
2017-7-10 0

Objective and Subjective Specifications

Eric C.R. Hehner

Department of Computer Science, University of Toronto, hehner@cs.utoronto.ca

Abstract: We examine specifications for dependence on the agent that performs them. We
look at the consequences for the Church-Turing Thesis and for the Halting Problem.

Introduction

The specifications considered in this paper are specifications of behavior, or activity. I include
human behavior, computer behavior, and other behavior. To keep the examples simple, I will
use specifications that say what the output, or final state, of the behavior should be. And I will
use specifications that relate input, or initial state, to output, or final state. The conclusions
apply also to specifications that say what the interactions during the behavior should be, but my
examples will not be that complicated.

A specification may have the form of a question, for example “What is two plus two?”.
Or it may have the form of a command, for example “Tell me what is two plus two.”. The
question and the command are equivalent because they invoke the same behavior. A
specification may describe the desired behavior, for example, “saying what is two plus two”.

Definitions

A specification is objective if the specified behavior does not vary depending on the agent that
performs it. For examples:
(0) What was the population of the world on 2000 January 1 at 0:00 UTC?
(1) What is the population of the world now?
(2) Given a natural number, what is its square?
(3) What is the length of this question?
Question (0) has no input. Question (1) has an implicit input: the time when it is asked.
Question (2) has an explicit input. Question (3) is self-referential. For all four questions, the
correct answer does not depend on who or what is answering.

A specification is subjective if the specified behavior varies depending on the agent
that performs it. For examples:
(4) What is your name?
(5) What is your IP address?
The correct answer to question (4) depends on whom you ask. In this paper, “subjective” does
not mean that the answer is a matter of disagreement, debate, doubt, or dishonesty. If we ask
Mary what her name is, the answer “Mary” is correct, and all other answers are wrong. If we
ask John the same question, the correct answer is different. Question (5) is similar to question
(4), but applies to a computer rather than a human.

Subjectively and Objectively Inconsistent

Now consider this example:
(6) Lift Bob.
I am not interested in the variety of lifting techniques; I am interested only in the specified
result: the agent lifts Bob. If we ask Hercules, who is very strong, to lift Bob, he can do so
without difficulty. If we ask Alice, who is much smaller than Bob, she is not strong enough.
The result is different, depending on who is trying to lift Bob. So it may seem that (6) is
subjective. But the definition of subjective specification says “the specified behavior varies
depending on the agent”. When we ask Alice to lift Bob, we are asking for the same behavior

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca

� Eric Hehner 2017-7-101

(lifting Bob) as when we ask Hercules. So it may seem that (6) is objective. But suppose we
ask Bob to lift Bob. He cannot do so, but not due to lack of strength. He cannot do so because
the specification does not make sense when we ask Bob to lift himself. The specification makes
sense for some agent (anyone other than Bob), and makes no sense for some agent (Bob). For
that reason, (6) is subjective. If we restrict the set of agents to exclude Bob, then (6) is
objective.
(7) Can Carol correctly answer “no” to this question?
Let's ask Carol. If she says “yes”, she's saying that “no” is the correct answer for her, so “yes”
is incorrect. If she says “no”, she's saying that she cannot correctly answer “no”, which is her
answer. So both answers are incorrect. Carol cannot answer the question correctly. Now let's
ask Dave. He says “no”, and he is correct because Carol cannot correctly answer “no”. So (7)
is subjective because it is a consistent, satisfiable specification for some agent (anyone other
than Carol), and an inconsistent, unsatisfiable specification for some agent (Carol).
(8) Can any man correctly answer “no” to this question?
Let's ask Ed, who is a man. Suppose Ed says “no”. Ed is saying that no man can correctly
answer “no”, and Ed, a man, is answering “no”, so Ed is saying that his answer is incorrect.
Suppose Ed says “yes”. Ed is saying that some man, let's call him Frank, can correctly answer
“no”. But if Frank answers “no”, he is saying that his own answer is incorrect. So Frank
cannot say “no” correctly. So Ed's “yes” answer is incorrect. And the same goes for every man.
But Gloria, who is not a man, can correctly say “no”. Specification (8) is subjective because it
is a consistent, satisfiable specification for some agent (anyone who is not a man), and an
inconsistent, unsatisfiable specification for some agent (any man).
(9) Can anyone correctly answer “no” to this question?
If we ask Harry and he says “no”, he is saying that his answer is incorrect. If he says “yes”, he
is saying that someone, let's say Irene, can correctly answer “no”. But if Irene answers “no”,
she is saying that her answer is incorrect. So Harry can neither say “no” nor “yes” correctly.
And the same goes for anyone else we ask. The correct answer to the question is therefore
“no”, but no-one can correctly say so (oops, I just did). I meant: no-one who is a possible
agent can say so. I exclude myself from the set of possible agents just so that I can tell you that
no possible agent can correctly answer “no”. Specification (9) is objectively inconsistent.

Specifications (7), (8), and (9) are examples of twisted self-reference. The self-
reference occurs when the specification talks about the agent who will perform the
specification. The twist, in these examples, is the word “no”. If we replace “no” with “yes” in
these three specifications, then everyone can correctly answer “yes” to all of them, making them
objectively consistent.

Church-Turing Thesis

One version of the Church-Turing Thesis [3] says that if a specification can be computed by any
one of:
• a Turing Machine (a kind of computer) [2]
• the lambda-calculus [0]
• general recursive functions [1]
then it can be computed by all of them. They all have the same computing power. In a more
modern version, the Church-Turing Thesis says that if a specification can be computed by a
program in any general-purpose programming language, then it can be computed by a program
in any other general-purpose programming language. All general-purpose programming
languages provide the same computing power; they are Turing-Machine-Equivalent (TME).

Church and Turing were thinking of specifications of mathematical functions, like (2).
It seems reasonable to me that the Church-Turing Thesis can be extended to all objective
specifications. But its extension to subjective specifications comes up against a problem.

Reconsider subjective specification (8), but replace “man” with “L-program”, meaning
a program written in TME-language L.
(10) Can any L-program correctly answer “no” to this question?

2017-7-10 Objective and Subjective Specifications �2

It's easy to write an L-program that prints “no”. If that is the answer to (10), it is saying that
there isn't an L-program that correctly answers “no” to the question, so in particular, the L-
program that prints “no” doesn't give the correct answer. It's just as easy to write an L-program
that prints “yes”. If that program is the answer to (10), it says that “no” is the correct answer, so
the L-program that prints “yes” doesn't give the correct answer either. In fact, the correct
answer to (10) is “no”, but no L-program can correctly say so. We can write a program in
language M (which is another TME-language) that prints “no” in answer to (10), and that
answer is correct. No matter whether the agents are people or programs, the result is the same:
one agent can satisfy the specification, but another can't.

The Church-Turing Thesis, in the version stated earlier, does not apply to subjective
specifications. Specification (10) can be computed by a program in TME-language M, but not
by a program in TME-language L.

Another version of the Church-Turing Thesis is that any program in any TME-
language can be translated to a program in any other TME-language. This version of the
Church-Turing Thesis does not mention specifications, but it is nonetheless limited to programs
that satisfy objective specifications. Here is a subjective specification to illustrate why.
(11) Is this question in French?
The correct answer is “no”. The question is easily translated into French.
(12) Cette question est-elle en français?
The correct answer is now “oui”. Before translation, when the question is put to someone who
understands the language the question is in, it invokes one behavior: saying “no”. After an
accurate translation, when the question is put to someone who understands the language the
question is now in, it invokes a different behavior: saying “oui”. Specifications (11) and (12)
refer to a language, and changing the language of the question affects the answer.

Similarly, when we write a program to compute a subjective specification, then
translate it to another language, it may invoke different behavior. This can occur when the
specification refers to a programming language. First, here's an objective specification that
refers to a programming language.
(13) Is text p an L-program?
Every compiler answers the question whether its input text is a program in the language that it
compiles. Whether we write the program that computes (13) in language L or in language M,
for the same input p we should get the same answer. Specification (13) is objective, and the
Church-Turing Thesis applies. Now replace the input with a self-reference.
(14) Is the program answering this question an L-program?
There are two ways to write an M-program to compute (14). The hard way is to give the
program access to its own text, perform the lexical analysis and parsing and type checking and
so on, just as a compiler would do, and then print the answer, which is “no”. The easy way is
just to print “no” because that's the right answer. Now we translate our M-program to language
L. If we programmed the hard way, the translated program accesses its own text, does the
analysis, and prints the correct answer, which is “yes”. If we programmed the easy way, the
translated program prints “no”, which is incorrect. Specification (14) is subjective, and the
Church-Turing Thesis does not apply. Either the translation exhibits different behavior and
prints the correct answer, or the translation exhibits the same behavior and the answer is
incorrect.

Yet another version of the Church-Turing Thesis is that in any TME-language, you can
write an interpreter for programs in any other TME-language. Interpretation is the same as
executing a translation, and it is similarly limited to programs that satisfy objective
specifications. Interpretation of a program that computes a subjective specification may
produce behavior that differs from execution of the original program.

Halting Problem, Language-Based

When Alan Turing laid the foundation for computation in 1936 [2], he wanted to show what
computation can do, and what it cannot do. For the latter, he invented a problem that we now

� Eric Hehner 2017-7-103

call the “Halting Problem”. Without loss of generality and without changing the character of
the problem, I consider halting for programs with no input. In modern terms, it is as follows.
(15) Given a text p representing an L-program that requires no input, report “stops” if

execution of p terminates, and “loops” if execution of p does not terminate.
The input p represents a program in TME-language L. The agent that performs specification
(15) must be a program, written in a TME-language, running on a computer. (In fact, Turing
used the word “machine” for the combination of program and computer.) I am excluding
distributed computations so that I can identify the agent.

First, let's ask for a program written in language L to perform (15), and let's call it
halts . If there is such a program, then there is also a program in language L, let's call it diag ,
whose execution is as follows:

diag calls halts (“diag”) to determine if its own (diag 's) execution will terminate.
If halts reports that diag 's execution will terminate,

then diag 's execution becomes a nonterminating loop;
otherwise diag 's execution terminates.

We assume there is a dictionary of function and procedure definitions that is accessible to
halts , so that the call halts (“diag”) allows halts to look up “diag” , and subsequently
“halts” , in the dictionary, and retrieve their texts for analysis.

When programmed in language L, specification (15) is another twisted self-reference.
The self-reference is indirect: halts applies to diag , and diag calls halts . The twist is
supplied by diag . If halts reports that diag 's execution will terminate, then diag 's
execution is a nonterminating loop. If halts reports that diag 's execution will not terminate,
then diag 's execution terminates. Whatever halts reports about diag , it is wrong. Therefore
specification (15) is inconsistent when we ask for a program written in language L to perform it.

Now let's ask for a program written in TME-language M to perform (15), where M is
such that programs written in L cannot call programs written in M. Can this M-program be
written? Since L-programs cannot call M-programs, we cannot rule it out by a twisted self-
reference. I present two possible answers to the question, and I do not know which of them is
correct.
Answer O: Specification (15) is objective, like specification (13). But unlike (13), it is an

inconsistent specification, no matter what language we use. If we could write an M-
program to compute halting for all L-programs, we could translate it into L (or interpret
it by an L-program), and because (15) is objective, the translation (or interpretation)
would also compute halting correctly for all L-programs. But there is no L-program to
compute halting for all L-programs. So there is no program in any language to compute
halting for all L-programs.

Answer S: Specification (15) is subjective. Like specification (14), (15) refers to a
programming language L. When programmed in L there is a twisted self-reference;
when programmed in M there is no self-reference. There is an M-program to compute
halting for all L-programs. Because (15) is subjective, its translation to L (or
interpretation in L) does not compute halting for all L-programs. Perhaps the M-
program says correctly that diag 's execution terminates, and its translation to L (or
interpretation in L), which we call halts , says incorrectly that diag 's execution does
not terminate, and that is why it terminates.

Answer O has been unanimously accepted by computer scientists, but its acceptance is
premature because (15) has never been shown to be objective, and Answer S has never been
ruled out.

Halting Problem, Machine-Based

The preceding discussion of halting is language-based. Here is a similar discussion that is
computer-based. Suppose there are two identical disconnected computers C and D, and all
programs are written in the same TME-language, and all programs can run on either computer.
Both computers have enough memory so that memory limitation is not an issue.

2017-7-10 Objective and Subjective Specifications �4

(16) Given a text p representing a program that requires no input, loaded on computer C,
report “stops” if execution of p terminates, and “loops” if execution of p does not
terminate.

The agent that performs specification (16) must be a program running on either C or D. Once
again, I exclude distributed computing so that I can identify the agent, and once again I assume
there is a dictionary of function and procedure definitions on each computer.

First, let's ask for a program running on computer C to perform (16), and let's call it
halts . If there is such a program, then we can write another program, let's call it diag , exactly
as before, and we can load this program onto computer C. As before, diag calls halts to report
on diag , and then diag does the opposite; so whatever halts reports, it is wrong. Specification
(16) is inconsistent when we ask for a program running on computer C to perform it.

Now let's ask for a program running on computer D to perform (16). Can this program
be written? Since programs on C cannot call programs on D, we cannot rule it out by a twisted
self-reference. As in the language-based case, we have the same two possible answers to the
question: Answer O and Answer S.
Answer O: Specification (16) is objective. It is an inconsistent specification, no matter what

computer we use. There is no program on any computer to compute halting for
programs on computer C.

Answer S: Specification (16) is subjective. There is a program on computer D, and again let's
call it halts , to compute halting for all programs on computer C. We can carry the
halts program from D to C and run it there. But when we run it on C, it does not
compute halting for all programs on C. This is quite counter-intuitive. When halts
applies to diag , and diag calls halts , it matters whether the halts that applies (the
first occurrence of halts in this sentence) is the same instance as the halts that is called
(the second occurrence of halts in this sentence). In one case, there is a twisted self-
reference, and in the other, there isn't, and that can affect the computation.

Conclusion

A specification is objective if the specified behavior does not depend on the agent that performs
it, and subjective if it does. The Church-Turing Thesis applies to objective specifications, not to
subjective ones. The Halting Problem may be a subjective specification. It is inconsistent to
ask for an X-program to compute halting for all X-programs, but it may be consistent and
satisfiable to ask a Y-program to compute halting for all X-programs, where X and Y can be two
programming languages, or two computers. At least it has not yet been proven impossible.

Acknowledgement

I thank Bill Stoddart for stimulating discussions.

References

[0] A.Church: the Calculi of Lambda Conversion, Princeton University Press, 1941
[1] K.Gödel, reported by S.C.Kleene: Introduction to Metamathematics, North-Holland, 1951
[2] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem,

Proceedings of the London Mathematical Society s.2 v.42 p.230-265, 1936;
correction s.2 v.43 p.544-546, 1937

[3] A.M.Turing: Systems of Logic based on Ordinals, p.8, Ph.D. thesis, Princeton University,
1939

