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\begin{abstract}
  We present an extension of the Kachinuki order on strings.
  The Kachinuki order 
  transforms the problem of comparing strings
  to the problem of comparing their syllables length-lexicographically,
  where the syllables are defined via  a precedence on the alphabet.
  Our extension allows the number of syllables to increase under rewriting,
  provided we bound it by a weakly compatible interpretation.
\end{abstract}

\section{Introduction}

\newcommand{\Ell}{\textsf{Left}}
\newcommand{\Err}{\textsf{Right}}
\newcommand{\syl}{\operatorname{\textsf{syl}}}
\newcommand{\Split}{\operatorname{\textsf{split}}}

The \emph{Kachinuki} order~\cite{Sakai1984} 
is an iterated syllable order on strings:
given a precedence on the alphabet,
words are split at occurrences of the highest letter,
resulting in sequences of syllables over a smaller alphabet.
These sequences are compared by the (length-)lexicographic extension
of the Kachinuki order on the smaller alphabet (without the highest letter).
For instance, to show termination of $ab\to bba$,
we take precedence $a>b$, and split at occurrences of $a$,
to obtain $[\epsilon,b]\to[bb,\epsilon]$. We note that
the number of syllables is constant under rewriting,
and that the word of syllables is lexicographically decreasing
(looking from the right end) w.r.t. the number of $b$.
The Kachinuki order is a simplification order.
%
%

The word \emph{Kachinuki} means ``the winner walks through''
and describes the order of the bouts in team matches in Japanese judo.
For ordering strings, the ``winner'' is the symbol of highest precedence.
In its original definition, the Kachinuki order
is equivalent to the recursive path order on strings,
see also~\cite{seki/steibach89}.
It is folklore knowledge (e.g., assumed in \cite{wst/Hofbauer14})
that the definition can be extended
by assigning, to each symbol $x$, a status bit that tells
whether the sequence of syllables w.r.t.\ $x$
should be compared lexicographically from the left, or from the right.
For example, termination of $\{ab\to bba,bc\to cbb\}$
can be shown by precedence $c>a>b$ and status Left for $c$, Right for $a$.
This extension is specific to string rewriting,
as there is no obvious way to reverse a term.

In the present note, we show a way to include
semantic information (from an interpretation)
in the choice of the letter(s) for splitting.
For instance, we want to prove termination of
$\{ca\to b^2c^3, bcb\to a\}$ by splitting at occurrences
of $a$ and $b$. This is allowed because the weight function
$w:a\mapsto 2,b\mapsto 1,c\mapsto 0$ is non-decreasing,
and $a$ and $b$ have positive weight.

%

\section{Syllables}

\begin{definition}
The syllable word $\Split(\Gamma,w)$ 
of a string $w\in\Sigma^*$
with respect to a subset $\Gamma\subseteq\Sigma$ 
of the alphabet $\Sigma$
is the unique sequence $[s_0,s_1,\ldots,s_k]\in{(\Sigma\setminus\Gamma)^*}^+$
such that  $w=s_0 a_1 s_1 a_2 \dots a_k s_k$ with each $a_i\in \Gamma$.
\end{definition}

\begin{example}
For $\Sigma=\{a,b,c,d\}$ and $w=abcadc$, we have
$\Split(\{b,c\},w)=[a, \epsilon, ad,\epsilon]$,
$\Split(\Sigma,w)=\epsilon^7$,
and $\Split(\emptyset,w)=[w]$.
For each $\Gamma$, we have $\Split(\Gamma,\epsilon)=[\epsilon]$.
\end{example}


We sometimes write $\Split(a,w)$ for $\Split(\{a\},w)$,
and $\Split_\Gamma(w)$ for $\Split(\Gamma,w)$.


\begin{definition}
  The binary operation $\Glue$ on ${\Sigma^*}^+$
  is defined by 
  $[x_1,\ldots, x_p] \Glue [y_1,\ldots,y_q]
  = [x_1,\ldots, x_p \cdot y_1, \ldots, y_q]$.
\end{definition}
\begin{example}
  $[ab,c]\Glue [a, bc]=[ab,ca,bc]$.
\end{example}
\begin{lemma}
  $({\Sigma^*}^+,\Glue,[\epsilon])$ is a monoid,
  and $\Split_\Gamma$ is a monoid morphism from $(\Sigma^*,\cdot,\epsilon)$.
%
\end{lemma}

\begin{lemma}\label{lemma:prelim:step}
  For each rewrite step $x=plq\to prq=y$,
  we have $\Split_\Gamma(x)=\Split_\Gamma(p)\Glue\Split_\Gamma(l)\Glue\Split_\Gamma(q)$
  and $\Split_\Gamma(y)=\Split_\Gamma(p)\Glue\Split_\Gamma(r)\Glue\Split_\Gamma(q)$.
\end{lemma}

For notational convenience,
we extend the $\Split$ operation from words to rules and sets of rules.
\begin{example}
  For $R=\{cab\to bcba, bcba\to abc \}$,
  let $\Split_{\{a,b\}}(R)$ denote
  $\{[c,\epsilon,\epsilon]\to [\epsilon,c,\epsilon,\epsilon],
[\epsilon,c,\epsilon,\epsilon] \to [\epsilon,\epsilon,c]\}$.
\end{example}


%
%
\section{Stable Lexicographic Extension}

\begin{definition}
  The \emph{stable lexicographic} extensions $\LexL,\LexR$
  of a relation $>$ on $\Sigma$ are
\begin{align*}
  [x_1,\ldots,x_p]\LexL [y_1,\ldots,y_q]
  & \iff 
  \exists i: x_1\ge y_1\wedge \dots\wedge x_{i-1}\ge y_{i-1} \wedge x_i>y_i, \\  
  [x_1,\ldots,x_p]\LexR [y_1,\ldots,y_q]
  & \iff 
  \exists i:  x_p\ge y_q\wedge \dots\wedge x_{p-i+1}\ge y_{p-i+1} \wedge x_{p-i}>y_{q-i}.
\end{align*}
\end{definition}

We do not use the standard  definition 
``\dots or $y$ is a strict prefix (suffix, resp.) of $x$'' 
because we need the following

\begin{lemma}
  $\LexL$ and $\LexR$ are stable w.r.t. concatenation from both sides.
\end{lemma}

Consider $(\NN,>)$ as the domain, and $x=[1,2,3], y=[1,2]$.
Concatenate with $[4]$ on the right, obtain $x'=[1,2,3,4], y'=[1,2,4]$.
We do not want $x\LexL y$, since certainly $x'\not\LexL y'$.

Using stability and Lemma~\ref{lemma:prelim:step}, we get
\begin{lemma}
  If $>$ is a reduction order,
  and $u\to_{(l,r)} v$
  with $\Split_\Gamma(l)\LexL\Split_\Gamma(r)$,
  then $\Split_\Gamma(u)\LexL \Split_\Gamma(v)$.
  Similarly, for $\LexR$.
\end{lemma}


\begin{lemma}
  If $(D,>)$ is well-founded, then for each $n$,  
  $(D^{\le n},\LexL)$ and $(D^{\le n},\LexR)$ are well-founded.
\end{lemma}
%
\begin{proof}
 Take any decreasing sequence in $(D^{\le n},\LexL)$.
 Obtain a decreasing sequence in $(D^n,\LexL)$
 by padding (to the right) shorter strings with arbitrary elements of $D$.
 Well-foundedness of $(D^n,\LexL)$ is a standard result.
\end{proof}

\section{Bounding Occurrences of Letters}

The standard Kachinuki order requires
that the number of occurrences of the highest symbol
does not increase under rewriting.
We will generalize this to allow some increase,
provided that for each starting string $x$,
the number of such occurrences in strings reachable 
from $x$ is bounded.
This concept can be seen as a generalisation of 
\begin{definition}\cite{DBLP:journals/jsc/Dershowitz87}
  A relation $\to$ is \emph{quasi-terminating} 
  if for each $x$, the set $\{y\mid x\to^* y\}$ is finite.
\end{definition}
In that case, also the lengths of reachable words are bounded.
Now we will just count occurrences of letters
from a subset of the alphabet.
\begin{definition}
  For $\Gamma\subseteq\Sigma$,
  a relation $\to$ on $\Sigma^*$ 
  is called \emph{$\Gamma$-quasi-terminating},
  if for each $x$,
  the set $\{y_\Gamma \mid x\to^* y\}$ is finite,
  where $y_\Gamma$ denotes the image of $y$
  under the morphism that deletes all letters not in $\Gamma$.
\end{definition}
Equivalently (for finite $\Gamma$) there is a bound on the number of occurrences
of letters from $\Gamma$ in words reachable from $x$.

The name is justified by the following
\begin{lemma}
  If $\to$ on $\Sigma^*$ is $\Sigma$-quasi-terminating,
  then $\to$ is quasi-terminating.
\end{lemma}

%

\begin{theorem}\label{thm:quasi}
  For a string rewriting system $R$ on $\Sigma$
  and $\Gamma\subseteq\Sigma$,
  if $\to_R$ is $\Gamma$-quasi-terminating,
  and there is some well-founded reduction order $>$ on $(\Sigma\setminus\Gamma)^*$
  such that $\Split_\Gamma(R)$ is contained in $\LexL$ or in $\LexR$,
  then $R$ is terminating.
\end{theorem}


\section{Interpretations that prove 
  $\Gamma$-Quasi-Termination}

\begin{definition}
  A domain with relation $(D,>)$ is called
  \emph{uniformly well-founded} 
  if for each $x\in D$, there is $b\in\NN$
  such that each descending $>$-chain has length at most $b$.
\end{definition}

%
%

\begin{example}\label{ex:sema:ep}
  We can take $D$ as the set of square matrices $\NN^{d\times d}$,
  and $A > B$ if $A_{1,d}>B_{1,d}$,
  disregarding relations  between matrix entries elsewhere.
\end{example}

\begin{example}
(Non-Example.) Take $D=(\NN^2,\LexL)$.
Each chain starting in $(1,0)$ is finite,
but the length of all these chains is not bounded,
as we have $(1,0)>(0,n)>\dots>(0,0)$.
\end{example}

\begin{definition}
  For $(D,>)$,
  an interpretation  $i:\Sigma\to (D\to D)$,
  we write $i_a(x)$ as shorthand for $i(a)(x)$.
  We call $i$ \emph{weakly simple}
  if $\forall x\in D, a\in\Sigma: i_a(x)\ge x$.
%
  W.r.t. such an interpretation,
  letter $a$ is called \emph{strongly simple},
  or just \emph{strong},
  if $\forall x\in D:i_a(x)>x$.
  %
  We let $\Strong(i)$ denote the set of $i$-strong letters.
\end{definition}

\begin{example}\label{ex:sema:e}
  An interpretation into $E=\{A\mid A\in \NN^{d\times d},A_{1,1}\ge 1 \wedge A_{d,d}\ge 1\}$,
  cf.~\cite{DBLP:conf/rta/HofbauerW06},
  is weakly simple w.r.t. the order from Example~\ref{ex:sema:ep}.
  Matrices in $E_+=\{A\mid A\in \NN^{d\times d},A_{1,1}\ge 1\wedge A_{d,d}\ge 1
  \wedge A_{1,d}> 0 \}$ are strong.
\end{example}

The above includes, as a special case, linear interpretations of slope 1,
that is, weights.
We represent weight $w\ge 0$ by matrix $\begin{pmatrix}1 & w \\ 0 & 1\end{pmatrix}$.
This is always in $E$, and it is in $E_+$ if $w> 0$.

\begin{example}\label{ex:sema:arc}
  We can use interpretations into arctic
  matrices~\cite{DBLP:journals/actaC/KoprowskiW09} as well.
  Denote %
  by $0$ the unit of arctic multiplication.
  We use domain $\{A \mid A_{1,1}\ge 0\}$ with order $l>r$ iff $A_{1,1}>B_{1,1}$.
  Strong matrices have $A_{1,1}>0$.
\end{example}

\begin{lemma}\label{lemma:sema}
  If a weakly simple interpretation $i$ into uniformly well-founded $(D,>)$
  is weakly compatible with a relation $\to$
%
  and $\Gamma$ is a subset of $i$-strong letters,
  then $\to$ is $\Gamma$-quasi-terminating.
\end{lemma}

We note that to prove weak compatibility with $\to_R$,
we might need a stronger order on $D$ that is stable w.r.t. contexts.
For example, matrix interpretations need $[l]_{i,j}\ge [r]_{i,j}$ elsewhere.


\section{Applications}

Combining results from previous sections,
we obtain this method of proving termination:
\begin{itemize}
\item give an interpretation $i$ into $(D,>)$ according to Lemma~\ref{lemma:sema},
\item give a well-founded reduction order $>$ on $\Sigma\setminus\Gamma$,
  and a status (\textsf{L} or \textsf{R}), according to Theorem~\ref{thm:quasi}.
\end{itemize}
In the second step, well-foundedness can be proved by applying the method
again, on the smaller alphabet.
As a special case,
when the interpretation always counts occurrences of ``top'' letters,
the standard Kachinuki order appears.

\begin{example}
  For $R=\{ c a \to b^2 c^3, bcb \to a \}$,
  we use interpretation $i_a(x)=x+2, i_b(x)=x+1, i_c(x)=0$
  on $(\NN,>)$. Here, $\Strong(i)=\{a,b\}$.

  We have
  $\Split_{\{a,b\}}(R)=\{[c,\epsilon]\to[\epsilon,\epsilon,c^3],
  [\epsilon,c,\epsilon]\to[\epsilon,\epsilon]\}$.
  Both pairs are included in $\LexL$ where $>$ compares lengths.
\end{example}

\begin{example}
  For $R=\{cab\to bcba, bcba\to abc\}$,
  we use interpretation
\[
i : a \mapsto \begin{pmatrix}2 & 0 \\ 0 & 1\end{pmatrix},
    b \mapsto \begin{pmatrix}1 & 1 \\ 0 & 1\end{pmatrix},
    c \mapsto \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix},
\]
Note that $i(a)$ is not in $E_+$, as defined in Example~\ref{ex:sema:e}.
We consider $D=\{(x_1,x_2)\mid x_1\ge 1,x_2\ge 1\}$,
ordered by $(x_1,x_2)>(y_1,y_2)$ if $x_1>y_1$.
The given interpretation indeed maps $D$ into $D$,
and both $a$ and $b$ are strong.

We have $\Split_{\{a,b\}}(R)=
\{[c,\epsilon,\epsilon]\to [\epsilon,c,\epsilon,\epsilon],
[\epsilon,c,\epsilon,\epsilon] \to [\epsilon,\epsilon,c]\}$
which is contained in $\LexL$ where $>$ compares lengths.
\end{example}

This can be generalized:
%
  For $D=\NN_{>0}^n$,  ordered by $x>y \iff x_1>y_1$,
  we can use any matrix interpretation where in each matrix,
  the top left entry is $\ge 1$ 
  and in each (other) line there is at least one entry $\ge 1$.
  All these are weakly simple.
  If we additionally have that the top left entry is $> 1$,
  or some other entry in the top line is $>0$,
  then the matrix is strong.
%


\section{Extension}

We mention here a variation of the method where we don't need to
order syllables at all -- in case we know that their number is strictly increasing.

\begin{lemma}\label{lemma:ext}
  For a string rewriting system $R$ on $\Sigma$
  and $\Gamma\subseteq\Sigma$,
  if $\to_R$ is $\Gamma$-quasi-terminating,
  and for each $(l,r)\in\Split_\Gamma(R)$ we have that that $|l|<|r|$,
  then $R$ is terminating.
\end{lemma}
This holds true since $\Gamma$-quasi-termination bounds the number
of syllables (in words reachable from any fixed starting word) from above.
Given the conditions of the lemma,
the distance to that bound will decrease strictly.

\begin{example}
  For SRS/Zantema/z050, $R=\{a b b a a b \to a a b b a b a\}$,
  we use the arctic interpretation
  \[ i: a\mapsto\begin{pmatrix}
      1 & -\infty & 1 \\ -\infty & -\infty & 1 \\ 0 & -\infty & -\infty\end{pmatrix},
    b \mapsto\begin{pmatrix}0 & 0 & 1 \\ 0 & 2 & 4 \\ 1 & 0 & -\infty \end{pmatrix},
  \]
  We verify that $i(l)\ge i(r)$ point-wise, so $i$ is weakly compatible with
  rewriting, and that $i(a)$ is strong.
  We obtain $\Split_a(R)=\{[\epsilon, bb, \epsilon, b] \to
  [\epsilon,  \epsilon, bb, b, \epsilon]\}$ which is length-increasing.
  By Lemma~\ref{lemma:sema} and Lemma~\ref{lemma:ext}, $R$ is terminating.
\end{example}

\section{Discussion}

\emph{Related work.}
If all symbols have identical status (e.g., from the left),
then the concept of semantic Kachinuki order presented here
could be related to the concept of semantic path 
order \cite{DBLP:journals/aaecc/Geser96},
or to semantic labelling \cite{DBLP:journals/fuin/Zantema95}
w.r.t. a quasi-model,
as the interpretation that bounds occurrences of strong letters is a quasi-model.
Our precedence is still on the original alphabet,
not on the semantically labelled one.
Still, semantic path order or semantic labelling could probably not handle
mixed status.

\emph{Implementation.}
The constraint system that describes
the interpretation that determines strong symbols is easy to write.
For matrices, we might use SMT over bit-vectors (BV).
This will produce candidates for subsets $\Gamma$ of strong letters
(there may be several).
We have a prototypical implementation,
with obvious extensions for relative termination,
as part of the Matchbox termination prover
\url{https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox}.
Performance on the Termination Problems Data Base is weak,
but we expect this to improve (as with all methods that use interpretations)
by enlarging the alphabet via pre-processing,
e.g., root labelling~\cite{DBLP:conf/rta/SternagelM08}.
Typically, this will result in larger systems, so the search for semantic
(Kachinuki) orders will be challenging.

\emph{Extension.}
Splitting w.r.t. $\Gamma$ reduces termination of $R$
to a Boolean combination of termination sub-problems.
For example, assume $R$ is $\Gamma$-quasi-terminating,
and $\Split_\Gamma(R)=\{[l_1,l_2]\to[r_1,r_2,r_3]\}$.
Using standard notation $\SN(R/S)$ for relative termination,
we see that $\SN(l_1\to r_1)\vee\SN(l_2\to r_2/l_1\to r_1)$
(lexicographic decrease from the left)
but also
$\SN(l_2\to r_3)\vee\SN(l_1\to r_2/l_2\to r_3)$ (from the right)
imply $\SN(R)$.
With more rules in $R$, we obtain a conjunction of such formulas.
We might handle this inside one SMT encoding (of the conjunction),
or we can translate to disjunctive normal form,
where clauses are standard (relative) termination problems
that could be tried concurrently.
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Abstract
We present an extension of the Kachinuki order on strings. The Kachinuki order transforms the
problem of comparing strings to the problem of comparing their syllables length-lexicographically,
where the syllables are defined via a precedence on the alphabet. Our extension allows the
number of syllables to increase under rewriting, provided we bound it by a weakly compatible
interpretation.


1 Introduction


The Kachinuki order [6] is an iterated syllable order on strings: given a precedence on the
alphabet, words are split at occurrences of the highest letter, resulting in sequences of syl-
lables over a smaller alphabet. These sequences are compared by the (length-)lexicographic
extension of the Kachinuki order on the smaller alphabet (without the highest letter). For
instance, to show termination of ab → bba, we take precedence a > b, and split at occur-
rences of a, to obtain [ε, b]→ [bb, ε]. We note that the number of syllables is constant under
rewriting, and that the word of syllables is lexicographically decreasing (looking from the
right end) w.r.t. the number of b. The Kachinuki order is a simplification order.


The word Kachinuki means “the winner walks through” and describes the order of the
bouts in team matches in Japanese judo. For ordering strings, the “winner” is the symbol
of highest precedence. In its original definition, the Kachinuki order is equivalent to the
recursive path order on strings, see also [7]. It is folklore knowledge (e.g., assumed in [3])
that the definition can be extended by assigning, to each symbol x, a status bit that tells
whether the sequence of syllables w.r.t. x should be compared lexicographically from the
left, or from the right. For example, termination of {ab → bba, bc → cbb} can be shown by
precedence c > a > b and status Left for c, Right for a. This extension is specific to string
rewriting, as there is no obvious way to reverse a term.


In the present note, we show a way to include semantic information (from an interpreta-
tion) in the choice of the letter(s) for splitting. For instance, we want to prove termination
of {ca→ b2c3, bcb→ a} by splitting at occurrences of a and b. This is allowed because the
weight function w : a 7→ 2, b 7→ 1, c 7→ 0 is non-decreasing, and a and b have positive weight.


2 Syllables


I Definition 2.1. The syllable word split(Γ, w) of a string w ∈ Σ∗ with respect to a subset
Γ ⊆ Σ of the alphabet Σ is the unique sequence [s0, s1, . . . , sk] ∈ (Σ \ Γ)∗+ such that
w = s0a1s1a2 . . . aksk with each ai ∈ Γ.


I Example 2.2. For Σ = {a, b, c, d} and w = abcadc, we have split({b, c}, w) = [a, ε, ad, ε],
split(Σ, w) = ε7, and split(∅, w) = [w]. For each Γ, we have split(Γ, ε) = [ε].


We sometimes write split(a,w) for split({a}, w), and splitΓ(w) for split(Γ, w).


I Definition 2.3. The binary operation � on Σ∗+ is defined by [x1, . . . , xp]� [y1, . . . , yq] =
[x1, . . . , xp · y1, . . . , yq].


licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



http://creativecommons.org/licenses/by/3.0/

http://www.dagstuhl.de/lipics/

http://www.dagstuhl.de





2 Semantic Kachinuki Order


I Example 2.4. [ab, c]� [a, bc] = [ab, ca, bc].


I Lemma 2.5. (Σ∗+,�, [ε]) is a monoid, and splitΓ is a monoid morphism from (Σ∗, ·, ε).


I Lemma 2.6. For each rewrite step x = plq → prq = y, we have splitΓ(x) = splitΓ(p) �
splitΓ(l)� splitΓ(q) and splitΓ(y) = splitΓ(p)� splitΓ(r)� splitΓ(q).


For notational convenience, we extend the split operation from words to rules and sets
of rules.


I Example 2.7. For R = {cab → bcba, bcba → abc}, let split{a,b}(R) denote {[c, ε, ε] →
[ε, c, ε, ε], [ε, c, ε, ε]→ [ε, ε, c]}.


3 Stable Lexicographic Extension


I Definition 3.1. The stable lexicographic extensions >L
Lex, >


R
Lex of a relation > on Σ are


[x1, . . . , xp] >L
Lex [y1, . . . , yq] ⇐⇒ ∃i : x1 ≥ y1 ∧ · · · ∧ xi−1 ≥ yi−1 ∧ xi > yi,


[x1, . . . , xp] >R
Lex [y1, . . . , yq] ⇐⇒ ∃i : xp ≥ yq ∧ · · · ∧ xp−i+1 ≥ yp−i+1 ∧ xp−i > yq−i.


We do not use the standard definition “. . . or y is a strict prefix (suffix, resp.) of x”
because we need the following


I Lemma 3.2. >L
Lex and >R


Lex are stable w.r.t. concatenation from both sides.


Consider (N, >) as the domain, and x = [1, 2, 3], y = [1, 2]. Concatenate with [4] on
the right, obtain x′ = [1, 2, 3, 4], y′ = [1, 2, 4]. We do not want x >L


Lex y, since certainly
x′ 6>L


Lex y
′.


Using stability and Lemma 2.6, we get


I Lemma 3.3. If > is a reduction order, and u →(l,r) v with splitΓ(l) >L
Lex splitΓ(r), then


splitΓ(u) >L
Lex splitΓ(v). Similarly, for >R


Lex.


I Lemma 3.4. If (D,>) is well-founded, then for each n, (D≤n, >L
Lex) and (D≤n, >R


Lex) are
well-founded.


Proof. Take any decreasing sequence in (D≤n, >L
Lex). Obtain a decreasing sequence in


(Dn, >L
Lex) by padding (to the right) shorter strings with arbitrary elements of D. Well-


foundedness of (Dn, >L
Lex) is a standard result. J


4 Bounding Occurrences of Letters


The standard Kachinuki order requires that the number of occurrences of the highest symbol
does not increase under rewriting. We will generalize this to allow some increase, provided
that for each starting string x, the number of such occurrences in strings reachable from x


is bounded. This concept can be seen as a generalisation of


I Definition 4.1. [1] A relation → is quasi-terminating if for each x, the set {y | x →∗ y}
is finite.


In that case, also the lengths of reachable words are bounded. Now we will just count
occurrences of letters from a subset of the alphabet.







Alfons Geser, Dieter Hofbauer, and Johannes Waldmann 3


I Definition 4.2. For Γ ⊆ Σ, a relation → on Σ∗ is called Γ-quasi-terminating, if for each
x, the set {yΓ | x→∗ y} is finite, where yΓ denotes the image of y under the morphism that
deletes all letters not in Γ.


Equivalently (for finite Γ) there is a bound on the number of occurrences of letters from Γ
in words reachable from x.


The name is justified by the following


I Lemma 4.3. If → on Σ∗ is Σ-quasi-terminating, then → is quasi-terminating.


I Theorem 4.4. For a string rewriting system R on Σ and Γ ⊆ Σ, if →R is Γ-quasi-
terminating, and there is some well-founded reduction order > on (Σ\Γ)∗ such that splitΓ(R)
is contained in >L


Lex or in >R
Lex, then R is terminating.


5 Interpretations that prove Γ-Quasi-Termination


I Definition 5.1. A domain with relation (D,>) is called uniformly well-founded if for each
x ∈ D, there is b ∈ N such that each descending >-chain has length at most b.


I Example 5.2. We can takeD as the set of square matrices Nd×d, and A > B if A1,d > B1,d,
disregarding relations between matrix entries elsewhere.


I Example 5.3. (Non-Example.) Take D = (N2, >L
Lex). Each chain starting in (1, 0) is finite,


but the length of all these chains is not bounded, as we have (1, 0) > (0, n) > · · · > (0, 0).


I Definition 5.4. For (D,>), an interpretation i : Σ → (D → D), we write ia(x) as
shorthand for i(a)(x). We call i weakly simple if ∀x ∈ D, a ∈ Σ : ia(x) ≥ x. W.r.t. such an
interpretation, letter a is called strongly simple, or just strong, if ∀x ∈ D : ia(x) > x. We let
Strong(i) denote the set of i-strong letters.


I Example 5.5. An interpretation into E = {A | A ∈ Nd×d, A1,1 ≥ 1 ∧Ad,d ≥ 1}, cf. [4], is
weakly simple w.r.t. the order from Example 5.2. Matrices in E+ = {A | A ∈ Nd×d, A1,1 ≥
1 ∧Ad,d ≥ 1 ∧A1,d > 0} are strong.


The above includes, as a special case, linear interpretations of slope 1, that is, weights.


We represent weight w ≥ 0 by matrix
(


1 w


0 1


)
. This is always in E, and it is in E+ if w > 0.


I Example 5.6. We can use interpretations into arctic matrices [5] as well. Denote by 0 the
unit of arctic multiplication. We use domain {A | A1,1 ≥ 0} with order l > r iff A1,1 > B1,1.
Strong matrices have A1,1 > 0.


I Lemma 5.7. If a weakly simple interpretation i into uniformly well-founded (D,>) is
weakly compatible with a relation → and Γ is a subset of i-strong letters, then → is Γ-quasi-
terminating.


We note that to prove weak compatibility with →R, we might need a stronger order
on D that is stable w.r.t. contexts. For example, matrix interpretations need [l]i,j ≥ [r]i,j
elsewhere.







4 Semantic Kachinuki Order


6 Applications


Combining results from previous sections, we obtain this method of proving termination:
give an interpretation i into (D,>) according to Lemma 5.7,
give a well-founded reduction order > on Σ \ Γ, and a status (L or R), according to
Theorem 4.4.


In the second step, well-foundedness can be proved by applying the method again, on the
smaller alphabet. As a special case, when the interpretation always counts occurrences of
“top” letters, the standard Kachinuki order appears.


I Example 6.1. For R = {ca→ b2c3, bcb→ a}, we use interpretation ia(x) = x+ 2, ib(x) =
x+ 1, ic(x) = 0 on (N, >). Here, Strong(i) = {a, b}.


We have split{a,b}(R) = {[c, ε] → [ε, ε, c3], [ε, c, ε] → [ε, ε]}. Both pairs are included in
>L


Lex where > compares lengths.


I Example 6.2. For R = {cab→ bcba, bcba→ abc}, we use interpretation


i : a 7→
(


2 0
0 1


)
, b 7→


(
1 1
0 1


)
, c 7→


(
1 0
0 1


)
,


Note that i(a) is not in E+, as defined in Example 5.5. We consider D = {(x1, x2) | x1 ≥
1, x2 ≥ 1}, ordered by (x1, x2) > (y1, y2) if x1 > y1. The given interpretation indeed maps
D into D, and both a and b are strong.


We have split{a,b}(R) = {[c, ε, ε] → [ε, c, ε, ε], [ε, c, ε, ε] → [ε, ε, c]} which is contained in
>L


Lex where > compares lengths.


This can be generalized: For D = Nn
>0, ordered by x > y ⇐⇒ x1 > y1, we can use any


matrix interpretation where in each matrix, the top left entry is ≥ 1 and in each (other) line
there is at least one entry ≥ 1. All these are weakly simple. If we additionally have that the
top left entry is > 1, or some other entry in the top line is > 0, then the matrix is strong.


7 Extension


We mention here a variation of the method where we don’t need to order syllables at all –
in case we know that their number is strictly increasing.


I Lemma 7.1. For a string rewriting system R on Σ and Γ ⊆ Σ, if →R is Γ-quasi-
terminating, and for each (l, r) ∈ splitΓ(R) we have that that |l| < |r|, then R is terminating.


This holds true since Γ-quasi-termination bounds the number of syllables (in words reachable
from any fixed starting word) from above. Given the conditions of the lemma, the distance
to that bound will decrease strictly.


I Example 7.2. For SRS/Zantema/z050, R = {abbaab → aabbaba}, we use the arctic
interpretation


i : a 7→


 1 −∞ 1
−∞ −∞ 1


0 −∞ −∞


 , b 7→


0 0 1
0 2 4
1 0 −∞


 ,


We verify that i(l) ≥ i(r) point-wise, so i is weakly compatible with rewriting, and that i(a)
is strong. We obtain splita(R) = {[ε, bb, ε, b] → [ε, ε, bb, b, ε]} which is length-increasing. By
Lemma 5.7 and Lemma 7.1, R is terminating.
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8 Discussion


Related work. If all symbols have identical status (e.g., from the left), then the concept of
semantic Kachinuki order presented here could be related to the concept of semantic path
order [2], or to semantic labelling [9] w.r.t. a quasi-model, as the interpretation that bounds
occurrences of strong letters is a quasi-model. Our precedence is still on the original alphabet,
not on the semantically labelled one. Still, semantic path order or semantic labelling could
probably not handle mixed status.


Implementation. The constraint system that describes the interpretation that determines
strong symbols is easy to write. For matrices, we might use SMT over bit-vectors (BV).
This will produce candidates for subsets Γ of strong letters (there may be several). We have
a prototypical implementation, with obvious extensions for relative termination, as part
of the Matchbox termination prover https://gitlab.imn.htwk-leipzig.de/waldmann/
pure-matchbox. Performance on the Termination Problems Data Base is weak, but we ex-
pect this to improve (as with all methods that use interpretations) by enlarging the alphabet
via pre-processing, e.g., root labelling [8]. Typically, this will result in larger systems, so the
search for semantic (Kachinuki) orders will be challenging.


Extension. Splitting w.r.t. Γ reduces termination of R to a Boolean combination of
termination sub-problems. For example, assume R is Γ-quasi-terminating, and splitΓ(R) =
{[l1, l2] → [r1, r2, r3]}. Using standard notation SN(R/S) for relative termination, we see
that SN(l1 → r1) ∨ SN(l2 → r2/l1 → r1) (lexicographic decrease from the left) but also
SN(l2 → r3)∨SN(l1 → r2/l2 → r3) (from the right) imply SN(R). With more rules in R, we
obtain a conjunction of such formulas. We might handle this inside one SMT encoding (of
the conjunction), or we can translate to disjunctive normal form, where clauses are standard
(relative) termination problems that could be tried concurrently.
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