversing this drag in a depth-first manner starting from R. We can
now define our head order on drags: D ·≥D′ iff ⟨|JDK|, JDK⟩ (≥N, ≥lex)lex⟨|JD′K|, JD′K⟩. ·≥ is a
total head order. This head order is not subcyclic, nor cyclic-monotonic.

Alternatively, represent a drag as the multiset of function symbols labeling its accessible
vertices: We define the interpretation as the multiset of symbols that label the vertices of U ↓.
Given two drags, we define: D·≥D′ iff JDK ≥mul JD′K. This ·≥ is a subcyclic, cyclic-monotonic
head order.

▶ Theorem 6. It is decidable whether R terminates with GPO provided universal head-order
constraints are decidable.

WST

	Introduction and Motivation
	Drags: Finite, Directed, Labeled Multigraphs
	GPO: Graph Path Ordering

