
cc-by.pdf

lipics-logo-bw.pdf

lipics.cls
%%
%% This is file `lipics.cls',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% lipics.dtx (with options: `class')
%%
%% ---
%% Author: le-tex publishing services
%%
%% This file is part of the lipics package for preparing
%% LIPICS articles.
%%
%% Copyright (C) 2010 Schloss Dagstuhl
%% ---
\NeedsTeXFormat{LaTeX2e}[2005/12/01]
\ProvidesClass{lipics}
 [2010/09/27 v1.1 LIPIcs articles]
\emergencystretch1em
\advance\hoffset-1in
\advance\voffset-1in
\advance\hoffset2.95mm
\newif\if@nobotseplist \@nobotseplistfalse
\def\@endparenv{%
 \addpenalty\@endparpenalty\if@nobotseplist\else\addvspace\@topsepadd\fi\@endpetrue}
\def\@doendpe{%
 \@endpetrue
 \def\par{\@restorepar
 \everypar{}%
 \par
 \if@nobotseplist
 \addvspace\topsep
 \addvspace\partopsep
 \global\@nobotseplistfalse
 \fi
 \@endpefalse}%
 \everypar{{\setbox\z@\lastbox}%
 \everypar{}%
 \if@nobotseplist\global\@nobotseplistfalse\fi
 \@endpefalse}}
\def\enumerate{%
 \ifnum \@enumdepth >\thr@@\@toodeep\else
 \advance\@enumdepth\@ne
 \edef\@enumctr{enum\romannumeral\the\@enumdepth}%
 \expandafter
 \list
 \csname label\@enumctr\endcsname
 {\advance\partopsep\topsep
 \topsep\z@\@plus\p@
 \ifnum\@listdepth=\@ne
 \labelsep0.72em
 \else
 \ifnum\@listdepth=\tw@
 \labelsep0.3em
 \else
 \labelsep0.5em
 \fi
 \fi
 \usecounter\@enumctr\def\makelabel##1{\hss\llap{##1}}}%
 \fi}
\def\endenumerate{\ifnum\@listdepth=\@ne\global\@nobotseplisttrue\fi\endlist}
\def\itemize{%
 \ifnum \@itemdepth >\thr@@\@toodeep\else
 \advance\@itemdepth\@ne
 \edef\@itemitem{labelitem\romannumeral\the\@itemdepth}%
 \expandafter
 \list
 \csname\@itemitem\endcsname
 {\advance\partopsep\topsep
 \topsep\z@\@plus\p@
 \ifnum\@listdepth=\@ne
 \labelsep0.83em
 \else
 \ifnum\@listdepth=\tw@
 \labelsep0.75em
 \else
 \labelsep0.5em
 \fi
 \fi
 \def\makelabel##1{\hss\llap{##1}}}%
 \fi}
\def\enditemize{\ifnum\@listdepth=\@ne\global\@nobotseplisttrue\fi\endlist}
\def\@sect#1#2#3#4#5#6[#7]#8{%
 \ifnum #2>\c@secnumdepth
 \let\@svsec\@empty
 \else
 \refstepcounter{#1}%
 \protected@edef\@svsec{\@seccntformat{#1}\relax}%
 \fi
 \@tempskipa #5\relax
 \ifdim \@tempskipa>\z@
 \begingroup
 #6{%
 \@hangfrom{\hskip #3\relax
 \ifnum #2=1
 \colorbox[rgb]{0.99,0.78,0.07}{\kern0.15em\@svsec\kern0.15em}\quad
 \else
 \@svsec\quad
 \fi}%
 \interlinepenalty \@M #8\@@par}%
 \endgroup
 \csname #1mark\endcsname{#7}%
 \addcontentsline{toc}{#1}{%
 \ifnum #2>\c@secnumdepth \else
 \protect\numberline{\csname the#1\endcsname}%
 \fi
 #7}%
 \else
 \def\@svsechd{%
 #6{\hskip #3\relax
 \@svsec #8}%
 \csname #1mark\endcsname{#7}%
 \addcontentsline{toc}{#1}{%
 \ifnum #2>\c@secnumdepth \else
 \protect\numberline{\csname the#1\endcsname}%
 \fi
 #7}}%
 \fi
 \@xsect{#5}}
\def\@seccntformat#1{\csname the#1\endcsname}
\def\@biblabel#1{\textcolor{darkgray}{\sffamily\bfseries#1}}
\def\copyrightline{%
 \ifx\@serieslogo\@empty
 \else
 \setbox\@tempboxa\hbox{\includegraphics[height=42\p@]{\@serieslogo}}%
 \rlap{\hspace\textwidth\hspace{-\wd\@tempboxa}\hspace{\z@}%
 \vtop to\z@{\vskip-0mm\unhbox\@tempboxa\vss}}%
 \fi
 \scriptsize
 \vtop{\hsize\textwidth
 \nobreakspace\\
 \@Copyright
 \ifx\@Event\@empty\else\@Event.\\\fi
 \ifx\@Editors\@empty\else
 \@Eds: \@Editors
 ; pp. \thepage--\pageref{LastPage}%
 \\
 \fi
 \setbox\@tempboxa\hbox{\includegraphics[height=14\p@,trim=0 15 0 0]{lipics-logo-bw}}%
 \hspace*{\wd\@tempboxa}\enskip
 \href{http://www.dagstuhl.de/lipics/}%
 {Leibniz International Proceedings in Informatics}\\
 \smash{\unhbox\@tempboxa}\enskip
 \href{http://www.dagstuhl.de}%
 {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik, Dagstuhl Publishing, Germany}}}
\def\ps@plain{\let\@mkboth\@gobbletwo
 \let\@oddhead\@empty
 \let\@evenhead\@empty
 \let\@evenfoot\copyrightline
 \let\@oddfoot\copyrightline}
\def\lipics@opterrshort{Option "\CurrentOption" not supported}
\def\lipics@opterrlong{The option "\CurrentOption" from article.cls is not supported by lipics.cls.}
\DeclareOption{a5paper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{b5paper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{legalpaper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{executivepaper}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{landscape}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{10pt}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{11pt}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{12pt}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{oneside}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{twoside}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{titlepage}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{notitlepage}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{onecolumn}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{twocolumn}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{fleqn}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{openbib}{\@latexerr{\lipics@opterrshort}{\lipics@opterrlong}}
\DeclareOption{a4paper}{\PassOptionsToClass{\CurrentOption}{article}
 \advance\hoffset-2.95mm
 \advance\voffset8.8mm}
\DeclareOption{numberwithinsect}{\let\numberwithinsect\relax}
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions
\LoadClass[twoside,notitlepage,fleqn]{article}
\renewcommand\normalsize{%
 \@setfontsize\normalsize\@xpt{13}%
 \abovedisplayskip 10\p@ \@plus2\p@ \@minus5\p@
 \abovedisplayshortskip \z@ \@plus3\p@
 \belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@
 \belowdisplayskip \abovedisplayskip
 \let\@listi\@listI}
\normalsize
\renewcommand\small{%
 \@setfontsize\small\@ixpt{11.5}%
 \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@
 \abovedisplayshortskip \z@ \@plus2\p@
 \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@
 \def\@listi{\leftmargin\leftmargini
 \topsep 4\p@ \@plus2\p@ \@minus2\p@
 \parsep 2\p@ \@plus\p@ \@minus\p@
 \itemsep \parsep}%
 \belowdisplayskip \abovedisplayskip
}
\renewcommand\footnotesize{%
 \@setfontsize\footnotesize{8.5}{9.5}%
 \abovedisplayskip 6\p@ \@plus2\p@ \@minus4\p@
 \abovedisplayshortskip \z@ \@plus\p@
 \belowdisplayshortskip 3\p@ \@plus\p@ \@minus2\p@
 \def\@listi{\leftmargin\leftmargini
 \topsep 3\p@ \@plus\p@ \@minus\p@
 \parsep 2\p@ \@plus\p@ \@minus\p@
 \itemsep \parsep}%
 \belowdisplayskip \abovedisplayskip
}
\renewcommand\large{\@setfontsize\large{10.5}{13}}
\renewcommand\Large{\@setfontsize\Large{12}{14}}
\setlength\parindent{1.5em}
\setlength\headheight{3mm}
\setlength\headsep {10mm}
\setlength\footskip{3mm}
\setlength\textwidth{140mm}
\setlength\textheight{222mm}
\setlength\oddsidemargin{32mm}
\setlength\evensidemargin{38mm}
\setlength\marginparwidth{25mm}
\setlength\topmargin{13mm}
\setlength{\skip\footins}{2\baselineskip \@plus 4\p@ \@minus 2\p@}
\def\@listi{\leftmargin\leftmargini
 \parsep\z@ \@plus\p@
 \topsep 8\p@ \@plus2\p@ \@minus4\p@
 \itemsep \parsep}
\let\@listI\@listi
\@listi
\def\@listii {\leftmargin\leftmarginii
 \labelwidth\leftmarginii
 \advance\labelwidth-\labelsep
 \topsep 4\p@ \@plus2\p@ \@minus\p@
 \parsep\z@ \@plus\p@
 \itemsep \parsep}
\def\@listiii{\leftmargin\leftmarginiii
 \labelwidth\leftmarginiii
 \advance\labelwidth-\labelsep
 \topsep 2\p@ \@plus\p@\@minus\p@
 \parsep \z@
 \partopsep \p@ \@plus\z@ \@minus\p@
 \itemsep \z@ \@plus\p@}
\def\ps@headings{%
 \def\@evenhead{\large\sffamily\bfseries
 \llap{\hbox to0.5\oddsidemargin{\thepage\hss}}\leftmark\hfil}%
 \def\@oddhead{\large\sffamily\bfseries\rightmark\hfil
 \rlap{\hbox to0.5\oddsidemargin{\hss\thepage}}}%
 \def\@oddfoot{\hfil
 \rlap{%
 \vtop{%
 \vskip10mm
 \colorbox[rgb]{0.99,0.78,0.07}
 {\@tempdima\evensidemargin
 \advance\@tempdima1in
 \advance\@tempdima\hoffset
 \hb@xt@\@tempdima{%
 \textcolor{darkgray}{\normalsize\sffamily
 \bfseries\quad
 \expandafter\textsolittle
 \expandafter{\@EventShortName}}%
 \strut\hss}}}}}
 \let\@evenfoot\@empty
 \let\@mkboth\markboth
 \let\sectionmark\@gobble
 \let\subsectionmark\@gobble}
\pagestyle{headings}
\renewcommand\maketitle{\par
 \begingroup
 \renewcommand\thefootnote{\@fnsymbol\c@footnote}%
 \if@twocolumn
 \ifnum \col@number=\@ne
 \@maketitle
 \else
 \twocolumn[\@maketitle]%
 \fi
 \else
 \newpage
 \global\@topnum\z@ % Prevents figures from going at top of page.
 \@maketitle
 \fi
 \thispagestyle{plain}\@thanks
 \endgroup
 \setcounter{footnote}{0}%
 \global\let\thanks\relax
 \global\let\maketitle\relax
 \global\let\@maketitle\relax
 \global\let\@thanks\@empty
 \global\let\@author\@empty
 \global\let\@date\@empty
 \global\let\@title\@empty
 \global\let\title\relax
 \global\let\author\relax
 \global\let\date\relax
 \global\let\and\relax
}
\newwrite\tocfile
\def\@maketitle{%
 \newpage
 \null\vskip-\baselineskip
 \vskip-\headsep
 \@titlerunning
 \@authorrunning
 \let \footnote \thanks
 \parindent\z@ \raggedright
 {\LARGE\sffamily\bfseries\mathversion{bold}\@title \par}%
 \vskip 1.5em%
 \ifnum\c@authors=0 %
 \@latexerr{No \noexpand\author given}%
 {Provide at least one author. See the LIPIcs class documentation.}%
 \else
 \@author
 \fi
 \bgroup
 \let\footnote\@gobble
 \immediate\openout\tocfile=\jobname.vtc
 \protected@write\tocfile{}{%
 \string\contitem
 \string\title{\@title}%
 \string\author{\AB@authfortoc}%
 \string\page{\thepage}}%
 \closeout\tocfile
 \egroup
 \par}
\setcounter{secnumdepth}{4}
\renewcommand\section{\@startsection {section}{1}{\z@}%
 {-3.5ex \@plus -1ex \@minus -.2ex}%
 {2.3ex \@plus.2ex}%
 {\sffamily\Large\bfseries\raggedright}}
\renewcommand\subsection{\@startsection{subsection}{2}{\z@}%
 {-3.25ex\@plus -1ex \@minus -.2ex}%
 {1.5ex \@plus .2ex}%
 {\sffamily\Large\bfseries\raggedright}}
\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
 {-3.25ex\@plus -1ex \@minus -.2ex}%
 {1.5ex \@plus .2ex}%
 {\sffamily\Large\bfseries\raggedright}}
\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%
 {-3.25ex \@plus-1ex \@minus-.2ex}%
 {1.5ex \@plus .2ex}%
 {\sffamily\large\bfseries\raggedright}}
\renewcommand\subparagraph{\@startsection{subparagraph}{5}{\z@}%
 {3.25ex \@plus1ex \@minus .2ex}%
 {-1em}%
 {\sffamily\normalsize\bfseries}}
\setlength\leftmargini \parindent
\setlength\leftmarginii {1.2em}
\setlength\leftmarginiii{1.2em}
\setlength\leftmarginiv {1.2em}
\setlength\leftmarginv {1.2em}
\setlength\leftmarginvi {1.2em}
\renewcommand\labelenumi{%
 \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumi.}}
\renewcommand\labelenumii{%
 \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumii.}}
\renewcommand\labelenumiii{%
 \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumiii.}}
\renewcommand\labelenumiv{%
 \textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}\theenumiv.}}
\renewcommand\labelitemi{%
 \textcolor[rgb]{0.6,0.6,0.61}{\ifnum\@listdepth=\@ne
 \rule{0.67em}{0.33em}%
 \else
 \rule{0.45em}{0.225em}%
 \fi}}
\renewcommand\labelitemii{%
 \textcolor[rgb]{0.6,0.6,0.61}{\rule{0.45em}{0.225em}}}
\renewcommand\labelitemiii{%
 \textcolor[rgb]{0.6,0.6,0.61}{\sffamily\bfseries\textasteriskcentered}}
\renewcommand\labelitemiv{%
 \textcolor[rgb]{0.6,0.6,0.61}{\sffamily\bfseries\textperiodcentered}}
\renewenvironment{description}
 {\list{}{\advance\partopsep\topsep\topsep\z@\@plus\p@
 \labelwidth\z@ \itemindent-\leftmargin
 \let\makelabel\descriptionlabel}}
 {\ifnum\@listdepth=\@ne\global\@nobotseplisttrue\fi\endlist}
\renewcommand*\descriptionlabel[1]{%
 \hspace\labelsep\textcolor{darkgray}{\sffamily\bfseries\mathversion{bold}#1}}
\renewenvironment{abstract}{%
 \vskip\bigskipamount
 \noindent
 \rlap{\color[rgb]{0.51,0.50,0.52}\vrule\@width\textwidth\@height1\p@}%
 \hspace*{7mm}\fboxsep1.5mm\colorbox[rgb]{1,1,1}{\raisebox{-0.4ex}{%
 \large\selectfont\sffamily\bfseries\abstractname}}%
 \vskip3\p@
 \fontsize{9.5}{12.5}\selectfont
 \noindent\ignorespaces}
 {\ifx\@subjclass\@empty\else
 \vskip\baselineskip\noindent
 \subjclassHeading\@subjclass
 \fi
 \ifx\@keywords\@empty\else
 \vskip\baselineskip\noindent
 \keywordsHeading\@keywords
 \fi
 \ifx\@DOI\@empty\else
 \vskip\baselineskip\noindent
 \doiHeading\doi{\@DOI}%
 \fi}
\renewenvironment{thebibliography}[1]
 {\if@noskipsec \leavevmode \fi
 \par
 \@tempskipa-3.5ex \@plus -1ex \@minus -.2ex\relax
 \@afterindenttrue
 \@tempskipa -\@tempskipa \@afterindentfalse
 \if@nobreak
 \everypar{}%
 \else
 \addpenalty\@secpenalty\addvspace\@tempskipa
 \fi
 \noindent
 \rlap{\color[rgb]{0.51,0.50,0.52}\vrule\@width\textwidth\@height1\p@}%
 \hspace*{7mm}\fboxsep1.5mm\colorbox[rgb]{1,1,1}{\raisebox{-0.4ex}{%
 \normalsize\sffamily\bfseries\refname}}%
 \@xsect{1ex \@plus.2ex}%
 \list{\@biblabel{\@arabic\c@enumiv}}%
 {\leftmargin8.5mm
 \labelsep\leftmargin
 \settowidth\labelwidth{\@biblabel{#1}}%
 \advance\labelsep-\labelwidth
 \usecounter{enumiv}%
 \let\p@enumiv\@empty
 \renewcommand\theenumiv{\@arabic\c@enumiv}}%
 \fontsize{9.5}{12.5}\selectfont
 \sloppy
 \clubpenalty4000
 \@clubpenalty \clubpenalty
 \widowpenalty4000%
 \sfcode`\.\@m}
 {\def\@noitemerr
 {\@latex@warning{Empty `thebibliography' environment}}%
 \endlist}
\renewcommand\footnoterule{%
 \kern-8\p@
 {\color[rgb]{0.60,0.60,0.61}\hrule\@width40mm\@height1\p@}%
 \kern6.6\p@}
\renewcommand\@makefntext[1]{%
 \parindent\z@\hangindent1em
 \leavevmode
 \hb@xt@1em{\@makefnmark\hss}#1}
\usepackage[utf8]{inputenc}
\IfFileExists{lmodern.sty}{\RequirePackage{lmodern}}{}
\RequirePackage[T1]{fontenc}
\RequirePackage{textcomp}
\RequirePackage[mathscr]{eucal}
\RequirePackage{amssymb}
\RequirePackage{soul}
\sodef\textsolittle{}{.12em}{.5em\@plus.08em\@minus.06em}%
 {.4em\@plus.275em\@minus.183em}
\RequirePackage{color}
\definecolor{darkgray}{rgb}{0.31,0.31,0.33}
\RequirePackage{babel}
\RequirePackage[tbtags,fleqn]{amsmath}
\RequirePackage{amsthm}
\thm@headfont{%
 \textcolor{darkgray}{\blacktriangleright}\nobreakspace\sffamily\bfseries}
\def\th@remark{%
 \thm@headfont{%
 \textcolor{darkgray}{\blacktriangleright}\nobreakspace\sffamily}%
 \normalfont % body font
 \thm@preskip\topsep \divide\thm@preskip\tw@
 \thm@postskip\thm@preskip
}
\def\@endtheorem{\endtrivlist}%\@endpefalse
\renewcommand\qedsymbol{\textcolor{darkgray}{\ensuremath{\blacktriangleleft}}}
\renewenvironment{proof}[1][\proofname]{\par
 \pushQED{\qed}%
 \normalfont \topsep6\p@\@plus6\p@\relax
 \trivlist
 \item[\hskip\labelsep
 \color{darkgray}\sffamily\bfseries
 #1\@addpunct{.}]\ignorespaces
}{%
 \popQED\endtrivlist%\@endpefalse
}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\theoremstyle{remark}
\newtheorem*{remark}{Remark}
\ifx\numberwithinsect\relax
 \@addtoreset{theorem}{section}
 \edef\thetheorem{\expandafter\noexpand\thesection\@thmcountersep\@thmcounter{theorem}}
\fi
\RequirePackage{graphicx}
\RequirePackage{array}
\let\@classzold\@classz
\def\@classz{%
 \expandafter\ifx\d@llarbegin\begingroup
 \toks \count@ =
 \expandafter{\expandafter\small\the\toks\count@}%
 \fi
 \@classzold}
\RequirePackage{multirow}
\RequirePackage{tabularx}
\RequirePackage[online]{threeparttable}
\def\TPTtagStyle#1{#1)}
\def\tablenotes{\small\TPT@defaults
 \@ifnextchar[\TPT@setuptnotes\TPTdoTablenotes} %]
\RequirePackage{listings}
\lstset{basicstyle=\small\ttfamily,%
 backgroundcolor=\color[rgb]{0.85,0.85,0.86},%
 frame=single,framerule=0pt,xleftmargin=\fboxsep,xrightmargin=\fboxsep}
\RequirePackage{lastpage}
\IfFileExists{doi.sty}
 {\RequirePackage{doi}%
 \renewcommand*{\doitext}{}}
 {\RequirePackage{hyperref}%
 \def\doi##1{##1}}
\hypersetup{pdfborder={0 0 0}}
\RequirePackage[labelsep=space,singlelinecheck=false,%
 font={up,small},labelfont={sf,bf},%
 listof=false]{caption}%"listof" instead of "list" for backward compatibility
\@ifpackagelater{hyperref}{2009/12/09}
 {\captionsetup{compatibility=false}}%cf. http://groups.google.de/group/comp.text.tex/browse_thread/thread/db9310eb540fbbd8/42e30f3b7b3aa17a?lnk=raot
 {}
\DeclareCaptionLabelFormat{boxed}{%
 \kern0.05em{\color[rgb]{0.99,0.78,0.07}\rule{0.73em}{0.73em}}%
 \hspace*{0.67em}\bothIfFirst{#1}{~}#2}
\captionsetup{labelformat=boxed}
\captionsetup[table]{position=top}
\RequirePackage[figuresright]{rotating}
\RequirePackage{subfig}
\def\titlerunning#1{\gdef\@titlerunning{{\let\footnote\@gobble\markboth{#1}{#1}}}}
\def\authorrunning#1{%
 \gdef\@authorrunning{\expandafter\def\expandafter\@tempa\expandafter{#1}%
 \ifx\@tempa\@empty\else\markright{#1}\fi}}
\titlerunning{\@title}
\authorrunning{\AB@authrunning}
\newcommand*\volumeinfo[6]{%
 {\gdef\@Editors{#1}%
 \gdef\@Eds{Editor}\ifnum #2>1 \gdef\@Eds{Editors}\fi
 \gdef\@Event{#3}%
 \setcounter{page}{#6}}}
\volumeinfo{}{1}{}{}{}{1}
\RequirePackage{authblk}
\renewcommand*\Authand{{ and }}
\renewcommand*\Authfont{\Large\bfseries\mathversion{bold}}
\renewcommand*\AB@authnote[1]{#1}
\renewcommand*\AB@affilnote[1]{\protect\item[#1]}
\renewcommand*\Affilfont{\fontsize{9.5}{12}\selectfont}
\setlength\affilsep{\baselineskip}
\newcommand\AB@authrunning{}
\newcommand\AB@authfortoc{}
\renewcommand\author[2][]%
 {\ifnewaffil\addtocounter{affil}{1}%
 \edef\AB@thenote{\arabic{affil}}\fi
 \if\relax#1\relax\def\AB@note{\AB@thenote}\else\def\AB@note{#1}%
 \setcounter{Maxaffil}{0}\fi
 \ifnum\value{authors}>1\relax
 \@namedef{@sep\number\c@authors}{\Authsep}\fi
 \addtocounter{authors}{1}%
 \begingroup
 \let\protect\@unexpandable@protect \let\and\AB@pand
 \def\thanks{\protect\thanks}\def\footnote{\protect\footnote}%
 \@temptokena=\expandafter{\AB@authors}%
 {\def\\{\protect\\[\@affilsep]\protect\Affilfont
 \protect\AB@resetsep}%
 \xdef\AB@author{\AB@blk@and#2}%
 \ifnewaffil\gdef\AB@las{}\gdef\AB@lasx{\protect\Authand}\gdef\AB@as{}%
 \xdef\AB@authors{\the\@temptokena\AB@blk@and}%
 \else
 \xdef\AB@authors{\the\@temptokena\AB@as\AB@au@str}%
 \global\let\AB@las\AB@lasx\gdef\AB@lasx{\protect\Authands}%
 \gdef\AB@as{\Authsep}%
 \fi
 \gdef\AB@au@str{#2}}%
 \@temptokena=\expandafter{\AB@authlist}%
 \let\\=\authorcr
 \xdef\AB@authlist{\the\@temptokena
 \protect\@nameuse{@sep\number\c@authors}%
 \protect\Authfont#2\AB@authnote{\AB@note}}%
 %new
 \@temptokena=\expandafter{\AB@authrunning}%
 \let\\=\authorcr
 \xdef\AB@authrunning{\the\@temptokena
 \protect\@nameuse{@sep\number\c@authors}#2}%
 %
 %new
 \@temptokena=\expandafter{\AB@authfortoc}%
 \let\\=\authorcr
 \xdef\AB@authfortoc{\the\@temptokena
 \expandafter\noexpand\csname @sep\number\c@authors\endcsname#2}%
 %
 \endgroup
 \ifnum\value{authors}>2\relax
 \@namedef{@sep\number\c@authors}{\Authands}\fi
 \newaffilfalse
}
\renewcommand\affil[2][]%
 {\newaffiltrue\let\AB@blk@and\AB@pand
 \if\relax#1\relax\def\AB@note{\AB@thenote}\else\def\AB@note{#1}%
 \setcounter{Maxaffil}{0}\fi
 \begingroup
 \let\protect\@unexpandable@protect
 \def\thanks{\protect\thanks}\def\footnote{\protect\footnote}%
 \@temptokena=\expandafter{\AB@authors}%
 {\def\\{\protect\\\protect\Affilfont}\xdef\AB@temp{#2}}%
 \xdef\AB@authors{\the\@temptokena\AB@las\AB@au@str
 \protect\\[\affilsep]\protect\Affilfont\AB@temp}%
 \gdef\AB@las{}\gdef\AB@au@str{}%
 {\xdef\AB@temp{#2}}%
 \@temptokena=\expandafter{\AB@affillist}%
 \xdef\AB@affillist{\the\@temptokena \AB@affilsep
 \AB@affilnote{\AB@note}\protect\Affilfont\AB@temp}%
 \endgroup
 \let\AB@affilsep\AB@affilsepx}
\renewcommand\@author{\ifx\AB@affillist\AB@empty\AB@authrunning\else
 \ifnum\value{affil}>\value{Maxaffil}\def\rlap##1{##1}%
 \AB@authlist\\[\affilsep]
 \labelwidth1.5em\labelsep\z@\leftmargini\labelwidth
 \edef\@enumctr{enumi}%
 \list\theenumi{\usecounter\@enumctr\def\makelabel##1{\rlap{##1}\hss}}%
 \AB@affillist
 \endlist
 \else \AB@authors\fi\fi}
\newcommand*\Copyright[1]{%
 \def\@Copyright{%
 \setbox\@tempboxa\hbox{\includegraphics[height=14\p@,clip]{cc-by}}%
 \hspace*{\wd\@tempboxa}\enskip\ifx#1\@empty \else \textcopyright\ #1;\\\fi
 \href{http://creativecommons.org/licenses/by/3.0/}%
 {\smash{\unhbox\@tempboxa}}\enskip
 licensed under Creative Commons License CC-BY\\
 }}
\Copyright{\@empty}
\def\keywords#1{\def\@keywords{#1}}
\let\@keywords\@empty
\def\keywordsHeading{%
 \textcolor{darkgray}{\fontsize{9.5}{12.5}\sffamily\bfseries
 Keywords and phrases\enskip}}
\def\subjclass#1{\gdef\@subjclass{#1}}
\let\@subjclass\@empty
\def\subjclassHeading{%
 \textcolor{darkgray}{\fontsize{9.5}{12.5}\sffamily\bfseries
 1998 ACM Subject Classification\enskip}}
\def\doiHeading{%
 \textcolor{darkgray}{\fontsize{9.5}{12.5}\sffamily\bfseries
 Digital Object Identifier\enskip}}
\def\serieslogo#1{\gdef\@serieslogo{#1}}
\serieslogo{}
\def\EventShortName#1{\gdef\@EventShortName{#1}}
\EventShortName{}
\def\DOI#1{\gdef\@DOI{#1}}
\DOI{}
\endinput
%%
%% End of file `lipics.cls'.

main.bib
@PREAMBLE{ {\providecommand{\noopsort}[1]{}} }

@inproceedings{SEFM16,
	Author = {J.\ Hensel and J.\ Giesl and F.\ Frohn and T.\ Str\"oder},
	Booktitle = {Proc.\ SEFM~'16},
	Pages = {234-252},
	Series = {LNCS 9763},
	Title = {Proving Termination of Programs with Bitvector Arithmetic by Symbolic Execution},
	Year = {2016}}

@article{AProVE17,
	Author = {J.\ Giesl and C.\ Aschermann and M.\ Brockschmidt and F.\ Emmes and F.\ Frohn and C.\ Fuhs and J.\ Hensel and C.\ Otto and M.\ Pl\"ucker and P.\ Schneider-Kamp and T.\ Str\"oder and S.\ Swiderski and R.\ Thiemann},
	Issue = {1},
	Journal = {Journal of Automated Reasoning},
	Pages = {3-31},
	Title = {Analyzing Program Termination and Complexity Automatically with {{\sf AProVE}}},
	Volume = {58},
	Year = {2017}}

@inproceedings{iFM17,
	Author = {F.\ Frohn and J.\ Giesl},
	Booktitle = {Proc.\ iFM~'17},
	Pages = {85-101},
	Series = {LNCS 10510},
	Title = {Complexity Analysis for {{\sf Java}} with {{\sf AProVE}}},
	Year = {2017}}

@inproceedings{CoFloCo,
 author = {A.\ Flores{-}Montoya and
 R.\ H{\"{a}}hnle},
 title = {Resource Analysis of Complex Programs with Cost Equations},
 booktitle = {Proc.\ {APLAS}~'14},
 pages = {275-295},
 year = {2014},
 OPTeditor = {Jacques Garrigue},
 series = {LNCS 8858},
 OPTvolume = {8858},
 OPTpublisher = {Springer},
}

@article{KoAT,
	Author = {M.\ Brockschmidt and F.\ Emmes and S.\ Falke and C.\ Fuhs and J.\ Giesl},
	Journal = {ACM Transactions on Programming Languages and Systems},
	Number = {4},
	Title = {Analyzing Runtime and Size Complexity of Integer Programs},
	Volume = {38},
	Pages = {13:1-13:50},
	Year = {2016}}

@article{LLVMJAR,
	Author = {T.\ Str{\"o}der and J.\ Giesl and M.\ Brockschmidt and F.\ Frohn and C.\ Fuhs and J.\ Hensel and P.\ Schneider-Kamp and C.\ Aschermann},
	Issue = {1},
	Journal = {Journal of Automated Reasoning},
	Pages = {33-65},
	Title = {Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic},
	Volume = {58},
	Year = {2017}}

@inproceedings{LattnerAdve2004,
	Author = {C.~Lattner and V.~S.~Adve},
	Booktitle = {Proc.\ CGO~'04},
	Pages = {75-88},
	Title = {\textsf{LLVM}: A Compilation Framework for Lifelong Program Analysis \& Transformation},
	Year = {2004}}

@article{COSTA-Complexity,
	Author = {E.\ Albert and P.\ Arenas and S.\ Genaim and G.\ Puebla and D.\ Zanardini},
	Journal = {Theoretical Computer Science},
	Number = {1},
	Pages = {142-159},
	Title = {Cost Analysis of Object-Oriented Bytecode Programs},
	Volume = {413},
	Year = {2012}}

@inproceedings{alias-et-al:2010,
	Author = {C.\ Alias and A.\ Darte and P.\ Feautrier and L.\ Gonnord},
	Booktitle = {Proc.\ SAS~'10},
	Pages = {117-133},
	Series = {LNCS 6337},
	Title = {Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs},
	Year = {2010}}

@inproceedings{ramlPOPL17,
	Author = {J.\ Hoffmann and A.\ Das and S.-C.\ Weng},
	Booktitle = {Proc.\ POPL~'17},
	Pages = {359-373},
	Title = {Towards Automatic Resource Bound Analysis for \textsf{OCaml}},
	Year = {2017}}

@inproceedings{HoffmannPLDI15,
	Author = {Q.\ Carbonneaux and J.\ Hoffmann and Z.\ Shao},
	Booktitle = {Proc.\ PLDI~'15},
	Pages = {467-478},
	Title = {Compositional Certified Resource Bounds},
	Year = {2015}}

@article{Sinn17,
	Author = {M.\ Sinn and F.\ Zuleger and H.\ Veith},
	Journal = {Journal of Automated Reasoning},
	Number = {1},
	Pages = {3-45},
	Title = {Complexity and Resource Bound Analysis of Imperative Programs Using Difference Constraints},
	Volume = {59},
	Year = {2017}}

@misc{Webseite,
	Date-Modified = {2017-02-23 14:59:13 +0000},
	Key = {Aprove},
	Note = {\resizebox{0.933\textwidth}{!}{\url{http://aprove.informatik.rwth-aachen.de/eval/BitvectorTerminationComplexity}}}}

@article{JLAMP18,
	Author = {J.\ Hensel\noopsort{1} and J.\ Giesl and F.\ Frohn and T.\ Ströder},
	Journal = {Journal of Logical and Algebraic Methods in Programming},
	Pages = {105-130},
	Title = {Termination and Complexity Analysis for Programs with Bitvector Arithmetic by Symbolic Execution},
	Volume = {97},
	Year = {2018}}

main.pdf

Complexity Analysis for Bitvector Programs∗

Jera Hensel, Florian Frohn, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany
{hensel,florian.frohn,giesl}@informatik.rwth-aachen.de

Abstract
In earlier work, we developed approaches for automated termination analysis of several different
programming languages, based on back-end techniques for termination proofs of term rewrite
systems and integer transition systems. In the last years, we started adapting these approaches
in order to analyze the complexity of programs as well. However, up to now a severe drawback was
that we assumed the program variables to range over mathematical integers instead of bitvectors.
This eases mathematical reasoning but is unsound in general. While we showed in [8] how to
handle fixed-width bitvector integers in termination analysis, we now present the first technique
to analyze the runtime complexity of programs with bitvector arithmetic. We implemented our
contributions in the tool AProVE and evaluate its power by extensive experiments.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.3.1 Specifying and
Verifying and Reasoning about Programs, I.2.3 Deduction and Theorem Proving

Keywords and phrases Complexity Analysis, Bitvectors, C, Integer Transition Systems

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Our verifier AProVE [7] is one of the leading tools for termination analysis of languages like
Java, C, Haskell, Prolog, and term rewrite systems, as witnessed by its success at the annual
Termination Competition and the termination category of the SV-COMP competition.1
However, often one is not only interested in termination, but in the runtime of a program.
Thus, automated complexity analysis has become increasingly important and there exist
several tools which analyze the complexity of programs in different languages and formalisms.

In [6], we adapted our approach for termination of Java to infer complexity bounds.
Based on a symbolic execution of the program, we developed a transformation of (possibly
heap-manipulating) Java programs to integer transition systems (ITSs). These ITSs are then
analyzed by standard complexity tools for integer programs like CoFloCo [5] and KoAT [3].

However, similar to many other termination techniques, our approach for termination
and complexity analysis of Java is restricted to mathematical integers. To see why this is
unsound when analyzing languages like C or Java, consider the C functions f and g in Fig. 1,
which increment a variable j as long as the loop condition holds. For f, one leaves the loop as
soon as j exceeds the value of x. Thus, f does not terminate if x has the maximum value of
its type.2 But we can falsely prove termination if we treat x and j as mathematical integers.
For g, the loop terminates as soon as the value of j becomes zero. So when considering
mathematical integers, we would falsely conclude non-termination for positive initial values

∗ Supported by the DFG grant GI 274/6-1.
1 See http://www.termination-portal.org/wiki/Termination_Competition and http://sv-comp.

sosy-lab.org.
2 In C, adding 1 to the maximal unsigned integer results in 0. In contrast, for signed integers, adding 1 to

the maximal signed integer results in undefined behavior. However, most C implementations return the
minimal signed integer as the result.

© Jera Hensel, Florian Frohn, and Jürgen Giesl;
licensed under Creative Commons License CC-BY

16th International Workshop on Termination (WST ’18).
Editor: Salvador Lucas; pp. 1–5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p

http://www.termination-portal.org/wiki/Termination_Competition

http://sv-comp.sosy-lab.org

http://sv-comp.sosy-lab.org

http://creativecommons.org/licenses/by/3.0/

http://www.dagstuhl.de/lipics/

http://www.dagstuhl.de

2 Complexity Analysis for Bitvector Programs

void f(unsigned int x) { void g(unsigned int j) {
unsigned int j = 0; while (j > 0)
while (j <= x) j++;

j++; }
}

Figure 1 C functions on bitvectors

of j, although g always terminates due to the wrap-around for unsigned overflows.
In [8], we showed how termination techniques can be extended from mathematical integers

to bitvector integers and adapted our approach for termination analysis of C programs from
[13] accordingly. In this way, we obtained the first technique for termination of C programs
that covers both byte-accurate explicit pointer arithmetic and bit-precise modeling of integers.

In the current paper, we show that such an extension to bitvectors can also be used
to analyze the runtime complexity. To this end, we extend the termination technique for
bitvector C programs from [8] to analyze the complexity of programs. In a similar way, our
complexity technique for Java [6] could also be adapted to treat integers as bitvectors.

To avoid dealing with the intricacies of C, we analyze programs in the intermediate
representation of the LLVM compilation framework [11]. As an example, consider the LLVM
code for the function g in Fig. 2. To ease readability, we wrote variables without “%” (i.e., we
wrote “j” instead of “%j” as in proper LLVM) and added line numbers. Here, j is of type i32,
where in is the type of n-bit integers. So 0 ≤ j ≤ 232 − 1 = umax32, where umaxn = 2n − 1
is the maximum unsigned value of the type in.3 In the basic block entry, j is stored at the
address ad. In the block cmp, one performs an integer comparison (icmp) to check whether
the value at the address ad is unsigned-greater than 0 (ugt). In that case, this value is
incremented by 1 in the block body and one branches (br) back to the block cmp.

Our approach for termination analysis works in two steps: First, it constructs a symbolic
execution graph that represents an over-approximation of all possible program runs. This
graph can also be used to prove that the program does not result in undefined behavior (so in
particular, it is memory safe). In [8] we showed how to adapt the rules for symbolic execution
of those LLVM instructions that are affected by the change from mathematical integers to
bitvectors. In a second step, this graph is transformed into an ITS. If the resulting ITS is
terminating, then the original C resp. LLVM program terminates as well. Note that we express
relations between bitvectors by corresponding relations between mathematical integers Z.
In this way, we can use standard SMT solving over Z for all steps needed to construct the
symbolic execution graph. Moreover, this allows us to obtain ITSs over mathematical integers
from these graphs, and to use standard ITS tools to analyze their termination. In Sect. 2 we
show that our transformation into ITSs can also be adapted in order to derive upper bounds
on the program’s runtime, i.e., our approach can be used for complexity analysis of bitvector
programs as well. In Sect. 3, we evaluate our corresponding implementation in AProVE.

2 Finding Upper Runtime Complexity Bounds

To infer runtime bounds instead of proving termination, we keep the construction of the
symbolic execution graph unchanged and only adapt our technique to transform the graph
into an ITS. The resulting approach for complexity analysis mainly succeeds on arithmetic
programs. To analyze programs whose runtime depends on the memory, one would have
to extend the abstraction used in our symbolic execution, since then the abstract program

3 LLVM does not distinguish between signed and unsigned integers. Instead, there are signed and unsigned
versions of many arithmetical operations. We use a heuristic to guess if a variable is used signed or
unsigned in the LLVM program and model all LLVM instructions correctly independently of our guess.

J. Hensel, F. Frohn, and J. Giesl 3

define i32 @g(i32 j) {

entry: 0: ad = alloca i32
1: store i32 j, i32* ad
2: br label cmp

cmp: 0: j1 = load i32* ad
1: j1pos = icmp ugt i32 j1, 0
2: br i1 j1pos, label body, label done

body: 0: j2 = load i32* ad
1: inc = add i32 j2, 1
2: store i32 inc, i32* ad
3: br label cmp

done: 0: ret void }

Figure 2 LLVM code for the function g

A

B

j=0
b′

umax32 = bumax32
j′ =j
. . .

7

j=bumax32
b′

umax32 = bumax32. . .

14

0<j<bumax32
j1=j + 1

b′
umax32 = bumax32

j′ =j1
j1′ =j1

. . .

14

j1<bumax32
j2=j1 + 1

b′
umax32 = bumax32

j1′ =j2
. . .

7
j1=bumax32

b′
umax32 = bumax32

j1′ =0
. . .

7

Figure 3 Weighted ITS for g

states would also have to contain information on the sizes of the allocated memory areas.
Note that for a terminating arithmetic program with m instructions and k variables of types
in1, . . . , ink, the runtime is bounded by m·

∏k
j=1 2nj , which is the number of possible program

states. The reason is that at each program position, every variable xj may be assigned any
value of its type (whose range is 2nj). Whenever a program state is visited twice, the program
must be non-terminating. So since the state space is finite, every terminating arithmetic
bitvector program has constant complexity. Thus, for terminating arithmetic programs on
bitvectors, asymptotic complexity is meaningless as all programs have a runtime in O(1).

Therefore, our goal is to infer concrete (non-asymptotic) bounds which are smaller than
the maximum bound m ·

∏k
j=1 2nj . In particular, we aim to find bounds that depend on the

program’s input parameters, because such bounds are usually more interesting than a huge
constant that depends on the sizes of the types in. We developed the following adaptions of
our approach for termination analysis in order to find runtime bounds for bitvector programs.
While (1)-(3) are used similarly in other approaches for termination or complexity analysis,
we developed (4) and (5) specifically for our setting.

(1) For termination, one only has to consider the cycles of the symbolic execution graph.
But for the runtime of a program, we have to count every execution step. Thus, the ITS
must be extracted from the whole graph and not only from its cycles. Moreover, this is
required to infer correct runtime bounds for subsequent cycles. The reason is that the
first cycle might increase values which are used afterwards when entering the next cycle.

(2) The initial abstract state of the symbolic execution graph is also considered to be the
initial location of the ITS. So only evaluation sequences of the ITS that start in this
location have to be considered. Then the goal is to find a bound on the length of the ITS
evaluations that depends only on the values of the variables in this location.

(3) For an efficient analysis, we simplify the transitions of the ITS by filtering away variables
that do not influence the termination and by iteratively compressing several transitions into
one, cf. [7]. This is unproblematic for termination analysis, but the compression of transi-
tions would distort a concrete complexity result if several evaluation steps are counted as
one. Therefore, we now assign a weight to each transition which over-approximates the
number of evaluation steps that are represented by this transition. As shown in [6], such
weights can also be used to modularize the analysis in order to increase scalability.

(4) Since all handling of bitvector arithmetic is done during the symbolic execution, we
generate ITSs over mathematical integers. Hence, their complexity can be analyzed by
existing complexity tools for such ITSs. Since such tools have not been used for bitvector
programs yet, some of them are targeted towards the inference of small asymptotic bounds
(i.e., for a program with constant runtime, they would rather infer a huge constant bound
than a linear bound that depends on the program’s input parameters).

WST ’18

4 Complexity Analysis for Bitvector Programs

To facilitate the deduction of a bound depending on the program’s parameters and
to obtain more informative bounds, we therefore perform the following modification
of the ITS. During the graph construction, we now keep track of all constants like
umax32 = 232 − 1 that originate from the size bounds of a variable’s type. When the ITS
is extracted from the graph, these constants are transformed to variables like bumax32 .
Thus, we obtain the weighted ITS in Fig. 3 from g’s symbolic execution graph. Here, 14
LLVM instructions are executed from g’s initial state A to the state B where the block
body is reached for the second time. Thus, the transition from location A to B has weight
14 and it can be taken if the variables satisfy the conditions 0 < j < bumax32 , j1 = j + 1,
etc., where a primed variable denotes the value of the variable after the transition. The
loop (i.e., the blocks cmp and body) contains 7 instructions. When evaluating State B

symbolically, we consider the possible overflows and exit the loop if j1 = umax32 holds.
In this case, 7 further instructions are executed until the function g ends with a return.

(5) To ensure that the ITS complexity tool prefers bounds that contain the program’s
parameters over bounds containing size bound variables like bumax32 , we first pass a
modified ITS to the underlying complexity tool where the initial transitions do not impose
any conditions on the size bound variables. So while all other transitions have requirements
like b′

umax32
= bumax32 in their condition, the conditions of the initial transitions in this

modified ITS do not contain variables like b′
umax32

. Hence, now the size bound variables
can change arbitrarily in the initial transitions and the runtime would be unbounded if it
depends on one of these variables. Therefore, the complexity tool will try to find other
runtime bounds that only depend on the program’s parameters.
If the complexity analysis of this modified ITS fails, then instead we use the ITS as
before, where the size bound variables like bumax32 are considered to be input parameters.
In other words, now the initial transitions also contain b′ = b for all size bound variables
b and this ITS is now given to the complexity tool in the back-end.
For the function g, no upper bound is found if the size bound variables are treated as
being unbounded (i.e., if one deletes b′

umax32
= bumax32 from the conditions of the initial

transitions). On the other hand, if one calls the complexity tool CoFloCo with the ITS
from Fig. 3 where bumax32 is considered to be an input parameter, then we obtain the
bound max(21, 7 · bumax32 − 7 · j + 14). In fact, if 0 < j < bumax32 holds at the beginning
of the program, then the loop is executed bumax32 − j− 1 times. Since the loop of the ITS
consists of 7 instructions and the path of the loop has 14 + 7 = 21 remaining instructions,
in this case we obtain 7 · (bumax32 − j− 1) + 21 = 7 · bumax32 − 7 · j + 14 instructions for
the path of the loop. CoFloCo combines this with the maximum weight of all paths that
do not traverse loops, which results in the bound max(21, 7 · bumax32 − 7 · j + 14).
Note that the replacement of constants by variables like bumax32 yields a more informative
bound than the corresponding term 30064771079− 7 · j: the bound 7 · bumax32 − 7 · j + 14
clearly shows that the runtime depends on the range of the type i32. For this program,
there is indeed no reasonable upper bound that depends on j but not on umax32.

3 Experiments and Conclusion

In [8], we adapted our approach for proving memory safety and termination of C (resp. LLVM)
programs to bitvector semantics. While before, program variables were treated as mathe-
matical integers and overflows were ignored, bitvector operations such as type conversions,
overflow-sensitive operations, and bitwise operations are now modeled correctly. In the
current paper, we showed how our adaption of symbolic execution can also be used for
complexity analysis. We transform programs into ITSs over mathematical integers and thus,
we can use standard complexity tools to infer upper runtime bounds for the resulting ITSs.
While there exists a wealth of recent techniques and tools for complexity analysis of programs
on mathematical integers (e.g., [1, 3, 4, 5, 10, 12]), to our knowledge our approach is the first

J. Hensel, F. Frohn, and J. Giesl 5

which allows us to use these tools to analyze the runtime of bitvector programs automatically.
We implemented our approach in the tool AProVE [7] and used KoAT [3] and CoFloCo

[5] in the back-end. We always ran KoAT and CoFloCo in parallel and took the minimum
of the bounds obtained by the two tools. To evaluate our implementation, we performed
experiments on 118 C programs (which we mainly obtained from the collections used for
the evaluations of other C termination tools). Out of the 95 programs where AProVE could
show termination, it infers an upper bound for 60 programs, using a time-out of 300 seconds
per example. For 7 of these programs, AProVE finds a small constant bound. Here, the
runtime indeed does not depend on the input variables or on the sizes of the types. For
38 programs, an upper bound is found that depends linearly on the input variable(s) and
for 3 more programs, a quadratic upper bound is obtained. Thus, the runtime of these 41
programs is independent of the sizes of the integer types. For 4 programs, AProVE generates
an upper bound that only depends on size bound variables. For the remaining 8 programs,
the inferred bound depends on both size bound variables and input variables of the function.

For details on our experiments (including the exact runtime bounds inferred by AProVE)
and to access our implementation via a web interface, we refer to [2]. A full version of the
current paper combined with [8] appeared in [9]. The full version also contains a comparison
with the variant of AProVE where integers are treated as mathematical integers.

References
1 E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of object-

oriented bytecode programs. Theoretical Computer Science, 413(1):142–159, 2012.
2 http://aprove.informatik.rwth-aachen.de/eval/BitvectorTerminationComplexity.
3 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and

size complexity of integer programs. ACM Transactions on Programming Languages and
Systems, 38(4):13:1–13:50, 2016.

4 Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional certified resource bounds. In
Proc. PLDI ’15, pages 467–478, 2015.

5 A. Flores-Montoya and R. Hähnle. Resource analysis of complex programs with cost equa-
tions. In Proc. APLAS ’14, LNCS 8858, pages 275–295, 2014.

6 F. Frohn and J. Giesl. Complexity analysis for Java with AProVE. In Proc. iFM ’17, LNCS
10510, pages 85–101, 2017.

7 J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,
C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.
Analyzing program termination and complexity automatically with AProVE. Journal of
Automated Reasoning, 58:3–31, 2017.

8 J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Proving termination of programs with
bitvector arithmetic by symbolic execution. In Proc. SEFM ’16, LNCS 9763, pages 234–
252, 2016.

9 J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Termination and complexity analysis for
programs with bitvector arithmetic by symbolic execution. Journal of Logical and Algebraic
Methods in Programming, 97:105–130, 2018.

10 J. Hoffmann, A. Das, and S.-C. Weng. Towards automatic resource bound analysis for
OCaml. In Proc. POPL ’17, pages 359–373, 2017.

11 C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In Proc. CGO ’04, pages 75–88, 2004.

12 M. Sinn, F. Zuleger, and H. Veith. Complexity and resource bound analysis of imperative
programs using difference constraints. Journal of Automated Reasoning, 59(1):3–45, 2017.

13 T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P. Schneider-Kamp,
and C. Aschermann. Automatically proving termination and memory safety for programs
with pointer arithmetic. Journal of Automated Reasoning, 58:33–65, 2017.

WST ’18

http://aprove.informatik.rwth-aachen.de/eval/BitvectorTerminationComplexity

		Introduction

		Finding Upper Runtime Complexity Bounds

		Experiments and Conclusion

main.tex
\documentclass[a4paper,USenglish]{lipics}
%This is a template for producing LIPIcs articles.
%See lipics-manual.pdf for further information.
%for A4 paper format use option "a4paper", for US-letter use option "letterpaper"
%for british hyphenation rules use option "UKenglish", for american hyphenation rules use option "USenglish"
% for section-numbered lemmas etc., use "numberwithinsect"

\usepackage{microtype}%if unwanted, comment out or use option "draft"
\usepackage{xspace}
\usepackage{cleveref}
\usepackage{tikz}
\usetikzlibrary{arrows,decorations.pathmorphing,decorations.pathreplacing,backgrounds,fit,positioning,automata,shapes,calc}

\bibliographystyle{plain}% the recommended bibstyle

\newcommand{\aprove}{{\sf AProVE}\xspace}
\newcommand{\Java}{\textsf{Java}\xspace}
\newcommand{\cofloco}{{\sf CoFloCo}\xspace}
\newcommand{\koat}{{\sf KoAT}\xspace}
\newcommand{\sfC}{{\sf C}\xspace}
\newcommand{\LLVM}{{\sf LLVM}\xspace}
\newcommand{\code}[1]{\textnormal{\texttt{#1}}}
\newcommand{\PP}{\mathcal{P}}
\newcommand{\Ids}{\mathcal{V}_{\PP}}
\newcommand{\Vsym}{\mathcal{V}_{\mathit{sym}}}
\newcommand{\tool}[1]{\textnormal{\textsf{#1}}}
\newcommand{\cmax}[1]{\cmaxshort_{#1}}
\newcommand{\cmaxshort}{\mathsf{umax}}
\newcommand{\umax}[1]{\mathsf{umax}_{#1}}
\newcommand{\defaultsymvar}{v}
\newcommand{\incprogvar}{\code{inc}}
\newcommand{\CON}{\mathit{CON}}
\newcommand{\Z}{\mathbb{Z}}

\crefname{section}{Sect.}{Sect.}

% Author macros::begin %%
\title{Complexity Analysis for Bitvector Programs\footnote{Supported by
 the DFG grant GI 274/6-1.}}
%\titlerunning{A Sample LIPIcs Article} %optional, in case that the title is too long; the running title should fit into the top page column

\author{Jera Hensel}
\author{Florian Frohn}
\author{J\"urgen Giesl}
\affil{LuFG Informatik 2, RWTH Aachen University, Germany\\
 \texttt{\{hensel,florian.frohn,giesl\}@informatik.rwth-aachen.de}}
\authorrunning{J.\ Hensel, F.\ Frohn, and J.\ Giesl} %mandatory. First: Use abbreviated first/middle names. Second (only in severe cases): Use first author plus 'et. al.'

\Copyright{Jera Hensel, Florian Frohn, and J\"urgen Giesl}%mandatory, please use full first names. LIPIcs license is "CC-BY"; http://creativecommons.org/licenses/by/3.0/

\subjclass{F.1.3 Complexity Measures
 and Classes, F.3.1 Specifying and Verifying and Reasoning about Programs, I.2.3
 Deduction and Theorem Proving}

\keywords{Complexity Analysis, Bitvectors, \sfC{}, Integer Transition Systems}

% Author macros::end %%%

%Editor-only macros:: begin (do not touch as author)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\serieslogo{}%please provide filename (without suffix)
\volumeinfo%(easychair interface)
 {Salvador Lucas}% editors
 {1}% number of editors: 1, 2,
 { 16th International Workshop on Termination (WST~'18)}% event
 {1}% volume
 {1}% issue
 {1}% starting page number
\EventShortName{WST~'18}
\DOI{10.4230/LIPIcs.xxx.yyy.p}% to be completed by the volume editor
% Editor-only macros::end %%%

\begin{document}

\maketitle

%%%
\begin{abstract}
In earlier work, we developed approaches for automated termination analysis of several
 different programming languages, based on back-end techniques for termination proofs of
 term rewrite systems and integer transition systems. In the last years, we started
 adapting these approaches in order to analyze the complexity of programs as
 well. However, up to now a severe drawback was that we assumed
 the program variables to range over mathematical integers instead of bitvectors. This
 eases mathematical reasoning but is unsound in general. While we showed
in \cite{SEFM16}
 how to handle fixed-width bitvector integers in
termination analysis, we now present the first technique to
analyze the runtime complexity of programs with bitvector arithmetic. We
implemented our contributions in the tool \aprove and evaluate its power by extensive experiments.
\end{abstract}

%%
\section{Introduction}

Our verifier \aprove \cite{AProVE17} is one of the leading tools for
termination analysis of languages like \Java, \textsf{C}, \textsf{Haskell}, \textsf{Prolog}, and term
rewrite systems, as witnessed by its success at the annual \emph{Termination
 Competition} and the
termination category of the \emph{SV-COMP}
competition.\footnote{See
 \url{http://www.termination-portal.org/wiki/Termination_Competition} and
 \url{http://sv-comp.sosy-lab.org}.} However, often one is not only
interested in termination, but in the runtime of a program. Thus,
\emph{automated complexity analysis} has become increasingly important and
there exist several tools which analyze the complexity of programs in different languages
and formalisms.

 In \cite{iFM17}, we adapted our approach
 for termination of \Java
 to infer complexity bounds.
Based on a symbolic execution of the program, we developed a
transformation of (possibly heap-manipulating) \Java programs to \emph{integer transition
systems} (\emph{ITSs}).
These ITSs are then analyzed by standard complexity tools for integer programs
like \cofloco \cite{CoFloCo} and \koat \cite{KoAT}.

\begin{figure}[t]
 \vspace*{-.5cm}

 \begin{verbatim}
 void f(unsigned int x) { void g(unsigned int j) {
 unsigned int j = 0; while (j > 0)
 while (j <= x) j++;
 j++; }
 }
\end{verbatim}
\vspace*{-.5cm}
 \caption{\label{LeadingExampleC} \sfC{} functions on bitvectors}
\vspace*{-.4cm}
\end{figure}

However, similar to many other termination techniques, our approach for termination and
complexity analysis of \Java is restricted to mathematical integers.
To see why this is unsound when analyzing languages like \sfC{} or \Java, consider
the \sfC{} functions \code{f} and \code{g} in Fig.\ \ref{LeadingExampleC}, which increment
a variable \code{j} as long as the loop condition holds.
 For \code{f}, one leaves the
loop as soon
as \code{j} exceeds the value of \code{x}.
Thus,
\code{f} does not terminate if \code{x} has the maximum value of its
type.\footnote{In \sfC{}, adding 1 to the maximal unsigned integer results in 0. In contrast, for signed integers, adding 1
to the maximal signed integer results in undefined behavior. However, most \sfC{}
implementations return the minimal signed integer as the result.}
But we can falsely prove termination
if we treat \code{x} and
\code{j} as mathematical integers.
For \code{g}, the loop terminates as soon as the value of \code{j} becomes zero.
So when considering mathematical integers, \vspace*{-.3cm}\pagebreak
we would falsely conclude non-termination for positive initial values of \code{j}, although \code{g} always terminates due
to the wrap-around for unsigned overflows.

In \cite{SEFM16}, we showed how termination techniques can be extended from mathematical
integers to bitvector integers and adapted our approach for termination analysis of \sfC{}
programs from \cite{LLVMJAR} accordingly. In this way, we obtained the
first technique
for termination of \sfC{} programs
that covers both byte-accurate explicit pointer arithmetic and bit-precise modeling of
integers.

In the current paper, we show that such an extension to bitvectors can also be used to
analyze the runtime complexity. To this end, we extend the termination technique for
bitvector \sfC{} programs from \cite{SEFM16} to analyze the complexity of
programs. In a similar way, our complexity technique for \Java \cite{iFM17} could also be adapted
to treat integers as bitvectors.

To avoid dealing with the intricacies of \sfC{}, we analyze programs in the
intermediate representation of the \LLVM{} compilation framework
\cite{LattnerAdve2004}.
As an example, consider the \LLVM{} code for the function \code{g} in Fig.\ \ref{LLVM code fig}.
To ease
 readability, we wrote variables without ``\code{\%}'' (i.e., we
 wrote ``\code{j}'' instead of ``\code{\%j}'' as in proper \LLVM{}) and
 added line numbers. Here, \code{j} is of type \code{i32}, where
 $\code{i}n$ is the type of n-bit integers. So $0 \leq \code{j} \leq 2^{32}-1 =
 \cmax{32}$, where $\cmax{n} = 2^n-1$ is the maximum unsigned value of the type
 $\code{i}n$.\footnote{\LLVM{} does not distinguish between signed and
 unsigned integers. Instead, there are signed and unsigned versions of
 many arithmetical operations. We use a heuristic to guess if a variable is
 used signed or unsigned in the \LLVM{} program and model all
 \LLVM{} instructions correctly independently of our guess.}
 In the basic block \code{entry}, \code{j} is stored at the address \code{ad}. In
 the block \code{cmp}, one performs an integer comparison (\code{icmp}) to check whether
 the value at the address \code{ad} is unsigned-greater than 0 (\code{ugt}). In that
 case, this value is incremented by 1 in the block \code{body} and one branches
 (\code{br}) back to the block \code{cmp}.

Our
approach for termination analysis works in two steps: First, it constructs
a \emph{symbolic execution graph} that represents
an over-approximation
of all possible program runs.
This graph can also be
used to prove that
the program does not result in undefined behavior (so in particular, it is memory
safe).
In \cite{SEFM16} we showed how to adapt the rules for symbolic execution of those \LLVM
instructions that are affected by the change from mathematical integers to bitvectors.
In a second step, this graph is transformed into an ITS.
If the resulting ITS is terminating, then the original \sfC{} resp.\ \LLVM{} program
terminates as well.
Note that we express relations between bitvectors by
corresponding relations between mathematical integers \Z.
In this way, we can use standard SMT solving over \Z
for all steps needed to construct the
symbolic execution graph. Moreover, this allows us to obtain ITSs over mathematical
integers
from these
graphs, and to use standard ITS tools to analyze their termination.
In \Cref{Finding Upper Runtime Bounds} we show that our transformation into ITSs can also be adapted in order to
derive upper bounds on the program's runtime, i.e., our approach can be used for
complexity analysis of bitvector programs as well.
In \Cref{Experiments and Conclusion}, we evaluate our corresponding implementation in \aprove{}.

\begin{figure}[t]
 \centering
 \vspace{-0.4cm}
 \hspace*{.5cm}
 \begin{minipage}[b]{0.45\textwidth}
{\small \begin{verbatim}
define i32 @g(i32 j) {
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
entry: 0: ad = alloca i32
 1: store i32 j, i32* ad
 2: br label cmp
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
cmp: 0: j1 = load i32* ad
 1: j1pos = icmp ugt i32 j1, 0
 2: br i1 j1pos, label body, label done
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
body: 0: j2 = load i32* ad
 1: inc = add i32 j2, 1
 2: store i32 inc, i32* ad
 3: br label cmp
\end{verbatim}}

\vspace*{-.6cm}

{\small \begin{verbatim}
done: 0: ret void }
\end{verbatim}
\vspace*{-.4cm}
}
\caption{\label{LLVM code fig}\LLVM{} code for the function \code{g}}
\end{minipage}\hspace*{1.8cm}
 \begin{minipage}[b]{0.45\textwidth}
 \begin{tikzpicture}
 \tikzstyle{every state}=[draw=none,text=black,fill=white,draw=black,minimum size=10pt,font=\scriptsize]
 \node[state] (A) at (0,0) {A};
 \node[state] (Q) at ($(A) + (0,-2)$) {B};
 \node[state,minimum size=20pt] (Ret1) at ($(A) + (2.2,0)$) {};
 \node[state,minimum size=20pt] (Ret2) at ($(A) + (2.2,-1)$) {};
 \node[state,minimum size=20pt] (Ret3) at ($(Q) + (2.2,0)$) {};

 \path[font=\small,->]
 (A) edge[] node[above,yshift=0.15cm]
 {$\def\arraystretch{0.5}\begin{array}{c}
 \mbox{\scriptsize ${\code{j}} \!=\!0$}\\
 \mbox{\scriptsize $b_{\cmax{32}}' = b_{\cmax{32}}$}\\
 \mbox{
 \scriptsize ${\code{j}}' \!=\!{\code{j}}$}\\
 \mbox{\scriptsize \dots}
 \end{array}$} node[state,solid,inner sep=-1pt] {7}
 (Ret1)
 (A) edge[bend right=20] node[below,xshift=0.15cm,yshift=-0.05cm]
 {$\def\arraystretch{0.5}\begin{array}{c}
 \mbox{\scriptsize ${\code{j}} \!=\!b_{\cmax{32}}$}\\
 \mbox{\scriptsize $b_{\cmax{32}}' = b_{\cmax{32}}$}\vspace*{-.1cm}\\
 \mbox{\scriptsize \dots}
 \end{array}$} node[state,solid,inner sep=-1pt] {14}
 (Ret2)
 (A) edge[] node[left,xshift=0.15cm]
 {$\def\arraystretch{0.5}\begin{array}{c}
 \mbox{\scriptsize $0 \!<\! {\code{j}} \!<\!b_{\cmax{32}}$}\\
 \mbox{\scriptsize ${\code{j1}} \!=\!{\code{j}}+1$}\\
 \mbox{\scriptsize $b_{\cmax{32}}' = b_{\cmax{32}}$}\vspace*{.1cm}\\
 \mbox{\scriptsize ${\code{j}}' \!=\!{\code{j1}}$}\\
 \mbox{\scriptsize ${\code{j1}}' \!=\!{\code{j1}}$}\\
 \mbox{\scriptsize \dots}
 \end{array}$\hspace*{.2cm}} node[state,solid,inner sep=-1pt] {14}
 (Q)
 (Q) edge[loop left] node[below,xshift=-0.5cm,yshift=-0.15cm]
 {$\def\arraystretch{0.5}\begin{array}{c}
 \mbox{\scriptsize ${\code{j1}} \!<\!b_{\cmax{32}}$}\\
 \mbox{\scriptsize ${\code{j2}} \!=\!{\code{j1}}+1$}\\
 \mbox{\scriptsize $b_{\cmax{32}}' = b_{\cmax{32}}$}\vspace*{.1cm}\\
 \mbox{\scriptsize ${\code{j1}}' \!=\!{\code{j2}}$}\\
 \mbox{\scriptsize \dots}
 \end{array}$\hspace*{.2cm}} node[state,solid,xshift=0.15cm,inner sep=-1pt] {7}
 (Q)
 (Q) edge[] node[below, yshift=-0.15cm]
 {$\def\arraystretch{0.5}\begin{array}{c}
 \mbox{\scriptsize ${\code{j1}} \!=\!b_{\cmax{32}}$}\\
 \mbox{\scriptsize $b_{\cmax{32}}' = b_{\cmax{32}}$}\vspace*{.1cm}\\
 \mbox{\scriptsize ${\code{j1}}' \!=\!0$}\\
 \mbox{\scriptsize \dots}
 \end{array}$} node[state,inner sep=-1pt] {7}
 (Ret3)
 ;
\end{tikzpicture}
\vspace*{-.2cm}
\caption{\label{Complexity Fig g} Weighted ITS for \code{g}}
\end{minipage}
\vspace*{-1cm}
\end{figure}

%%
\section{Finding Upper Runtime Complexity Bounds}
\label{Finding Upper Runtime Bounds}

\noindent
To infer runtime bounds instead of proving termination,
we keep the construction of the symbolic execution graph unchanged and
only adapt our
technique to
transform the graph into an ITS. The resulting
approach for complexity analysis mainly succeeds on arithmetic
programs. To
analyze programs whose runtime depends on the memory, one would have to extend
the
abstraction \vspace*{-.4cm} \pagebreak used in our symbolic execution, since then the abstract program states would also
have to contain
information on
the sizes of the allocated memory areas.
Note that for a terminating arithmetic program with m instructions and k
variables of types\linebreak $\code{i}n_1, \ldots, \code{i}n_k$,
the runtime is bounded by
$m \cdot \prod_{j=1}^{k}2^{n_j}$, which is the number of possible
program\linebreak states. The reason is that at each program position, every variable \code{x}_j may be assigned any
value of its type (whose range is 2^{n_j}). Whenever a program state is visited twice, the program
must be non-terminating. So since the state space is finite, every terminating
arithmetic bitvector program has constant complexity. Thus, for terminating arithmetic programs on
bitvectors, asymptotic complexity is meaningless as all programs have a runtime in
$\mathcal{O}(1)$.

Therefore, our goal is to infer concrete (non-asymptotic) bounds which are smaller than
the maximum bound $m \cdot \prod_{j=1}^{k}2^{n_j}$. In particular, we aim to find bounds
that depend on the program's input parameters, because such bounds are usually more interesting
than a huge constant that depends on the sizes of the types $\code{i}n$. We developed the following adaptions of our approach for
termination analysis in order to find runtime bounds for bitvector programs.
While (1)-(3) are used similarly in other approaches for termination or complexity
analysis, we developed (4) and (5) specifically for our setting.

\vspace*{-.2cm}

\begin{itemize}
\item[(1)] For termination, one only has to consider the cycles of the symbolic
 execution graph. But for the runtime of a program, we have to count every execution
 step. Thus, the ITS must be extracted from the whole graph and not only from its
 cycles.
Moreover, this is required to infer correct runtime bounds for subsequent cycles. The
reason is that the first cycle
might increase values which are used afterwards when entering the next cycle.
\item[(2)] The initial abstract state of the symbolic execution graph is also considered to be the initial
 location of the ITS. So only evaluation sequences of the ITS that start in this
 location
 have to be considered.
 Then the goal is to find a bound on the length of the ITS evaluations that depends only on
 the values of the variables in this location.
\item[(3)]
For
 an efficient analysis, we simplify the transitions of the ITS by filtering
 away variables\linebreak that do not influence the termination and by
 iteratively compressing several transitions into one, cf.\ \cite{AProVE17}.
This is unproblematic for termination analysis, but the compression of transi-\linebreak tions
 would distort a concrete complexity result if several evaluation steps are
 counted as one. Therefore, we now assign a weight to each transition which
 over-approximates the number of evaluation steps that are represented by this
 transition. As shown in \cite{iFM17}, such weights can also be used
 to modularize the analysis in order to increase scalability.
\item[(4)]
Since all handling of bitvector arithmetic is done during the symbolic exe\-cu\-tion, we
generate ITSs over mathematical integers. Hence, their complexity can be analyzed by
existing complexity tools for such ITSs.
Since such tools
have
 not been used for bitvector
 programs yet, some of them are targeted towards the inference of
 small asymptotic bounds (i.e., for a
 program with constant runtime,
 they would rather infer
 a huge constant bound than a linear bound that depends on the program's \vspace*{-.7cm}\pagebreak
 input parameters).

\vspace*{-1cm}

 To facilitate the deduction of a bound depending on the
 program's parameters and to
 obtain more informative bounds,
 we therefore perform the following modification of the ITS. During the graph
 construction, we now keep
 track of all constants like $\cmax{32} = 2^{32}-1$ that originate from the size bounds
 of a variable's type.
 When
 the ITS is extracted from the graph,
 these constants are transformed to variables like $b_{\cmax{32}}$.

 Thus, we obtain
 the weighted ITS
 in Fig.\ \ref{Complexity Fig g} from \code{g}'s symbolic execution graph.
 Here, 14 \LLVM instructions are
 executed from \code{g}'s initial state A to the state B
where the block \code{body} is reached for the second time. Thus, the transition from
location A to B has weight 14 and it can be taken if the variables satisfy the
conditions $0 < \code{j} < b_{\cmax{32}}$,
$\code{j1} = \code{j} + 1$, etc.,
where a primed variable denotes the value of the
 variable \emph{after} the transition.
 The loop (i.e., the blocks \code{cmp} and \code{body}) contains 7
 instructions. When evaluating State B symbolically, we consider the possible
 overflows
 and exit
 the loop if $\code{j1} = \cmax{32}$ holds. In this case, 7 further instructions
 are executed until the function \code{g} ends with a \code{ret}urn.
\item[(5)]
 To ensure that the ITS complexity tool prefers bounds that contain the
 program's parameters over bounds containing size
 bound variables like $b_{\cmax{32}}$, we first pass a modified ITS to the underlying
 complexity tool where the initial transitions
 do not impose any conditions on the size bound variables.
 So while all other transitions have requirements like $b_{\cmax{32}}' =
 b_{\cmax{32}}$ in their condition,
 the conditions of the initial transitions in this modified ITS
 do not contain variables like
 $b_{\cmax{32}}'$. Hence, now the size bound variables can change
 arbitrarily in the initial transitions
 and the runtime
 would be unbounded if it depends on one of these variables. Therefore, the complexity
 tool will try to find other runtime
 bounds that only depend on the program's parameters.

 If the complexity analysis of this modified ITS fails, then instead we use the ITS as before,
 where the size bound variables like
 $b_{\cmax{32}}$ are considered to be input parameters. In other words, now the initial
 transitions also contain $b' = b$ for all size bound variables b and this ITS is now given
 to the
 complexity tool in the back-end.

 For the function \code{g}, no upper bound is found if the size
 bound variables are treated as being unbounded
 (i.e., if one deletes $b_{\cmax{32}}' = b_{\cmax{32}}$ from the
 conditions of the initial transitions).
 On the other hand, if one calls the complexity tool
 \tool{CoFloCo} with the ITS from Fig.\ \ref{Complexity Fig g}
 where $b_{\cmax{32}}$ is considered to be an input
 parameter, then we obtain the bound $\max(21, 7\cdot b_{\cmax{32}} -7\cdot \code{j} +14)$.
 In fact, if $0 < \code{j} < b_{\cmax{32}}$ holds at the beginning of the program, then the loop is executed
 $b_{\cmax{32}}-\code{j} -1$ times. Since the loop of the ITS consists of 7 instructions and the
 path of the loop has $14 + 7 = 21$ remaining instructions, in this case we obtain $7
 \cdot (b_{\cmax{32}}-\code{j} -1) + 21 = 7\cdot b_{\cmax{32}} -7\cdot \code{j}
 +14$ instructions for the path of the loop.
 \tool{CoFloCo} combines this with the maximum weight of all paths
that do not traverse loops, which results in
the bound
$\max(21,7\cdot b_{\cmax{32}} -7\cdot \code{j} +14)$.

Note that the replacement of constants by variables like
$b_{\cmax{32}}$ yields a more informative bound than the corresponding term
$30064771079-7\cdot {\code{j}}$: the bound $7\cdot b_{\cmax{32}} -7\cdot \code{j}
+14$ clearly shows that the
runtime depends on the range of the type $\code{i32}$.
 For this program, there is indeed no reasonable upper bound
 that depends on \code{j} but not on $\cmax{32}$.
 \end{itemize}

\vspace*{-.5cm}

%%%

\section{Experiments and Conclusion}\label{Experiments and Conclusion}

In \cite{SEFM16},
we adapted our approach for proving memory safety and termination of \sfC{}
(resp.\ \LLVM{})\linebreak programs to bitvector semantics.
While before, program variables were treated as mathematical integers and
overflows were ignored, bitvector operations such as type conversions,
overflow-sensitive operations, and bitwise operations are now modeled correctly.
In the current paper,
 we showed how our adaption of
 symbolic execution can also be used for complexity analysis.
We transform programs into ITSs over
 mathematical integers and thus, we can use
standard complexity tools to infer
 upper runtime bounds
for the resulting ITSs.
While there exists a wealth of recent techniques
and tools for
complexity analysis of programs on mathematical integers (e.g.,
\cite{COSTA-Complexity,
 KoAT,
 HoffmannPLDI15,
 CoFloCo,
 ramlPOPL17,
 Sinn17}),
 \vspace*{-1cm}\pagebreak
to our knowledge
our approach is the first

\vspace*{-1cm}

\noindent
which allows us
to use these tools
to analyze the
runtime of bitvector programs automatically.

We implemented our approach in the tool
\aprove{}~\cite{AProVE17}
 and used \tool{KoAT} \cite{KoAT} and \tool{CoFloCo} \cite{CoFloCo}
in the back-end. We always ran \tool{KoAT} and
\tool{CoFloCo} in parallel and took the minimum of the bounds obtained by the two
tools.
To evaluate our implementation,
we performed experiments on 118 \sfC{}
programs (which we mainly obtained from the collections used for the evaluations
of other \sfC{} termination tools).
Out of the 95 programs where \aprove{} could show termination, it infers an upper bound
for 60 programs, using a time-out of 300 seconds per example.
For 7 of these
programs, \aprove{} finds a small constant bound. Here, the runtime indeed does not depend on the input variables
or on the
sizes of the types. For 38 programs, an upper bound is found that depends linearly on the input
variable(s) and for 3 more programs, a quadratic upper bound is obtained.
Thus, the runtime of these 41 programs is independent of the sizes of the integer types.
For 4 programs, \aprove{} generates an upper bound that only depends
on size bound variables.
For the remaining 8 programs, the inferred bound depends on both
size bound variables and input variables of the function.

For details on our experiments (including the
exact runtime bounds inferred by \aprove)
and
 to access our implementation
 via a web interface,
 we refer to
 \cite{Webseite}.
 A full version of the current paper combined with
 \cite{SEFM16} appeared in \cite{JLAMP18}.
 The full version
 also contains a comparison
with the variant of \aprove where integers are treated as mathematical integers.

\vspace*{-.1cm}

%%
%% Bibliography
%%

%% Either use bibtex (recommended), but commented out in this sample

\bibliography{main}

\end{document}

