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%%
%% This is file `lipics.cls',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% lipics.dtx  (with options: `class')
%% 
%% -----------------------------------------------------------------
%% Author:     le-tex publishing services
%% 
%% This file is part of the lipics package for preparing
%% LIPICS articles.
%% 
%%       Copyright (C) 2010 Schloss Dagstuhl
%% -----------------------------------------------------------------
\NeedsTeXFormat{LaTeX2e}[2005/12/01]
\ProvidesClass{lipics}
    [2010/09/27 v1.1 LIPIcs articles]
\emergencystretch1em
\advance\hoffset-1in
\advance\voffset-1in
\advance\hoffset2.95mm
\newif\if@nobotseplist  \@nobotseplistfalse
\def\@endparenv{%
  \addpenalty\@endparpenalty\if@nobotseplist\else\addvspace\@topsepadd\fi\@endpetrue}
\def\@doendpe{%
  \@endpetrue
  \def\par{\@restorepar
           \everypar{}%
           \par
           \if@nobotseplist
             \addvspace\topsep
             \addvspace\partopsep
             \global\@nobotseplistfalse
           \fi
           \@endpefalse}%
  \everypar{{\setbox\z@\lastbox}%
            \everypar{}%
            \if@nobotseplist\global\@nobotseplistfalse\fi
            \@endpefalse}}
\def\enumerate{%
  \ifnum \@enumdepth >\thr@@\@toodeep\else
    \advance\@enumdepth\@ne
    \edef\@enumctr{enum\romannumeral\the\@enumdepth}%
    \expandafter
    \list
      \csname label\@enumctr\endcsname
      {\advance\partopsep\topsep
       \topsep\z@\@plus\p@
       \ifnum\@listdepth=\@ne
         \labelsep0.72em
       \else
         \ifnum\@listdepth=\tw@
           \labelsep0.3em
         \else
           \labelsep0.5em
         \fi
       \fi
       \usecounter\@enumctr\def\makelabel##1{\hss\llap{##1}}}%
  \fi}
\def\endenumerate{\ifnum\@listdepth=\@ne\global\@nobotseplisttrue\fi\endlist}
\def\itemize{%
  \ifnum \@itemdepth >\thr@@\@toodeep\else
    \advance\@itemdepth\@ne
    \edef\@itemitem{labelitem\romannumeral\the\@itemdepth}%
    \expandafter
    \list
      \csname\@itemitem\endcsname
      {\advance\partopsep\topsep
       \topsep\z@\@plus\p@
       \ifnum\@listdepth=\@ne
         \labelsep0.83em
       \else
         \ifnum\@listdepth=\tw@
           \labelsep0.75em
         \else
           \labelsep0.5em
         \fi
      \fi
      \def\makelabel##1{\hss\llap{##1}}}%
  \fi}
\def\enditemize{\ifnum\@listdepth=\@ne\global\@nobotseplisttrue\fi\endlist}
\def\@sect#1#2#3#4#5#6[#7]#8{%
  \ifnum #2>\c@secnumdepth
    \let\@svsec\@empty
  \else
    \refstepcounter{#1}%
    \protected@edef\@svsec{\@seccntformat{#1}\relax}%
  \fi
  \@tempskipa #5\relax
  \ifdim \@tempskipa>\z@
    \begingroup
      #6{%
        \@hangfrom{\hskip #3\relax
          \ifnum #2=1
            \colorbox[rgb]{0.99,0.78,0.07}{\kern0.15em\@svsec\kern0.15em}\quad
          \else
            \@svsec\quad
          \fi}%
          \interlinepenalty \@M #8\@@par}%
    \endgroup
    \csname #1mark\endcsname{#7}%
    \addcontentsline{toc}{#1}{%
      \ifnum #2>\c@secnumdepth \else
        \protect\numberline{\csname the#1\endcsname}%
      \fi
      #7}%
  \else
    \def\@svsechd{%
      #6{\hskip #3\relax
      \@svsec #8}%
      \csname #1mark\endcsname{#7}%
      \addcontentsline{toc}{#1}{%
        \ifnum #2>\c@secnumdepth \else
          \protect\numberline{\csname the#1\endcsname}%
        \fi
        #7}}%
  \fi
  \@xsect{#5}}
\def\@seccntformat#1{\csname the#1\endcsname}
\def\@biblabel#1{\textcolor{darkgray}{\sffamily\bfseries#1}}
\def\copyrightline{%
  \ifx\@serieslogo\@empty
  \else
    \setbox\@tempboxa\hbox{\includegraphics[height=42\p@]{\@serieslogo}}%
    \rlap{\hspace\textwidth\hspace{-\wd\@tempboxa}\hspace{\z@}%
          \vtop to\z@{\vskip-0mm\unhbox\@tempboxa\vss}}%
  \fi
  \scriptsize
  \vtop{\hsize\textwidth
    \nobreakspace\\
    \@Copyright
    \ifx\@Event\@empty\else\@Event.\\\fi
    \ifx\@Editors\@empty\else
      \@Eds: \@Editors
      ; pp. \thepage--\pageref{LastPage}%
      \\
    \fi
    \setbox\@tempboxa\hbox{\includegraphics[height=14\p@,trim=0 15 0 0]{lipics-logo-bw}}%
    \hspace*{\wd\@tempboxa}\enskip
    \href{http://www.dagstuhl.de/lipics/}%
         {Leibniz International Proceedings in Informatics}\\
    \smash{\unhbox\@tempboxa}\enskip
    \href{http://www.dagstuhl.de}%
         {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik, Dagstuhl Publishing, Germany}}}
\def\ps@plain{\let\@mkboth\@gobbletwo
  \let\@oddhead\@empty
  \let\@evenhead\@empty
  \let\@evenfoot\copyrightline
  \let\@oddfoot\copyrightline}
\def\lipics@opterrshort{Option  "\CurrentOption" not supported}
\def\lipics@opterrlong{The option "\CurrentOption" from article.cls is not supported by lipics.cls.}
\DeclareOption{a5paper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{b5paper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{legalpaper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{executivepaper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{landscape}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{10pt}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{11pt}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{12pt}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{oneside}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{twoside}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{titlepage}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{notitlepage}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{onecolumn}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{twocolumn}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{fleqn}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{openbib}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{a4paper}{\PassOptionsToClass{\CurrentOption}{article}
                        \advance\hoffset-2.95mm
                        \advance\voffset8.8mm}
\DeclareOption{numberwithinsect}{\let\numberwithinsect\relax}
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions
\LoadClass[twoside,notitlepage,fleqn]{article}
\renewcommand\normalsize{%
   \@setfontsize\normalsize\@xpt{13}%
   \abovedisplayskip 10\p@ \@plus2\p@ \@minus5\p@
   \abovedisplayshortskip \z@ \@plus3\p@
   \belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@
   \belowdisplayskip \abovedisplayskip
   \let\@listi\@listI}
\normalsize
\renewcommand\small{%
   \@setfontsize\small\@ixpt{11.5}%
   \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@
   \abovedisplayshortskip \z@ \@plus2\p@
   \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@
   \def\@listi{\leftmargin\leftmargini
               \topsep 4\p@ \@plus2\p@ \@minus2\p@
               \parsep 2\p@ \@plus\p@ \@minus\p@
               \itemsep \parsep}%
   \belowdisplayskip \abovedisplayskip
}
\renewcommand\footnotesize{%
   \@setfontsize\footnotesize{8.5}{9.5}%
   \abovedisplayskip 6\p@ \@plus2\p@ \@minus4\p@
   \abovedisplayshortskip \z@ \@plus\p@
   \belowdisplayshortskip 3\p@ \@plus\p@ \@minus2\p@
   \def\@listi{\leftmargin\leftmargini
               \topsep 3\p@ \@plus\p@ \@minus\p@
               \parsep 2\p@ \@plus\p@ \@minus\p@
               \itemsep \parsep}%
   \belowdisplayskip \abovedisplayskip
}
\renewcommand\large{\@setfontsize\large{10.5}{13}}
\renewcommand\Large{\@setfontsize\Large{12}{14}}
\setlength\parindent{1.5em}
\setlength\headheight{3mm}
\setlength\headsep   {10mm}
\setlength\footskip{3mm}
\setlength\textwidth{140mm}
\setlength\textheight{222mm}
\setlength\oddsidemargin{32mm}
\setlength\evensidemargin{38mm}
\setlength\marginparwidth{25mm}
\setlength\topmargin{13mm}
\setlength{\skip\footins}{2\baselineskip \@plus 4\p@ \@minus 2\p@}
\def\@listi{\leftmargin\leftmargini
            \parsep\z@ \@plus\p@
            \topsep 8\p@ \@plus2\p@ \@minus4\p@
            \itemsep \parsep}
\let\@listI\@listi
\@listi
\def\@listii {\leftmargin\leftmarginii
              \labelwidth\leftmarginii
              \advance\labelwidth-\labelsep
              \topsep    4\p@ \@plus2\p@ \@minus\p@
              \parsep\z@ \@plus\p@
              \itemsep   \parsep}
\def\@listiii{\leftmargin\leftmarginiii
              \labelwidth\leftmarginiii
              \advance\labelwidth-\labelsep
              \topsep    2\p@ \@plus\p@\@minus\p@
              \parsep    \z@
              \partopsep \p@ \@plus\z@ \@minus\p@
              \itemsep   \z@ \@plus\p@}
\def\ps@headings{%
    \def\@evenhead{\large\sffamily\bfseries
                   \llap{\hbox to0.5\oddsidemargin{\thepage\hss}}\leftmark\hfil}%
    \def\@oddhead{\large\sffamily\bfseries\rightmark\hfil
                  \rlap{\hbox to0.5\oddsidemargin{\hss\thepage}}}%
    \def\@oddfoot{\hfil
                  \rlap{%
                    \vtop{%
                      \vskip10mm
                      \colorbox[rgb]{0.99,0.78,0.07}
                                    {\@tempdima\evensidemargin
                                     \advance\@tempdima1in
                                     \advance\@tempdima\hoffset
                                     \hb@xt@\@tempdima{%
                                       \textcolor{darkgray}{\normalsize\sffamily
                                       \bfseries\quad
                                       \expandafter\textsolittle
                                       \expandafter{\@EventShortName}}%
                                     \strut\hss}}}}}
    \let\@evenfoot\@empty
    \let\@mkboth\markboth
  \let\sectionmark\@gobble
  \let\subsectionmark\@gobble}
\pagestyle{headings}
\renewcommand\maketitle{\par
  \begingroup
    \renewcommand\thefootnote{\@fnsymbol\c@footnote}%
    \if@twocolumn
      \ifnum \col@number=\@ne
        \@maketitle
      \else
        \twocolumn[\@maketitle]%
      \fi
    \else
      \newpage
      \global\@topnum\z@   % Prevents figures from going at top of page.
      \@maketitle
    \fi
    \thispagestyle{plain}\@thanks
  \endgroup
  \setcounter{footnote}{0}%
  \global\let\thanks\relax
  \global\let\maketitle\relax
  \global\let\@maketitle\relax
  \global\let\@thanks\@empty
  \global\let\@author\@empty
  \global\let\@date\@empty
  \global\let\@title\@empty
  \global\let\title\relax
  \global\let\author\relax
  \global\let\date\relax
  \global\let\and\relax
}
\newwrite\tocfile
\def\@maketitle{%
  \newpage
  \null\vskip-\baselineskip
  \vskip-\headsep
  \@titlerunning
  \@authorrunning
  \let \footnote \thanks
  \parindent\z@ \raggedright
    {\LARGE\sffamily\bfseries\mathversion{bold}\@title \par}%
    \vskip 1.5em%
    \ifnum\c@authors=0 %
      \@latexerr{No \noexpand\author given}%
        {Provide at least one author. See the LIPIcs class documentation.}%
    \else
      \@author
    \fi
    \bgroup
      \let\footnote\@gobble
      \immediate\openout\tocfile=\jobname.vtc
      \protected@write\tocfile{}{%
        \string\contitem
        \string\title{\@title}%
        \string\author{\AB@authfortoc}%
        \string\page{\thepage}}%
      \closeout\tocfile
    \egroup
  \par}
\setcounter{secnumdepth}{4}
\renewcommand\section{\@startsection {section}{1}{\z@}%
                                   {-3.5ex \@plus -1ex \@minus -.2ex}%
                                   {2.3ex \@plus.2ex}%
                                   {\sffamily\Large\bfseries\raggedright}}
\renewcommand\subsection{\@startsection{subsection}{2}{\z@}%
                                     {-3.25ex\@plus -1ex \@minus -.2ex}%
                                     {1.5ex \@plus .2ex}%
                                     {\sffamily\Large\bfseries\raggedright}}
\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
                                     {-3.25ex\@plus -1ex \@minus -.2ex}%
                                     {1.5ex \@plus .2ex}%
                                     {\sffamily\Large\bfseries\raggedright}}
\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%
                                    {-3.25ex \@plus-1ex \@minus-.2ex}%
                                    {1.5ex \@plus .2ex}%
                                    {\sffamily\large\bfseries\raggedright}}
\renewcommand\subparagraph{\@startsection{subparagraph}{5}{\z@}%
                                       {3.25ex \@plus1ex \@minus .2ex}%
                                       {-1em}%
                                      {\sffamily\normalsize\bfseries}}
\setlength\leftmargini  \parindent
\setlength\leftmarginii {1.2em}
\setlength\leftmarginiii{1.2em}
\setlength\leftmarginiv {1.2em}
\setlength\leftmarginv  {1.2em}
\setlength\leftmarginvi {1.2em}
\renewcommand\labelenumi{%
  \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumi.}}
\renewcommand\labelenumii{%
  \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumii.}}
\renewcommand\labelenumiii{%
  \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumiii.}}
\renewcommand\labelenumiv{%
  \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumiv.}}
\renewcommand\labelitemi{%
  \textcolor[rgb]{0.6,0.6,0.61}{\ifnum\@listdepth=\@ne
                                  \rule{0.67em}{0.33em}%
                                \else
                                  \rule{0.45em}{0.225em}%
                                \fi}}
\renewcommand\labelitemii{%
  \textcolor[rgb]{0.6,0.6,0.61}{\rule{0.45em}{0.225em}}}
\renewcommand\labelitemiii{%
  \textcolor[rgb]{0.6,0.6,0.61}{\sffamily\bfseries\textasteriskcentered}}
\renewcommand\labelitemiv{%
  \textcolor[rgb]{0.6,0.6,0.61}{\sffamily\bfseries\textperiodcentered}}
\renewenvironment{description}
               {\list{}{\advance\partopsep\topsep\topsep\z@\@plus\p@
                        \labelwidth\z@ \itemindent-\leftmargin
                        \let\makelabel\descriptionlabel}}
               {\ifnum\@listdepth=\@ne\global\@nobotseplisttrue\fi\endlist}
\renewcommand*\descriptionlabel[1]{%
  \hspace\labelsep\textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}#1}}
\renewenvironment{abstract}{%
  \vskip\bigskipamount
  \noindent
  \rlap{\color[rgb]{0.51,0.50,0.52}\vrule\@width\textwidth\@height1\p@}%
  \hspace*{7mm}\fboxsep1.5mm\colorbox[rgb]{1,1,1}{\raisebox{-0.4ex}{%
    \large\selectfont\sffamily\bfseries\abstractname}}%
  \vskip3\p@
  \fontsize{9.5}{12.5}\selectfont
  \noindent\ignorespaces}
  {\ifx\@subjclass\@empty\else
     \vskip\baselineskip\noindent
     \subjclassHeading\@subjclass
   \fi
   \ifx\@keywords\@empty\else
     \vskip\baselineskip\noindent
     \keywordsHeading\@keywords
   \fi
   \ifx\@DOI\@empty\else
     \vskip\baselineskip\noindent
     \doiHeading\doi{\@DOI}%
   \fi}
\renewenvironment{thebibliography}[1]
  {\if@noskipsec \leavevmode \fi
   \par
   \@tempskipa-3.5ex \@plus -1ex \@minus -.2ex\relax
   \@afterindenttrue
   \@tempskipa -\@tempskipa \@afterindentfalse
   \if@nobreak
     \everypar{}%
   \else
     \addpenalty\@secpenalty\addvspace\@tempskipa
   \fi
   \noindent
   \rlap{\color[rgb]{0.51,0.50,0.52}\vrule\@width\textwidth\@height1\p@}%
   \hspace*{7mm}\fboxsep1.5mm\colorbox[rgb]{1,1,1}{\raisebox{-0.4ex}{%
     \normalsize\sffamily\bfseries\refname}}%
   \@xsect{1ex \@plus.2ex}%
   \list{\@biblabel{\@arabic\c@enumiv}}%
        {\leftmargin8.5mm
         \labelsep\leftmargin
         \settowidth\labelwidth{\@biblabel{#1}}%
         \advance\labelsep-\labelwidth
         \usecounter{enumiv}%
         \let\p@enumiv\@empty
         \renewcommand\theenumiv{\@arabic\c@enumiv}}%
   \fontsize{9.5}{12.5}\selectfont
   \sloppy
   \clubpenalty4000
   \@clubpenalty \clubpenalty
   \widowpenalty4000%
   \sfcode`\.\@m}
  {\def\@noitemerr
     {\@latex@warning{Empty `thebibliography' environment}}%
   \endlist}
\renewcommand\footnoterule{%
  \kern-8\p@
  {\color[rgb]{0.60,0.60,0.61}\hrule\@width40mm\@height1\p@}%
  \kern6.6\p@}
\renewcommand\@makefntext[1]{%
    \parindent\z@\hangindent1em
    \leavevmode
    \hb@xt@1em{\@makefnmark\hss}#1}
\usepackage[utf8]{inputenc}
\IfFileExists{lmodern.sty}{\RequirePackage{lmodern}}{}
\RequirePackage[T1]{fontenc}
\RequirePackage{textcomp}
\RequirePackage[mathscr]{eucal}
\RequirePackage{amssymb}
\RequirePackage{soul}
\sodef\textsolittle{}{.12em}{.5em\@plus.08em\@minus.06em}%
        {.4em\@plus.275em\@minus.183em}
\RequirePackage{color}
\definecolor{darkgray}{rgb}{0.31,0.31,0.33}
\RequirePackage{babel}
\RequirePackage[tbtags,fleqn]{amsmath}
\RequirePackage{amsthm}
\thm@headfont{%
  \textcolor{darkgray}{$\blacktriangleright$}\nobreakspace\sffamily\bfseries}
\def\th@remark{%
  \thm@headfont{%
    \textcolor{darkgray}{$\blacktriangleright$}\nobreakspace\sffamily}%
  \normalfont % body font
  \thm@preskip\topsep \divide\thm@preskip\tw@
  \thm@postskip\thm@preskip
}
\def\@endtheorem{\endtrivlist}%\@endpefalse
\renewcommand\qedsymbol{\textcolor{darkgray}{\ensuremath{\blacktriangleleft}}}
\renewenvironment{proof}[1][\proofname]{\par
  \pushQED{\qed}%
  \normalfont \topsep6\p@\@plus6\p@\relax
  \trivlist
  \item[\hskip\labelsep
        \color{darkgray}\sffamily\bfseries
    #1\@addpunct{.}]\ignorespaces
}{%
  \popQED\endtrivlist%\@endpefalse
}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\theoremstyle{remark}
\newtheorem*{remark}{Remark}
\ifx\numberwithinsect\relax
  \@addtoreset{theorem}{section}
  \edef\thetheorem{\expandafter\noexpand\thesection\@thmcountersep\@thmcounter{theorem}}
\fi
\RequirePackage{graphicx}
\RequirePackage{array}
\let\@classzold\@classz
\def\@classz{%
   \expandafter\ifx\d@llarbegin\begingroup
     \toks \count@ =
     \expandafter{\expandafter\small\the\toks\count@}%
   \fi
   \@classzold}
\RequirePackage{multirow}
\RequirePackage{tabularx}
\RequirePackage[online]{threeparttable}
\def\TPTtagStyle#1{#1)}
\def\tablenotes{\small\TPT@defaults
  \@ifnextchar[\TPT@setuptnotes\TPTdoTablenotes} % ]
\RequirePackage{listings}
\lstset{basicstyle=\small\ttfamily,%
        backgroundcolor=\color[rgb]{0.85,0.85,0.86},%
        frame=single,framerule=0pt,xleftmargin=\fboxsep,xrightmargin=\fboxsep}
\RequirePackage{lastpage}
\IfFileExists{doi.sty}
  {\RequirePackage{doi}%
   \renewcommand*{\doitext}{}}
  {\RequirePackage{hyperref}%
   \def\doi##1{##1}}
\hypersetup{pdfborder={0 0 0}}
\RequirePackage[labelsep=space,singlelinecheck=false,%
  font={up,small},labelfont={sf,bf},%
  listof=false]{caption}%"listof" instead of "list" for backward compatibility
\@ifpackagelater{hyperref}{2009/12/09}
  {\captionsetup{compatibility=false}}%cf. http://groups.google.de/group/comp.text.tex/browse_thread/thread/db9310eb540fbbd8/42e30f3b7b3aa17a?lnk=raot
  {}
\DeclareCaptionLabelFormat{boxed}{%
  \kern0.05em{\color[rgb]{0.99,0.78,0.07}\rule{0.73em}{0.73em}}%
  \hspace*{0.67em}\bothIfFirst{#1}{~}#2}
\captionsetup{labelformat=boxed}
\captionsetup[table]{position=top}
\RequirePackage[figuresright]{rotating}
\RequirePackage{subfig}
\def\titlerunning#1{\gdef\@titlerunning{{\let\footnote\@gobble\markboth{#1}{#1}}}}
\def\authorrunning#1{%
  \gdef\@authorrunning{\expandafter\def\expandafter\@tempa\expandafter{#1}%
                       \ifx\@tempa\@empty\else\markright{#1}\fi}}
\titlerunning{\@title}
\authorrunning{\AB@authrunning}
\newcommand*\volumeinfo[6]{%
  {\gdef\@Editors{#1}%
   \gdef\@Eds{Editor}\ifnum #2>1 \gdef\@Eds{Editors}\fi
   \gdef\@Event{#3}%
   \setcounter{page}{#6}}}
\volumeinfo{}{1}{}{}{}{1}
\RequirePackage{authblk}
\renewcommand*\Authand{{ and }}
\renewcommand*\Authfont{\Large\bfseries\mathversion{bold}}
\renewcommand*\AB@authnote[1]{\textsuperscript{#1}}
\renewcommand*\AB@affilnote[1]{\protect\item[#1]}
\renewcommand*\Affilfont{\fontsize{9.5}{12}\selectfont}
\setlength\affilsep{\baselineskip}
\newcommand\AB@authrunning{}
\newcommand\AB@authfortoc{}
\renewcommand\author[2][]%
      {\ifnewaffil\addtocounter{affil}{1}%
       \edef\AB@thenote{\arabic{affil}}\fi
      \if\relax#1\relax\def\AB@note{\AB@thenote}\else\def\AB@note{#1}%
        \setcounter{Maxaffil}{0}\fi
      \ifnum\value{authors}>1\relax
      \@namedef{@sep\number\c@authors}{\Authsep}\fi
      \addtocounter{authors}{1}%
      \begingroup
          \let\protect\@unexpandable@protect \let\and\AB@pand
          \def\thanks{\protect\thanks}\def\footnote{\protect\footnote}%
         \@temptokena=\expandafter{\AB@authors}%
         {\def\\{\protect\\[\@affilsep]\protect\Affilfont
              \protect\AB@resetsep}%
              \xdef\AB@author{\AB@blk@and#2}%
       \ifnewaffil\gdef\AB@las{}\gdef\AB@lasx{\protect\Authand}\gdef\AB@as{}%
           \xdef\AB@authors{\the\@temptokena\AB@blk@and}%
       \else
          \xdef\AB@authors{\the\@temptokena\AB@as\AB@au@str}%
          \global\let\AB@las\AB@lasx\gdef\AB@lasx{\protect\Authands}%
          \gdef\AB@as{\Authsep}%
       \fi
       \gdef\AB@au@str{#2}}%
         \@temptokena=\expandafter{\AB@authlist}%
         \let\\=\authorcr
         \xdef\AB@authlist{\the\@temptokena
           \protect\@nameuse{@sep\number\c@authors}%
           \protect\Authfont#2\AB@authnote{\AB@note}}%
         %new
         \@temptokena=\expandafter{\AB@authrunning}%
         \let\\=\authorcr
         \xdef\AB@authrunning{\the\@temptokena
           \protect\@nameuse{@sep\number\c@authors}#2}%
         %
         %new
         \@temptokena=\expandafter{\AB@authfortoc}%
         \let\\=\authorcr
         \xdef\AB@authfortoc{\the\@temptokena
           \expandafter\noexpand\csname @sep\number\c@authors\endcsname#2}%
         %
      \endgroup
      \ifnum\value{authors}>2\relax
      \@namedef{@sep\number\c@authors}{\Authands}\fi
      \newaffilfalse
}
\renewcommand\affil[2][]%
   {\newaffiltrue\let\AB@blk@and\AB@pand
      \if\relax#1\relax\def\AB@note{\AB@thenote}\else\def\AB@note{#1}%
        \setcounter{Maxaffil}{0}\fi
      \begingroup
        \let\protect\@unexpandable@protect
        \def\thanks{\protect\thanks}\def\footnote{\protect\footnote}%
        \@temptokena=\expandafter{\AB@authors}%
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Abstract
In earlier work, we developed approaches for automated termination analysis of several different
programming languages, based on back-end techniques for termination proofs of term rewrite
systems and integer transition systems. In the last years, we started adapting these approaches
in order to analyze the complexity of programs as well. However, up to now a severe drawback was
that we assumed the program variables to range over mathematical integers instead of bitvectors.
This eases mathematical reasoning but is unsound in general. While we showed in [8] how to
handle fixed-width bitvector integers in termination analysis, we now present the first technique
to analyze the runtime complexity of programs with bitvector arithmetic. We implemented our
contributions in the tool AProVE and evaluate its power by extensive experiments.
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1 Introduction


Our verifier AProVE [7] is one of the leading tools for termination analysis of languages like
Java, C, Haskell, Prolog, and term rewrite systems, as witnessed by its success at the annual
Termination Competition and the termination category of the SV-COMP competition.1
However, often one is not only interested in termination, but in the runtime of a program.
Thus, automated complexity analysis has become increasingly important and there exist
several tools which analyze the complexity of programs in different languages and formalisms.


In [6], we adapted our approach for termination of Java to infer complexity bounds.
Based on a symbolic execution of the program, we developed a transformation of (possibly
heap-manipulating) Java programs to integer transition systems (ITSs). These ITSs are then
analyzed by standard complexity tools for integer programs like CoFloCo [5] and KoAT [3].


However, similar to many other termination techniques, our approach for termination
and complexity analysis of Java is restricted to mathematical integers. To see why this is
unsound when analyzing languages like C or Java, consider the C functions f and g in Fig. 1,
which increment a variable j as long as the loop condition holds. For f, one leaves the loop as
soon as j exceeds the value of x. Thus, f does not terminate if x has the maximum value of
its type.2 But we can falsely prove termination if we treat x and j as mathematical integers.
For g, the loop terminates as soon as the value of j becomes zero. So when considering
mathematical integers, we would falsely conclude non-termination for positive initial values


∗ Supported by the DFG grant GI 274/6-1.
1 See http://www.termination-portal.org/wiki/Termination_Competition and http://sv-comp.


sosy-lab.org.
2 In C, adding 1 to the maximal unsigned integer results in 0. In contrast, for signed integers, adding 1 to


the maximal signed integer results in undefined behavior. However, most C implementations return the
minimal signed integer as the result.
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2 Complexity Analysis for Bitvector Programs


void f(unsigned int x) { void g(unsigned int j) {
unsigned int j = 0; while (j > 0)
while (j <= x) j++;


j++; }
}


Figure 1 C functions on bitvectors


of j, although g always terminates due to the wrap-around for unsigned overflows.
In [8], we showed how termination techniques can be extended from mathematical integers


to bitvector integers and adapted our approach for termination analysis of C programs from
[13] accordingly. In this way, we obtained the first technique for termination of C programs
that covers both byte-accurate explicit pointer arithmetic and bit-precise modeling of integers.


In the current paper, we show that such an extension to bitvectors can also be used
to analyze the runtime complexity. To this end, we extend the termination technique for
bitvector C programs from [8] to analyze the complexity of programs. In a similar way, our
complexity technique for Java [6] could also be adapted to treat integers as bitvectors.


To avoid dealing with the intricacies of C, we analyze programs in the intermediate
representation of the LLVM compilation framework [11]. As an example, consider the LLVM
code for the function g in Fig. 2. To ease readability, we wrote variables without “%” (i.e., we
wrote “j” instead of “%j” as in proper LLVM) and added line numbers. Here, j is of type i32,
where in is the type of n-bit integers. So 0 ≤ j ≤ 232 − 1 = umax32, where umaxn = 2n − 1
is the maximum unsigned value of the type in.3 In the basic block entry, j is stored at the
address ad. In the block cmp, one performs an integer comparison (icmp) to check whether
the value at the address ad is unsigned-greater than 0 (ugt). In that case, this value is
incremented by 1 in the block body and one branches (br) back to the block cmp.


Our approach for termination analysis works in two steps: First, it constructs a symbolic
execution graph that represents an over-approximation of all possible program runs. This
graph can also be used to prove that the program does not result in undefined behavior (so in
particular, it is memory safe). In [8] we showed how to adapt the rules for symbolic execution
of those LLVM instructions that are affected by the change from mathematical integers to
bitvectors. In a second step, this graph is transformed into an ITS. If the resulting ITS is
terminating, then the original C resp. LLVM program terminates as well. Note that we express
relations between bitvectors by corresponding relations between mathematical integers Z.
In this way, we can use standard SMT solving over Z for all steps needed to construct the
symbolic execution graph. Moreover, this allows us to obtain ITSs over mathematical integers
from these graphs, and to use standard ITS tools to analyze their termination. In Sect. 2 we
show that our transformation into ITSs can also be adapted in order to derive upper bounds
on the program’s runtime, i.e., our approach can be used for complexity analysis of bitvector
programs as well. In Sect. 3, we evaluate our corresponding implementation in AProVE.


2 Finding Upper Runtime Complexity Bounds


To infer runtime bounds instead of proving termination, we keep the construction of the
symbolic execution graph unchanged and only adapt our technique to transform the graph
into an ITS. The resulting approach for complexity analysis mainly succeeds on arithmetic
programs. To analyze programs whose runtime depends on the memory, one would have
to extend the abstraction used in our symbolic execution, since then the abstract program


3 LLVM does not distinguish between signed and unsigned integers. Instead, there are signed and unsigned
versions of many arithmetical operations. We use a heuristic to guess if a variable is used signed or
unsigned in the LLVM program and model all LLVM instructions correctly independently of our guess.
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define i32 @g(i32 j) {


entry: 0: ad = alloca i32
1: store i32 j, i32* ad
2: br label cmp


cmp: 0: j1 = load i32* ad
1: j1pos = icmp ugt i32 j1, 0
2: br i1 j1pos, label body, label done


body: 0: j2 = load i32* ad
1: inc = add i32 j2, 1
2: store i32 inc, i32* ad
3: br label cmp


done: 0: ret void }


Figure 2 LLVM code for the function g


A


B


j=0
b′


umax32 = bumax32
j′ =j
. . .


7


j=bumax32
b′


umax32 = bumax32. . .


14


0<j<bumax32
j1=j + 1


b′
umax32 = bumax32


j′ =j1
j1′ =j1


. . .


14


j1<bumax32
j2=j1 + 1


b′
umax32 = bumax32


j1′ =j2
. . .


7
j1=bumax32


b′
umax32 = bumax32


j1′ =0
. . .


7


Figure 3 Weighted ITS for g


states would also have to contain information on the sizes of the allocated memory areas.
Note that for a terminating arithmetic program with m instructions and k variables of types
in1, . . . , ink, the runtime is bounded by m·


∏k
j=1 2nj , which is the number of possible program


states. The reason is that at each program position, every variable xj may be assigned any
value of its type (whose range is 2nj ). Whenever a program state is visited twice, the program
must be non-terminating. So since the state space is finite, every terminating arithmetic
bitvector program has constant complexity. Thus, for terminating arithmetic programs on
bitvectors, asymptotic complexity is meaningless as all programs have a runtime in O(1).


Therefore, our goal is to infer concrete (non-asymptotic) bounds which are smaller than
the maximum bound m ·


∏k
j=1 2nj . In particular, we aim to find bounds that depend on the


program’s input parameters, because such bounds are usually more interesting than a huge
constant that depends on the sizes of the types in. We developed the following adaptions of
our approach for termination analysis in order to find runtime bounds for bitvector programs.
While (1)-(3) are used similarly in other approaches for termination or complexity analysis,
we developed (4) and (5) specifically for our setting.


(1) For termination, one only has to consider the cycles of the symbolic execution graph.
But for the runtime of a program, we have to count every execution step. Thus, the ITS
must be extracted from the whole graph and not only from its cycles. Moreover, this is
required to infer correct runtime bounds for subsequent cycles. The reason is that the
first cycle might increase values which are used afterwards when entering the next cycle.


(2) The initial abstract state of the symbolic execution graph is also considered to be the
initial location of the ITS. So only evaluation sequences of the ITS that start in this
location have to be considered. Then the goal is to find a bound on the length of the ITS
evaluations that depends only on the values of the variables in this location.


(3) For an efficient analysis, we simplify the transitions of the ITS by filtering away variables
that do not influence the termination and by iteratively compressing several transitions into
one, cf. [7]. This is unproblematic for termination analysis, but the compression of transi-
tions would distort a concrete complexity result if several evaluation steps are counted as
one. Therefore, we now assign a weight to each transition which over-approximates the
number of evaluation steps that are represented by this transition. As shown in [6], such
weights can also be used to modularize the analysis in order to increase scalability.


(4) Since all handling of bitvector arithmetic is done during the symbolic execution, we
generate ITSs over mathematical integers. Hence, their complexity can be analyzed by
existing complexity tools for such ITSs. Since such tools have not been used for bitvector
programs yet, some of them are targeted towards the inference of small asymptotic bounds
(i.e., for a program with constant runtime, they would rather infer a huge constant bound
than a linear bound that depends on the program’s input parameters).
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4 Complexity Analysis for Bitvector Programs


To facilitate the deduction of a bound depending on the program’s parameters and
to obtain more informative bounds, we therefore perform the following modification
of the ITS. During the graph construction, we now keep track of all constants like
umax32 = 232 − 1 that originate from the size bounds of a variable’s type. When the ITS
is extracted from the graph, these constants are transformed to variables like bumax32 .
Thus, we obtain the weighted ITS in Fig. 3 from g’s symbolic execution graph. Here, 14
LLVM instructions are executed from g’s initial state A to the state B where the block
body is reached for the second time. Thus, the transition from location A to B has weight
14 and it can be taken if the variables satisfy the conditions 0 < j < bumax32 , j1 = j + 1,
etc., where a primed variable denotes the value of the variable after the transition. The
loop (i.e., the blocks cmp and body) contains 7 instructions. When evaluating State B


symbolically, we consider the possible overflows and exit the loop if j1 = umax32 holds.
In this case, 7 further instructions are executed until the function g ends with a return.


(5) To ensure that the ITS complexity tool prefers bounds that contain the program’s
parameters over bounds containing size bound variables like bumax32 , we first pass a
modified ITS to the underlying complexity tool where the initial transitions do not impose
any conditions on the size bound variables. So while all other transitions have requirements
like b′


umax32
= bumax32 in their condition, the conditions of the initial transitions in this


modified ITS do not contain variables like b′
umax32


. Hence, now the size bound variables
can change arbitrarily in the initial transitions and the runtime would be unbounded if it
depends on one of these variables. Therefore, the complexity tool will try to find other
runtime bounds that only depend on the program’s parameters.
If the complexity analysis of this modified ITS fails, then instead we use the ITS as
before, where the size bound variables like bumax32 are considered to be input parameters.
In other words, now the initial transitions also contain b′ = b for all size bound variables
b and this ITS is now given to the complexity tool in the back-end.
For the function g, no upper bound is found if the size bound variables are treated as
being unbounded (i.e., if one deletes b′


umax32
= bumax32 from the conditions of the initial


transitions). On the other hand, if one calls the complexity tool CoFloCo with the ITS
from Fig. 3 where bumax32 is considered to be an input parameter, then we obtain the
bound max(21, 7 · bumax32 − 7 · j + 14). In fact, if 0 < j < bumax32 holds at the beginning
of the program, then the loop is executed bumax32 − j− 1 times. Since the loop of the ITS
consists of 7 instructions and the path of the loop has 14 + 7 = 21 remaining instructions,
in this case we obtain 7 · (bumax32 − j− 1) + 21 = 7 · bumax32 − 7 · j + 14 instructions for
the path of the loop. CoFloCo combines this with the maximum weight of all paths that
do not traverse loops, which results in the bound max(21, 7 · bumax32 − 7 · j + 14).
Note that the replacement of constants by variables like bumax32 yields a more informative
bound than the corresponding term 30064771079− 7 · j: the bound 7 · bumax32 − 7 · j + 14
clearly shows that the runtime depends on the range of the type i32. For this program,
there is indeed no reasonable upper bound that depends on j but not on umax32.


3 Experiments and Conclusion


In [8], we adapted our approach for proving memory safety and termination of C (resp. LLVM)
programs to bitvector semantics. While before, program variables were treated as mathe-
matical integers and overflows were ignored, bitvector operations such as type conversions,
overflow-sensitive operations, and bitwise operations are now modeled correctly. In the
current paper, we showed how our adaption of symbolic execution can also be used for
complexity analysis. We transform programs into ITSs over mathematical integers and thus,
we can use standard complexity tools to infer upper runtime bounds for the resulting ITSs.
While there exists a wealth of recent techniques and tools for complexity analysis of programs
on mathematical integers (e.g., [1, 3, 4, 5, 10, 12]), to our knowledge our approach is the first
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which allows us to use these tools to analyze the runtime of bitvector programs automatically.
We implemented our approach in the tool AProVE [7] and used KoAT [3] and CoFloCo


[5] in the back-end. We always ran KoAT and CoFloCo in parallel and took the minimum
of the bounds obtained by the two tools. To evaluate our implementation, we performed
experiments on 118 C programs (which we mainly obtained from the collections used for
the evaluations of other C termination tools). Out of the 95 programs where AProVE could
show termination, it infers an upper bound for 60 programs, using a time-out of 300 seconds
per example. For 7 of these programs, AProVE finds a small constant bound. Here, the
runtime indeed does not depend on the input variables or on the sizes of the types. For
38 programs, an upper bound is found that depends linearly on the input variable(s) and
for 3 more programs, a quadratic upper bound is obtained. Thus, the runtime of these 41
programs is independent of the sizes of the integer types. For 4 programs, AProVE generates
an upper bound that only depends on size bound variables. For the remaining 8 programs,
the inferred bound depends on both size bound variables and input variables of the function.


For details on our experiments (including the exact runtime bounds inferred by AProVE)
and to access our implementation via a web interface, we refer to [2]. A full version of the
current paper combined with [8] appeared in [9]. The full version also contains a comparison
with the variant of AProVE where integers are treated as mathematical integers.
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\begin{abstract}
In earlier work, we developed approaches for automated termination analysis of several
  different programming languages, based on back-end techniques for termination proofs of
  term rewrite systems and integer transition systems. In the last years, we started
  adapting these approaches in order to analyze the complexity of programs as
  well. However, up to now a severe drawback was that we assumed
 the program variables to range over mathematical integers instead of bitvectors. This
 eases mathematical reasoning but is unsound in general. While we showed
in \cite{SEFM16}
 how to handle fixed-width bitvector integers in
termination analysis, we now present the first technique to
analyze the runtime complexity of programs with bitvector arithmetic. We
implemented our contributions in the tool \aprove and evaluate its power by extensive experiments.
\end{abstract}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}


Our verifier \aprove \cite{AProVE17} is one of the leading tools for
termination analysis of languages like \Java, \textsf{C}, \textsf{Haskell}, \textsf{Prolog}, and term
rewrite systems, as witnessed by its success at the annual \emph{Termination
  Competition} and the
termination category of the \emph{SV-COMP}
competition.\footnote{See
  \url{http://www.termination-portal.org/wiki/Termination_Competition} and
  \url{http://sv-comp.sosy-lab.org}.} However, often one is not only
interested in termination, but in the runtime of a program. Thus,
\emph{automated complexity analysis} has become increasingly important and
there exist several tools which analyze the complexity of programs in different languages
and formalisms.



  In \cite{iFM17}, we  adapted our approach
  for termination of \Java
    to infer complexity bounds.
Based on a symbolic execution of the program, we developed a
transformation of (possibly heap-manipulating) \Java programs to \emph{integer transition
systems} (\emph{ITSs}).
These ITSs are then analyzed by standard complexity tools for integer programs
like \cofloco \cite{CoFloCo} and \koat \cite{KoAT}.



\begin{figure}[t]
  \vspace*{-.5cm}

  \begin{verbatim}
    void f(unsigned int x)  {          void g(unsigned int j) {
        unsigned int j = 0;                while (j > 0)
        while (j <= x)                         j++;
            j++;                       }
    }
\end{verbatim}
\vspace*{-.5cm}
 \caption{\label{LeadingExampleC} \sfC{} functions on bitvectors}
\vspace*{-.4cm}
\end{figure}

However, similar to many other termination techniques, our approach for termination and
complexity analysis of \Java is restricted to mathematical integers.
To see why this is unsound when analyzing languages like \sfC{} or \Java, consider
the \sfC{} functions \code{f} and \code{g} in Fig.\ \ref{LeadingExampleC}, which increment
a variable \code{j} as long as the loop condition holds.
 For \code{f}, one leaves the
loop as soon
as \code{j} exceeds the value of \code{x}.
Thus,
\code{f} does not terminate if \code{x} has the maximum value of its
type.\footnote{In \sfC{}, adding 1 to the maximal unsigned integer  results in 0. In contrast, for signed integers, adding 1
to the maximal signed integer  results in undefined behavior. However, most \sfC{}
implementations return the minimal signed integer as the result.}
But we can falsely prove termination
if we treat \code{x} and
\code{j} as mathematical integers.
For \code{g}, the loop terminates as soon as the value of \code{j} becomes zero.
So when considering mathematical integers,  \vspace*{-.3cm}\pagebreak
we would falsely conclude non-termination for positive initial values of \code{j}, although \code{g} always terminates due
to the wrap-around for unsigned  overflows.


In \cite{SEFM16}, we showed how termination techniques can be extended from mathematical
integers to bitvector integers and adapted our approach for termination analysis of \sfC{}
programs from \cite{LLVMJAR} accordingly. In this way, we obtained the
first technique
for termination of \sfC{} programs
that covers both byte-accurate explicit pointer arithmetic and bit-precise modeling of
integers.

In the current paper, we show that such an extension to bitvectors can also be used to
analyze the runtime complexity. To this end, we extend the termination technique for
bitvector \sfC{} programs from \cite{SEFM16} to analyze the complexity of
programs. In a similar way, our complexity technique for \Java \cite{iFM17} could also be adapted
to treat integers as bitvectors.




To avoid dealing with the intricacies of \sfC{}, we analyze programs in the
intermediate representation of the \LLVM{} compilation framework
\cite{LattnerAdve2004}.
As an example, consider the \LLVM{} code for the function \code{g} in Fig.\ \ref{LLVM code fig}.
To ease
  readability, we wrote variables without ``\code{\%}'' (i.e., we
  wrote ``\code{j}'' instead of ``\code{\%j}'' as in proper \LLVM{}) and
  added line numbers. Here,  \code{j} is of type \code{i32}, where
  $\code{i}n$ is the type of $n$-bit integers. So  $0 \leq \code{j} \leq 2^{32}-1 =
  \cmax{32}$, where $\cmax{n} = 2^n-1$ is the maximum unsigned value of the type
  $\code{i}n$.\footnote{\LLVM{} does not distinguish between signed and
  unsigned integers. Instead, there are signed  and unsigned versions of
  many arithmetical operations. We use a heuristic to guess if a variable is
  used signed or unsigned in the \LLVM{} program and model all
  \LLVM{} instructions correctly independently of our guess.}
  In the basic block \code{entry}, \code{j} is stored at the address \code{ad}. In
  the block \code{cmp}, one performs an integer comparison (\code{icmp}) to check whether
  the value at the address \code{ad} is unsigned-greater than 0 (\code{ugt}). In that
  case, this value is incremented by 1 in the block \code{body} and one branches
  (\code{br}) back to the block \code{cmp}.


Our
approach for termination analysis works in two steps: First, it constructs
a \emph{symbolic execution graph} that represents
an over-approximation
of all possible program runs.
This graph can also be
used to  prove that
the program does not result in undefined behavior (so in particular, it is memory
safe).
In \cite{SEFM16} we showed how to adapt the rules for symbolic execution of those \LLVM
instructions that are affected by the change from mathematical integers to bitvectors.
In a second step, this graph is transformed into an ITS.
If the resulting ITS is terminating, then the original \sfC{} resp.\ \LLVM{} program
terminates as well.
Note that we express relations between bitvectors by
corresponding relations between mathematical integers $\Z$.
In this way, we can use standard SMT solving over $\Z$
for all steps needed to construct the
symbolic execution graph. Moreover, this allows us to obtain ITSs over mathematical
integers
from these
graphs, and to use standard ITS tools to analyze their termination.
In \Cref{Finding Upper Runtime Bounds} we show that our transformation into ITSs can also be adapted in order to
derive upper bounds on the program's runtime, i.e., our approach can be used for
complexity analysis of bitvector programs as well.
In \Cref{Experiments and Conclusion}, we evaluate our corresponding implementation in  \aprove{}.



\begin{figure}[t]
  \centering
  \vspace{-0.4cm}
  \hspace*{.5cm}
  \begin{minipage}[b]{0.45\textwidth}
{\small \begin{verbatim}
define i32 @g(i32 j) {
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
entry: 0: ad = alloca i32
       1: store i32 j, i32* ad
       2: br label cmp
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
cmp:   0: j1 = load i32* ad
       1: j1pos = icmp ugt i32 j1, 0
       2: br i1 j1pos, label body, label done
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
body:  0: j2 = load i32* ad
       1: inc = add i32 j2, 1
       2: store i32 inc, i32* ad
       3: br label cmp
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
done:  0: ret void }
\end{verbatim}
\vspace*{-.4cm}
}
\caption{\label{LLVM code fig}\LLVM{} code for the function \code{g}}
\end{minipage}\hspace*{1.8cm}
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\vspace*{-.2cm}
\caption{\label{Complexity Fig g} Weighted ITS for \code{g}}
\end{minipage}
\vspace*{-1cm}
\end{figure}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Finding Upper Runtime Complexity Bounds}
\label{Finding Upper Runtime Bounds}


\noindent
To infer runtime bounds instead of proving termination,
we keep the construction of the symbolic execution graph unchanged and
only adapt our
technique to
transform the graph into an ITS. The resulting
approach for complexity analysis mainly succeeds on arithmetic
programs.   To
analyze programs whose runtime depends on the memory, one would have to extend
the
abstraction  \vspace*{-.4cm} \pagebreak used in our symbolic execution, since then the abstract program states would also
have to contain
information on
the sizes of the allocated memory areas.
Note that for a terminating arithmetic program with  $m$ instructions and $k$
variables of types\linebreak $\code{i}n_1, \ldots, \code{i}n_k$,
the runtime is bounded by 
$m \cdot \prod_{j=1}^{k}2^{n_j}$, which is the number of possible
program\linebreak states. The reason is that at each program position, every variable $\code{x}_j$ may be assigned any
value of its type (whose range is $2^{n_j}$). Whenever a program state is visited twice, the program
must be non-terminating. So since the state space is finite, every terminating
arithmetic bitvector program has constant complexity. Thus, for terminating arithmetic programs on
bitvectors, asymptotic complexity is meaningless as all programs have a runtime in
$\mathcal{O}(1)$.

Therefore, our goal is to infer concrete (non-asymptotic) bounds which are smaller than
the maximum bound $m \cdot \prod_{j=1}^{k}2^{n_j}$. In particular, we aim to find bounds
that depend on the program's input parameters, because such bounds are usually more interesting
than a huge constant that depends on the sizes of the types $\code{i}n$. We developed the following adaptions of our approach for
termination analysis in order to find runtime bounds for bitvector programs.
While (1)-(3) are used similarly in other approaches for termination or complexity
analysis, we developed (4) and (5) specifically for our setting.


\vspace*{-.2cm}

\begin{itemize}
\item[(1)] For termination, one only has to consider the cycles of the symbolic
  execution graph. But for the runtime of a program, we have to count every execution
  step. Thus, the ITS must be extracted from the whole graph and not only from its
    cycles.
Moreover, this is required to infer correct runtime bounds for subsequent cycles. The
reason is that the first cycle
might increase values which are used afterwards when entering the next cycle.
\item[(2)] The initial abstract state of the symbolic execution graph is also considered to be the initial
  location of the ITS.  So only evaluation sequences of the ITS that start in this
  location
  have to be considered.
  Then the goal is to find a bound on the length of the ITS evaluations that depends only on
  the values of the variables in this location.
\item[(3)]
For
  an efficient analysis, we  simplify the transitions of the ITS by filtering
  away variables\linebreak that do not influence the termination and by
  iteratively compressing several transitions into one, cf.\ \cite{AProVE17}.
This is unproblematic for termination analysis, but the compression of transi-\linebreak tions
    would distort a concrete complexity result if several evaluation steps are
    counted as one. Therefore, we now assign  a weight to each transition which
    over-approximates the number of evaluation steps that are represented by this
    transition. As shown in \cite{iFM17}, such weights can also be used
    to modularize the analysis in order to increase scalability.
\item[(4)]
Since all handling of bitvector arithmetic is done during the symbolic exe\-cu\-tion, we
generate ITSs over mathematical integers. Hence, their complexity can be analyzed by
existing complexity tools for such ITSs.
Since  such tools
have
    not been used for bitvector
    programs yet, some of them are targeted towards the inference of
    small asymptotic bounds  (i.e., for a
    program with constant runtime,
    they would rather infer
    a huge constant bound than a linear bound that depends on  the program's \vspace*{-.7cm}\pagebreak
    input parameters).






\vspace*{-1cm}

 To  facilitate the deduction of a bound depending on the
    program's parameters and to
    obtain more  informative bounds,
    we therefore perform the following modification of the ITS. During the graph
    construction, we now keep
    track of all constants like $\cmax{32} = 2^{32}-1$ that originate from the size bounds
    of a variable's type.
    When
    the ITS is extracted from the graph,
    these constants are transformed to variables like $b_{\cmax{32}}$.

    Thus,  we obtain
    the  weighted ITS
    in Fig.\ \ref{Complexity Fig g} from \code{g}'s symbolic execution graph.
    Here, 14 \LLVM instructions are
    executed from \code{g}'s initial state $A$ to the state $B$
where the block \code{body} is reached for the second time. Thus, the transition from
location $A$ to $B$ has weight 14 and it can be taken if the variables satisfy the
conditions $0 < \code{j} < b_{\cmax{32}}$,
$\code{j1} = \code{j} + 1$, etc.,
where a primed variable denotes the value of the
 variable \emph{after} the transition.
 The loop (i.e., the blocks \code{cmp} and \code{body}) contains 7
    instructions. When evaluating State $B$ symbolically, we consider the possible
    overflows
    and  exit
    the loop if $\code{j1} = \cmax{32}$ holds. In this case, 7 further instructions
    are executed until the function \code{g} ends with a \code{ret}urn.
\item[(5)]
  To ensure that the ITS complexity tool prefers bounds that contain the
    program's parameters over bounds containing size
    bound variables like $b_{\cmax{32}}$, we first pass a modified ITS to the underlying
    complexity tool where the initial transitions
    do not impose any conditions on the size bound variables.
    So while all other transitions have  requirements like $b_{\cmax{32}}' =
    b_{\cmax{32}}$ in their condition,
    the conditions of the initial transitions in this modified ITS
    do not contain variables like
 $b_{\cmax{32}}'$. Hence, now the  size bound variables can change
    arbitrarily in the initial transitions
  and the runtime
    would be unbounded if it depends on one of these variables. Therefore, the complexity
    tool will try to find other runtime
    bounds that only depend on the program's parameters.

    If the complexity analysis of this modified ITS fails, then instead we use the ITS as before,
    where  the size bound variables like
    $b_{\cmax{32}}$ are considered to be input parameters. In other words, now the initial
    transitions also contain $b' = b$ for all size bound variables $b$ and this ITS is now given
 to the
    complexity tool in the back-end.


  For the function \code{g}, no upper bound is found if the size
    bound variables are treated as being unbounded
    (i.e., if one deletes $b_{\cmax{32}}' = b_{\cmax{32}}$ from the
    conditions of the initial transitions).
    On the other hand, if one calls the complexity tool
    \tool{CoFloCo} with the ITS from Fig.\ \ref{Complexity Fig g}
    where $b_{\cmax{32}}$ is considered to be an input
    parameter, then we obtain the bound $\max(21, 7\cdot b_{\cmax{32}} -7\cdot \code{j} +14)$.
    In fact, if $0 < \code{j} < b_{\cmax{32}}$ holds at the beginning of the program, then the loop is executed
    $b_{\cmax{32}}-\code{j} -1$ times. Since the loop of the ITS consists of 7 instructions and the
    path of the loop has $14 + 7 = 21$ remaining instructions, in this case we obtain $7
    \cdot (b_{\cmax{32}}-\code{j} -1) + 21 = 7\cdot b_{\cmax{32}} -7\cdot \code{j}
    +14$ instructions for the path of the loop.
 \tool{CoFloCo} combines this with the maximum weight of all paths
that do not traverse loops, which results in
the bound
$\max(21,7\cdot b_{\cmax{32}} -7\cdot \code{j} +14)$.




Note that the replacement of constants by variables like
$b_{\cmax{32}}$ yields a more informative bound than the corresponding term
$30064771079-7\cdot {\code{j}}$: the bound  $7\cdot b_{\cmax{32}} -7\cdot \code{j}
+14$ clearly shows that the
runtime depends on the range of the type $\code{i32}$.
     For this program, there is indeed no reasonable upper bound
     that depends on $\code{j}$ but not on $\cmax{32}$.
     \end{itemize}

\vspace*{-.5cm}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Experiments and Conclusion}\label{Experiments and Conclusion}

In \cite{SEFM16},
we adapted our approach for proving memory safety and termination of \sfC{}
(resp.\ \LLVM{})\linebreak programs to bitvector semantics.
While before, program variables were treated as mathematical integers and
overflows were ignored, bitvector operations such as type conversions,
overflow-sensitive operations, and bitwise operations are now modeled correctly.
In the current paper,
 we showed how our adaption of
 symbolic execution can also be used for complexity analysis.
We transform programs into ITSs over
  mathematical integers and thus, we can use
standard  complexity tools to infer
 upper runtime bounds
for the resulting ITSs.
While there exists a  wealth of recent techniques
and tools for
complexity analysis of programs on mathematical integers (e.g.,
\cite{COSTA-Complexity,
  KoAT,
  HoffmannPLDI15,
  CoFloCo,
   ramlPOPL17,
  Sinn17}),
 \vspace*{-1cm}\pagebreak
to our knowledge
our approach is the first

\vspace*{-1cm}

\noindent
which allows us
to use these tools
to analyze the
runtime of bitvector programs automatically.


We implemented our approach in the tool
\aprove{}~\cite{AProVE17}
 and  used \tool{KoAT} \cite{KoAT} and \tool{CoFloCo} \cite{CoFloCo}
in the back-end. We always ran \tool{KoAT}  and
\tool{CoFloCo} in parallel and took the minimum of the bounds obtained by the two
tools.
To evaluate our implementation,
we performed experiments on  118  \sfC{}
programs (which we mainly obtained from the collections used for the evaluations
of other \sfC{} termination tools).
Out of the 95 programs where \aprove{} could show termination, it infers an upper bound
for 60 programs, using a time-out of 300 seconds per example.
For 7 of these
programs, \aprove{} finds a small constant bound. Here, the runtime indeed does not depend on the input variables
or on the
sizes of the types. For 38 programs, an upper bound is found that depends linearly on the input
variable(s) and for 3 more programs, a quadratic upper bound is obtained.
Thus, the runtime of these 41 programs is independent of the sizes of the integer types.
For 4 programs, \aprove{} generates an upper bound that only depends
on size bound variables.
For the remaining 8 programs, the inferred bound depends on both
size bound variables and input variables of the function.


For details on our experiments (including the
exact runtime bounds inferred by \aprove)
and
  to access our implementation
   via a web interface,
  we refer to
  \cite{Webseite}.
 A full version of the current paper combined with
  \cite{SEFM16} appeared in \cite{JLAMP18}.
  The full version 
  also contains a comparison
with the variant of \aprove where integers are treated as mathematical integers.

\vspace*{-.1cm}

%%
%% Bibliography
%%

%% Either use bibtex (recommended), but commented out in this sample

\bibliography{main}



\end{document}



