
Alethea: A Provably Secure
Random Sample Voting Protocol

David Basin∗ Saša Radomirović† Lara Schmid∗
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Abstract—In random sample voting, only a randomly chosen
subset of all eligible voters are selected to vote. This poses new
security challenges for the voting protocol used. In particular,
one must ensure that the chosen voters were randomly selected
while preserving their anonymity. Moreover, the small number
of selected voters leaves little room for error and only a few
manipulations of the votes may significantly change the outcome.

We propose Alethea, the first random sample voting protocol
that satisfies end-to-end verifiability and receipt-freeness. Our
protocol makes explicit the distinction between human voters
and their devices. This allows for more fine-grained statements
about the required capabilities and trust assumptions of each
agent than is possible in previous work. We define new security
properties related to the randomness and anonymity of the
sample group and the probability of undetected manipulations.
We prove correctness of the protocol and its properties both using
traditional paper and pen proofs and with tool support.

I. INTRODUCTION

The purpose of a democratic election is to reach a decision
based on the will of the voters. Direct democracy is not the best
way to achieve this goal as it is too expensive and the voters
do not have the resources to make well informed decisions
on all matters they can vote for. Thus alternative forms of
democracy have been considered [8], [16], [18] and studying
their benefits is an active research area in political economy.

Random sample voting, first proposed by Chaum [8], is an
alternative form of democracy that aims to improve the utility
of elections by polling a small number of randomly selected
citizens, the sample group. The size of this group is chosen
such that it accurately reflects the will of the entire electorate.
Elections with a small sample group are cheaper than elections
involving the entire electorate. Moreover, since each voter is
polled less frequently and believes that his vote has a larger
influence, the voters have more time and motivation to inform
themselves of the issues prior to voting.

Random sample voting gives rise to new challenges. The
first concerns the selection of the sample group. It is obviously
crucial that the voting authority should not be able to influence
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the selection of the sample voters. It must also be verifiable
that the voting authority correctly communicates the selected
group to the voters. Moreover, the selection must be random
and the sample group members must be anonymous, lest they
be unduly influenced, harassed, or made responsible for an
election outcome by those that were not selected.

Further challenges are posed by the sample group’s small
size. It is of paramount importance that the few votes cast are
not manipulated. We must therefore work with the realistic
assumption that the voters’ platforms are compromised and
prove that the voting protocol is end-to-end verifiable from the
human voter (as opposed to his platform) to the remote server.
This necessitates explicitly separating the roles of the human
voter and his computing devices, in contrast to the approaches
taken in previous work. We refer to Section VI-B for a
comparison. The small number of votes cast also leaves little
room for voter error. For a protocol to be end-to-end verifiable,
the voters must perform certain checks. Yet in practice many
voters will skip them. We must therefore explicitly quantify the
probability that vote manipulations remain undetected, given
assumptions on the number of checks and manipulations that
are made.

Contributions: We propose and formally verify Alethea1,
the first random sample voting protocol that satisfies end-
to-end verifiability and receipt-freeness. Compared to other
voting protocols, we make explicit the distinction between
voters and their devices. This enables us to state refined trust
assumptions with respect to voters and their platforms and
to analyze our protocol with respect to a more fine-grained
adversary model than was possible in previous work.

We formalize the properties that are necessary for and
specific to random sample voting as well as conventional
properties for e-voting. In particular, we introduce the concept
of global properties that express the probability that a cheating
authority is not detected as a function of how many individual
checks are made.

1Alethea is derived from the ancient Greek word aletheia meaning “the
state of being evident.” This name reflects one of our main goals: a verifiable
voting protocol where all necessary information is disclosed to auditors.



Fig. 1. System Model

We model the protocol and its properties symbolically and
prove many of the properties using the Tamarin tool [20], [23].
We give hand-written proofs for those properties that cannot
be efficiently verified for an unbounded number of voters
by any state-of-the-art tool. This combination of automated
and manual proofs allows us to prove all relevant security
properties while benefiting from automation in many cases.

Organization: We introduce our setup in Section II and
Alethea in Section III. We analyze the protocol in Section IV.
We describe extensions and present related work in Sections V
and VI, respectively, and conclude in Section VII.

II. SETUP

We first introduce the protocol roles and communication
channel assumptions, then our adversary model and trust
assumptions, and finally our human agent model.

A. Roles and communication channels

Figure 1 depicts the roles and the communication channels
between them. We consider the following roles in our protocol:
the human voters H ,2 their platforms P , their personal devices
D, the voting authority or voting server S, a public bulletin
board BB, and the auditors A. In the actual protocol there
can be several instances of each of these roles, except for the
server S and bulletin board BB.

Following Maurer and Schmid [19], we write A −→ B, A •−→
B, A −→• B, and A •−→• B to denote insecure, authentic,
confidential, and secure channels from (instances of) role A
to role B, respectively, and refer to [4] for a formal semantics
for this notation. We write A ←→ B and A •←→• B for an
insecure and secure channel, respectively, between A and B.

The voting server S is responsible for setting up elections
and collecting and tallying the ballots. The platform P is used
by the voter to send his vote to S. We assume that the platform
can be compromised. Therefore, the channels between H and
P as well as between P and S are insecure. As some trust is
necessary for a voter to cast votes confidentially, we employ a
simple personal device D for this purpose. It is more realistic
to trust D than a general purpose platform as D can have

2We reserve the term v for the votes and refer to the voters by H .

limited capabilities and need not connect to the Internet. Each
voter has exactly one personal device D. We assume that D
is only accessible by the voter H to whom it is assigned and
that D stays in H’s possession, even if an adversary tries to
coerce him. This is modeled by the secure channel between H
and D. Also, there is an authentic channel from the server S
to the device D. This channel can, for example, be established
by S sending to H a QR code by post, which the voter H can
scan with D.
S can authentically publish information on the bulletin

board BB, which can then be read by voters and auditors over
an authentic channel. The auditor role A specifies checks that
must be performed by at least one honest party. By modeling
A as a separate role, we allow it to be instantiated by anyone,
including the voters. The direct link from BB to H indicates
that H can access BB by means other than his insecure
platform. The bulletin board’s contents can, for example, be
published in newspapers.

B. Adversary model and trust assumptions

We consider a Dolev-Yao adversary [13] who controls the
network by learning all messages sent over the network, con-
structing new messages, and delivering messages. Addition-
ally, the adversary can compromise some of the participating
agents to learn all their secrets and control their behavior. In
particular, the adversary has access to all channels to and from
the compromised agents and can make them send and receive
arbitrary messages. Uncompromised agents are called honest
and they strictly perform their roles as specified.

Trusting an agent means that we assume that the agent is
honest. To restrict the adversary, we make the following trust
assumptions.

Trust Assumption 1. The agents instantiating the voters’ de-
vices D and the bulletin board BB are honest.

Thus we assume that the devices and the bulletin board follow
their specifications and their keys remain secret. Furthermore,
the adversary cannot send messages on the authentic channels
from BB or receive or send messages on the secure channel to
and from D. Our assumption that the bulletin board is not
compromised implies that everyone agrees on its contents.
Hence, the bulletin board’s contents are binding values of the
election’s outcome and intermediate results.

Remark. Note that the voting server S can publish false
or inconsistent information on BB. However, all voters and
auditors will see the same information on BB. However, an
honest BB does not imply that each agent arrives at the same
conclusions when inspecting the BB. For example, a voter can
only decrypt his own vote and check whether it is included in
the tally. Thus one voter can conclude that his vote is missing,
while another voter cannot reach this conclusion because he
cannot decrypt the other voter’s vote. 4

For a voting protocol, it is crucial that the outcome’s
integrity is guaranteed even if we do not trust the voting server
S. We must therefore examine verifiability properties under the
assumption that S is under the adversary’s full control. In our



protocol, S is responsible for collecting the ballots and tallying
them. Hence, S naturally learns how each voter voted and if S
is not trusted, there are no privacy guarantees. Many protocols
distribute the trust in S over a number of tellers (or trustees)
using standard threshold cryptography techniques [10], [15].
As a result, only a threshold of all tellers must be trusted. As
with other authors [1], [8], we consider an abstraction of this
setup and model S as a single server that is trusted with respect
to privacy properties. This simplifies the protocol and allows
us to focus on its novel aspects. Thus, we model an honest S
when examining privacy properties, but allow the adversary to
compromise S when examining other security properties.
Trust Assumption 2. For privacy properties, we assume that
the agent instantiating the voting server S is honest.

Next, we state the trust assumptions on the voters. If
a voter is compromised, the adversary can dictate how he
votes. The same holds if an adversary is physically present
at all times. We therefore examine the security properties that
hold for honest voters. Nevertheless, for receipt-freeness it
is important to consider voters who are willing to cooperate
with the adversary, either because they get something in
return or because they are threatened. When analyzing receipt-
freeness, we therefore include voters that reveal all their secrets
to the adversary to prove how they vote. Note that except
for the potential disclosure of secrets, voters follow their
role specification and the adversary cannot access the secure
channel to their device.
Trust Assumption 3. The agents instantiating the voters H are
honest. For receipt-freeness, we assume that voters reveal all
their secrets to the adversary.

Finally, we assume that the auditors are honest. The ad-
versary can perform the same computations as the auditors
because she also learns all information on BB.
Trust Assumption 4. The agents instantiating the auditors A
are honest.

C. Human capabilities

In voting protocols, we require end-to-end guarantees from
the human voters to the server. To realistically model humans,
we assume that they cannot perform cryptography and that
they need a device to assist them with computations. They
can, however, read and learn terms, concatenate, split, and
compare terms, and output terms they have learned. Such a
human model was explored in detail in previous work on
Human-Interaction Security Protocols [4].

III. PROTOCOL

Alethea operates in two phases. In the selection phase, the
voting authority determines the random group of sample voters
by choosing a subset of the electorate based on a publicly
verifiable random event. In the voting phase, the sample voters
are authorized to vote. The main idea of our protocol is that
each voter’s personal device computes two codes: a voter code
that acts as the voter’s pseudonym and is used for the random
selection, and a (ballot) code that encrypts the voter’s ballot.

We first introduce the protocol model and specify each
phase. We then analyze Alethea’s complexity.

A. Protocol model

We model the protocol as a transition system, which gives
rise to a trace semantics. We present the protocol using
message sequence charts. Each role is depicted by a vertical
life line and named by the box on top. A role’s life line depicts
the role’s events, sequentially ordered. For example, the first
line in Figure 2 denotes the voter H’s role. A role’s sent and
received messages are depicted on top of arrows that start at
the sender and end at the receiver. We denote a role’s internal
computations by dashed squares and signals by solid squares.
Signals do not have an effect on a protocol’s execution, but
serve to label events in executions to facilitate reasoning about
the protocol’s security properties.

In executions, the roles are instantiated by agents and we
consider all possible interleavings of agents’ runs in parallel
with the adversary. A trace tr is a finite sequence of signals
that occur in an execution. It records the messages that are
sent and received by agents and the messages that are sent,
received, and computed by the adversary. Furthermore, a trace
contains the signals (containing auxiliary information) that
we explicitly add to the protocol specification. We denote by
TR(℘) the set of all traces of a protocol ℘.

1) Notation: If a receiver B parses a message differently
than the sender A, we write x/y, where x denotes the message
sent by A and y denotes the message pattern that is parsed by
B. We write x := y for the assignment of y to x and we write
[xi]i∈{1,...,n} to denote a list of n messages of the same kind.
Similarly, we write [f(xi, yi)]i∈{1,...,n} for a list of messages,
where each message has the same form, but its value differs
for each entry of the list. When it is clear from context over
which values we quantify, we omit the indices. For example,
we write [x] and [f(x, y)] for the above lists, respectively.

2) Term algebra: Our trace model is based on a term
algebra T that is generated from the application of functions
in the signature Σ to the set of names N and variables V .
We use standard notation to denote the functions for (left-
associative) pairing (〈·, ·〉), projection to the first (fst) and
second (snd) term of a pair, a cryptographic hash function
(h), asymmetric encryption (aenc), asymmetric decryption
(adec), and the public key (pk) corresponding to a private
key. We frequently write 〈a, b, c〉 for 〈〈a, b〉, c〉 and {m}k
for aenc(m, k) and the functions aenc, adec, pk obey the
equation adec(aenc(m, pk(k)), k) = m.

We write π[x] to denote the permutation of a list [x]. The
function rand(e) denotes a random term that depends on an
input value e. The function select(r, [x]) returns a sub-list of
the list [x] depending on r.

Alethea uses non-interactive zero knowledge proofs to de-
crypt ballots in a publicly verifiable manner. To this end,
we define the probabilistic asymmetric encryption scheme
(cp, dcp) by dcp(cp(m, r, pk(k)), k) = m, where r denotes
randomness, k is the private key, and pk(k) is the cor-
responding public key. We frequently write {m}rpk(k) for



cp(m, r, pk(k)). We denote by PeqP([x], [y], k) the non-
interactive zero knowledge proof of plain text equivalence of
two lists [x] and [y], where k is the key used to generate the
proof. A proof of plain text equivalence can be verified by
any party with the function VeqP(proof, [x], [y]), which takes
as input the proof and the two lists [x] and [y] claimed to
contain the same plain texts up to permutation. A verification is
successful if the following three conditions hold. (1) The proof
was constructed with respect to permutations of the two lists
that were input to the verification function. (2) The elements
of the first list correspond to encryptions of the elements
of the second list, but can be permuted. (3) The proof was
constructed with the private key k corresponding to the public
key pk(k) used for the encryptions. The last condition means
that only someone who can decrypt the messages can construct
such a proof. The following equation models these conditions,
where π1, π2, and π3 denote arbitrary permutations.

VeqP(PeqP(π1[cp(m, r, pk(k))], π2[m], k),

π3[cp(m, r, pk(k))], [m]) = true

Such a function could, for example, be implemented by a
scheme based on Chaum-Pedersen due to Neff [21].

3) Execution model: As is standard, whenever a role re-
ceives a term that it already knows, we assume that it compares
the two terms and only proceeds with the protocol if they are
equal. In addition, we use the signal verify(X, p), where X
is a term and p is a predicate, to explicitly indicate that a
role checks whether the predicate p holds. In the protocol’s
traces, the verify signal is recorded as verify(X, p, b), with
b ∈ {true, false} indicating whether the predicate p is satisfied.
This allows us to refer both to the terms that are evaluated
in the predicate and the predicate’s truth value. For example,
verify(X, fst(〈m1,m2〉) = m3, true) occurs in a trace if the
instantiations of the terms m1 and m3 are equal. If the
predicate is not satisfied, the agent stops its role execution.

The signal sel(A, p), where p is a predicate, indicates
whether a voter A believes that he is in the sample group. As
with verify, sel is recorded in the traces as sel(A, p, b), where
b ∈ {true, false} indicates whether p is satisfied. The signal
BB(x) indicates that the term x is posted on BB, voter(A) that
A is a voter, device(D,A) that D is A’s device, and Vote(A, v)
that v is A’s vote. When necessary, we use literal indices to
distinguish between different signals of the same type. Finally,
recv(A,m) and send(A,m) indicate that a role A receives and
sends the message m, respectively, but we do not explicitly
include them in the message sequence charts.

We next describe the protocol phases. For readability, we
only describe the protocol from the perspective of one voter.
The same protocol is executed between each voter H , his
device D, the platform P he uses, and the unique server S and
bulletin board BB. Similarly, we describe one auditor role A,
which can be instantiated by the voters or an external auditor.

B. Selection phase

In this phase, as depicted in Figure 2, the server generates
for each voter a unique voter code and randomly selects the

sample group from the set of all voter codes.
First, the server S publishes a description of a random event

ev in the future. For example, S publishes a future date, time,
and the name of a stock market index from which it will
draw its publicly verifiable randomness. The source of the
randomness is chosen such that, at the time that S publishes
ev, it cannot predict the randomness that will result from this
event.3 Then, S generates for each voter a random secret x and
computes the voter code y as the hash of the voter’s identity
and this secret. S posts the list [y] of all voter codes to BB.
S sends the voter secret x encrypted for H’s device D over
an authentic channel. Then D computes y = h(H,x) and
displays it to the voter.

An alternative to the above is for the voter code y to be
directly sent from S to H on an authentic channel, for example
by letter. However, having D do part of the computation has
two advantages over protocols where the code is directly sent
to the voter. First, if we send a code directly to the voter,
we must send it in plain text because humans cannot, in
general, decrypt data themselves (without auxiliary devices).
This means, however, that an intruder who intercepts this
message can learn the voter code.4 If we use a device D that
can perform decryptions, the message can be sent encrypted
and protected from eavesdroppers. Second, we assume that
the server S can be compromised, but the honest D performs
computations according to the protocol. If the voter learns
the voter code from D, he knows that it is of the form
h(H,x′) for some x′ that D received from S. Of course, S
can send a wrong secret x′, therefore the voter must verify
that the received code yD is in the list of voter codes on
BB. As h is collision resistant, S cannot send an x′ 6= x for
which h(H,x′) computed by D is equal to a y that has been
computed differently. Also, S cannot make two voters believe
that they have the same voter code because, for any x1 and
x2, H1 6= H2 =⇒ h(H1, x1) 6= h(H2, x2).

After all voters have learned their respective voter codes,
a subset of the voter codes are selected to form the sample
group. To ensure that this selection is random and cannot be
influenced by S, it is based on the random event that was
previously posted to BB. We denote by the role E that the
environment produces the randomness r from the event ev and
assume that the agent instantiating E is honest. For example,
ev denotes a certain stock value, date, and time, and r is the
random stock value at this defined date and time. The authentic
sending of r from E to A and S denotes that both A and S
can observe the randomness. Furthermore, by sending ev from
E to A we model that A can observe that r was generated
according to the event ev.

Based on r, S computes the sample group [ySG], which
consists of a random subset of all voter codes in [y]. The
sample group is published on BB and each voter can check if

3In practice, one can combine different randomness sources so that an
adversary can only effectively influence the randomness by controlling all
sources.

4In the scenario where the voter code is sent from S to H by mail, the
postman, or anyone with access to the mail box, could learn the voter code.
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his voter code is [ySG] (i.e. if he is chosen to vote), which is
denoted by the signal sel. The auditor reads the sample group
on the bulletin board and verifies that it was drawn according
to the function select and the random number r.

C. Voting phase

The sample voters, which were selected in the selection
phase, can cast their vote in the voting phase. To do this, a
voter sends an encrypted version of the vote to S, the ballot
code code. We first describe how the code is constructed by
the voter’s device D. Afterwards, we present the detailed steps
of the voting phase.

1) Construction of the ballot code: If the voter H casts the
vote v, his device D constructs the ballot code as

code := 〈{v, h(x, ind)}rpkS , {h(H,x), h(x)}r
′

pkS〉.

Figure 3 depicts the code’s subterms. The code is built from
two concatenated encryptions, which we denote by fstcode and
sndcode. Both encryptions use the public key of the server S.

The first part, fstcode, encrypts the vote. In fact, it encrypts
a pair pV consisting of the vote v and a hash hV of the voter

secret x and an index ind. The voter secret binds together
the two parts fstcode and sndcode and serves to authenticate
the voter H , since only H’s personal device D knows x. The
index ind is a number that is chosen by the device D each
time the voter enters a vote. When casting the vote, the voter
sends the index, along with the code, to the server. We explain
the advantage offered by this construction in Section V-B.

The code’s second part, sndcode, also encrypts a pair, pY,
and authenticates the voter by his voter code y = h(H,x).
As everyone knows the list of voter codes corresponding to
sample voters, this enables auditors to check that the recorded
votes were cast by sample voters. The second hash in pY ,
hY = h(x), again ensures the authenticity and binds the two
parts of the code together, as only D knows x.

Recall from Section III-A2 that cp has the property that
the holder of the secret key can decrypt and permute a list
of encryptions and construct a zero knowledge proof that
the decrypted messages correspond to the plain texts in the
encryptions, up to permutation. The construction of the codes
thus allows S to verifiably decrypt the votes and voter codes.

2) Detailed voting phase: Figure 4 depicts the voting phase.
First, the voter H enters his vote v on the device D. D then
computes the code as described above, and displays it to the
voter, together with the voter’s identity H and the index ind.
Using a trusted device to compute the code has advantages
similar to the ones described in the selection phase. To cast
the vote, the voter enters this code and the index on P , which
sends it on to S. A possible realization of this communication
from D to P that is triggered by H is that D displays a QR
code which is scanned by H with P .
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The server can interpret the code with the help of the
received index ind and only accepts it if it has the right
form. S collects all codes in the list [code]. To avoid revealing
private information, the codes are sorted in this list, denoted
by the permutation πS . S then decrypts the first parts of the
codes to the list of pairs [pV ]. The first elements of [pV ]
are the votes defining the final tally. Also, S decrypts the
codes’ second parts into [pY ], which contains the voter codes
[y′]. The permutations π1 and π2 ensure that the orders of
the elements do not reveal which decryptions correspond to
which encryptions. Additionally, S constructs zero knowledge
proofs that both parts have been decrypted correctly and posts
all these lists and the proofs on the bulletin board.

An auditor A then verifies the following properties: (1) The
two parts of the codes have been correctly decrypted to the
published lists of pairs pV and pY , as the proofs of plain
text equivalence are verified. (2) The first part of the elements
in [pV ] and [pY ] correspond to the published votes [v] and
voter codes [y′], respectively. (3) The published voter codes
[y′] correspond to the voters in the sample group. Each sample
voter also reads the list of codes from the bulletin board and
verifies that it includes his code.

3) Voting with abstention: We do not require that each
sample voter casts a vote. However, even voters who abstain
may perform the individual verifiability check that no vote was

recorded for them. If a voter decides not to cast a vote, signaled
by Vote(H, ‘empty’), a constant string ‘empty’ is recorded as
his vote. Compared to the standard voting protocol in Figure 4,
the difference is that the voter never sends anything to S over
P and therefore these steps are omitted. To learn the code
corresponding to the empty vote, the voter enters a designated
code word, or presses a designated ‘empty’ button on D.

As the voter does not cast a vote, it is impractical for him
to send ind to S. We therefore assume a predefined default
index ind0 and secret nonces r0 and r′0, known to both D and
S. When the voter enters ‘empty’, D uses ind0, r0, and r′0
to compute the code. After the vote casting phase has ended,
for each voter that has not sent a vote, S computes the empty
ballot code also using ind0, r0, and r′0.

D. Complexity

We briefly summarize the roles’ time complexities in terms
of the number of voters n and the number of sample voters
m ≤ n. We define the size of a term in our term algebra to be
the number of function symbols and names that occur in the
term. We consider the application of functions in the signature
Σ as well as the comparison, sending, and reception of terms
as basic operations, thus requiring time proportional to the size
of the terms. We prove the following lemma in Appendix A.



Lemma 1. The time complexity of all roles is linear in the
number of voters n, except for the auditor role, which has
complexity O(n) +O(m log(m)).

IV. ANALYSIS

We assume that the voting phase only starts after the
selection phase has finished. Consequently, messages from the
two phases cannot be interleaved. We thus analyze the two
phases separately and use in the voting phase the fact that
a successful selection phase has already established certain
common knowledge shared between the agents.

We establish three main kinds of properties for Alethea: ver-
ifiability properties, global properties, and privacy properties.
Verifiability properties are trace properties that are conditional
on an agent performing a particular protocol step, typically
a verification step. We say that a protocol satisfies a trace
property if every trace of the protocol satisfies the property.

Our verifiability properties guarantee that a cheating server
is caught provided the voters and auditors follow the protocol
specification and perform the necessary verification steps. In
practice, however, not all voters will perform these checks. Our
global properties account for this and quantify the probability
that a server is not caught cheating when it manipulates a
number of voter codes or ballot codes. As these properties are
novel and require introducing additional notation, we describe
them in more detail in the next section.

Privacy properties express that an adversary cannot learn
certain relations, for example who voted for whom. We define
privacy properties as observational equivalence properties that
express that an adversary cannot distinguish between two
systems: a left system and a right system. For example, the
adversary cannot distinguish one system (left) where a voter
votes according to the adversary’s will from another system
(right) where the voter votes according to his own choice.
More specifically, we define a set S of trace pairs (trL, trR)
where trL is from the left system and trR from the right
system. A protocol satisfies a privacy property if for all its
traces in one system there exists a trace in the other system
such that the pair of traces is contained in S.

We use the Tamarin tool to verify verifiability and privacy
properties (see [24] for the Tamarin input files). For the
latter, we use Tamarin’s built in support for observational
equivalence [2]. We consider two models, one with an honest
and one with a compromised server S. As some of the
universal verifiability properties cannot be efficiently verified
with Tamarin for a large number of voters, we model two
voters in Tamarin. Whenever we prove properties for an
arbitrary number of voters, we use hand-written proofs for
this general case. In some cases, we need permutations of lists,
for example to state that a zero knowledge proof of plain text
equivalence is verified. To state that each permutation of the
inputs is valid, we explicitly model each possible permutation
in Tamarin.

Finally, we prove that S cannot influence the sample group
and that the sample group is random. In the symbolic model,
these properties follow directly from the assumptions on the

selection function select. However, as these properties are
crucial to the proper functioning of random sample voting, we
give details of how select could be realized and prove them at
this lower level of abstraction.

A. Global verifiability properties

To prove that a protocol satisfies a property, we consider
all possible interleavings of the agents instantiating their roles
with the adversary. In practice, humans do not follow their role
specification precisely. For example, it is unlikely that every
voter performs all the necessary checks to detect manipulation
by the server S. This implies that there will always be traces
where S successfully manipulates the election’s outcome.
Therefore, in addition to reasoning about the possibility of
attacks, our global properties are used to reason about the
probability that manipulations by S are not detected.

We define a probability space (Ω,F ,Prob), where Ω is the
set of all possible outcomes (the sample space), F ⊆ 2Ω is
the set of events, and Prob : F → [0, 1] is the probability
measure. F is a σ-algebra, i.e., closed under complementation
and countable unions. In addition to the set of traces TR(℘),
we include in Ω those traces that arise from voters skipping
their verification steps. Formally, we consider the protocol ℘′

obtained from ℘ by adding three voter roles that are identical
to role H except that the first, second, or both verify signals
specified for H in ℘ are missing. A voter then has the choice
of executing one of these four roles and this choice determines
which verification steps are skipped. Skipping verification
steps means that the voter will not notice a manipulation. We
set Ω = TR(℘′).

We assume that the probability measure Prob is such that
the event of a voter performing a check is independent of the
event that the voter’s check succeeds.
Definition 1. Let (Ω,F ,Prob) be a probability space of a
protocol ℘ as defined above. Let Vs(H), Vv(H) be the events
that H is a voter and H is a member of the sample group,
respectively. The indices s and v denote that an event is
associated with the selection and voting phase, respectively.
Let Xs(H), Xv(H) be the events that H’s voter code or ballot
code was manipulated. Finally, let Ys(H), Yv(H) be the events
that H checks that his voter code and his ballot code is on
BB, respectively. Formally,

Vs(H) = {tr ∈ Ω | voter(H) ∈ tr}
Vv(H) = {tr ∈ Ω | ∃v. Vote(H, v) ∈ tr}
Xs(H) = {tr ∈ Ω | ∃D. ∀x, [y], k. device(D,H) ∈ tr∧
¬(recv(D, {x}k) ∈ tr ∧ BBy([y]) ∈ tr ∧ h(H,x) ∈ [y])}

Xv(H) = {tr ∈ Ω | ∃cH , ind. ∀[code].
(send(H, ‘empty’) ∈ tr ∧ recv(H, 〈H, cH , ind〉) ∈ tr

∨send(H, 〈cH , ind〉) ∈ tr) ∧ ¬(BBc([code]) ∧ cH ∈ [code])}
Ys(H) = {tr ∈ Ω | ∃p, b. verifyyD

(H, p, b)}
Yv(H) = {tr ∈ Ω | ∃p, b. verifyv(H, p, b)}

We say that verification is independent of manipulation in
the probability space of a voting protocol ℘, if for all H ,



Xs(H) and Ys(H) are conditionally independent events given
Vs(H) and if Xv(H) and Yv(H) are conditionally independent
events given Vv(H).

We define a global property for an event X ⊆ Ω, random
variables X1, . . . , Xn : Ω → N, a function F : Nn →
[0, 1], and relations ∼1, . . . ,∼n,∼ ∈ {=,≤,≥}. A global
property has the form {tr ∈ Ω | Prob(X|X1(tr) ∼1

j1, . . . , Xn(tr) ∼n jn) ∼ F (j1, . . . , jn)}. The global property
is satisfied if for every trace tr of the sample space the
conditional probability of X given the event characterized by
the relations on X1, . . . , Xn, satisfies the indicated relation.

In our global properties, X indicates that the voting server’s
manipulation is not detected. The random variables count the
number of voters, voters that perform verifiability checks, and
manipulated codes, and F gives a bound on the probability that
the voting server’s manipulation is not detected given those
counts. See e.g., Definition 5.

B. Analysis of selection phase

1) Verifiability properties: It is essential that S publishes
exactly one voter code for each voter. Otherwise, some voters
are never considered for the sample group. We therefore
require the verifiability of the voter codes. As the correspon-
dence between voters and voter codes must remain secret, we
define this property as an individual verifiability property. For
notational simplicity, when using set comprehension notation
like {a | F (a)}, all free variables b different from a in F are
implicitly universally quantified.

Definition 2.

Individual verifiability of voter code :=

{tr | verifyyD
(H, yD ∈ [y], true) ∈ tr =⇒

∃[y′], x.BBy([y′]) ∈ tr ∧ yD ∈ [y′] ∧ yD = h(H,x)}

The definition states that whenever a voter H verifies that his
voter code yD is included in the list of voter codes [y], then yD
is really part of the published voter code list and was correctly
computed for the voter H . We establish the following lemma
with Tamarin.

Lemma 2. Alethea satisfies individual verifiability of voter
code, even with a compromised server S.

Additionally, a voter must be able to verify whether he was
selected into the sample group. We define that whenever H ,
who received voter code yD, concludes that he is selected,
then his voter code is included in the list of sample voters and
is correctly computed for H .

Definition 3.

Individual verifiability of the selection :=

{tr | sel(H, yD ∈ [ySG], true) ∈ tr =⇒ ∃[y′SG], x.

BBSG([y′SG]) ∈ tr ∧ yD ∈ [y′SG] ∧ yD = h(H,x)}

Tamarin verifies the following lemma.

Lemma 3. Alethea satisfies individual verifiability of the se-
lection, even with a compromised server S.

In addition to the individual verifiability properties, it must
be universally verifiable that S computed the sample group
from the list of eligible voters according to the protocol
specification.
Definition 4.

Universal verifiability of the selection :=

{tr | verifySG(A, [ySG] = select(r, [y]), true) ∈ tr =⇒
BBy([y]) ∈ tr ∧ BBSG([ySG]) ∈ tr ∧ [ySG] = select(r, [y])}

The first part states that an auditor A verifies that the sample
group [ySG] is correctly computed by the function select taking
as inputs the randomness r from the environment and the list of
voter codes [y]. The definition states that whenever this check
holds, BB contains the same lists [y] and [ySG] and thus the
sample voters [ySG] are correctly computed from r and [y].
We prove the following lemma for two voters in Tamarin and
for arbitrary many voters in Appendix B by hand.
Lemma 4. Alethea satisfies universal verifiability of the selec-
tion, even with a compromised server S.

2) Global properties: We have established that each voter
can verify that there is a voter code included for him. However,
not all voters will perform this check. Therefore, it is important
to examine what global property holds when only a fraction
of the voters verify the inclusion of their voter code.
Definition 5. Let V,X, Y : Ω → N be random variables that
count, respectively, the number of registered voters in a trace,
the number of voters whose voter code is not installed on their
device or incorrectly recorded on the bulletin board, and the
number of voters that check that their voter code is included
on the bulletin board. Let Z be the event that no manipulation
is detected. Formally,

V (tr) = |{H | voter(H) ∈ tr}|
X(tr) = |{H | ∃D. ∀x, [y], k. device(D,H) ∈ tr ∧
¬(recv(D, {x}k) ∈ tr ∧ BBy([y]) ∈ tr ∧ h(H,x) ∈ [y])}|

Y (tr) =
∣∣{H | ∃p, b. verifyyD

(H, p, b) ∈ tr}
∣∣

Z = {tr ∈ Ω | ∀H, p. verifyyD
(H, p, false) 6∈ tr}

Global individual verifiability of voter codes is defined by the
following set of traces:

{tr | Prob(Z | V (tr)=n,X(tr)=o, Y (tr)=a) ≤
(
n−o
n

)a}.
The definition states that the probability that no manipulation
is detected is at most (n−o

n )a, when there are n registered
voters, o voter codes that are manipulated, and a voters check
that their voter code is on the bulletin board. For example, for
1000 voters, if 100 voter codes are manipulated and 50 voters
check whether their voter code is on BB, then the probability
that no one detects the manipulation is at most .005. But if
only one code is manipulated then, even when 900 voters
check their codes, the probability that the manipulation is not
detected is at most .406. In this case, however, a cheating
voting authority cannot substantially influence the selection.

We prove the following lemma in Appendix B.



Lemma 5. Let the probability measure Prob be such that
verification is independent of manipulation (Definition 1).
Then Alethea satisfies global individual verifiability of voter
codes.

3) Privacy properties: In random sample voting, the set of
eligible voters is usually considerably smaller than in conven-
tional voting. Therefore, to change the election outcome, an
adversary needs to compromise fewer voters. To counter this
threat, it is crucial that the adversary cannot learn which voters
are in the sample group. We denote this property by sample
group anonymity and model it as a privacy property.

We define sample group anonymity as the property that an
adversary cannot distinguish the following two systems with
two voters, A and B. In both systems, S generates A’s and B’s
voter code as yA = h(A, xA) and yB = h(B, xB). In the left
system, the voter code yA is selected, thus A is in the sample
group, and in the right system B’s code yB is selected instead.
The next lemma states that the adversary cannot distinguish
whether A or B is in the sample group.

We write t1 ≈ t2 to denote that two traces are indistinguish-
able for an adversary. We use this definition informally here
and refer to [2] for a formal definition of ≈.
Definition 6. Let TR(℘L) be the set of all traces of ℘ with two
voters A and B where A is selected for the sample group. Let
TR(℘R) be defined similarly, except that B is selected instead
to be the sample voter.

Anonymity of the sample group :=

{(trL, trR) ∈ TR(℘L)× TR(℘R)|trL ≈ trR}

The set defines the pairs of traces that are observationally
equivalent, where the first traces are from the left and the
second traces are from the right system. If a protocol fulfills
this property, for each trace in the left system, where A is
selected, there exists an indistinguishable trace in the right
system, where B is chosen, and vice versa. An outside
adversary thus cannot determine if a given voter is in the
sample group. The following lemma is verified by Tamarin.
Lemma 6. Alethea satisfies anonymity of the sample group for
an honest server S.

C. Analysis of voting phase

1) Verifiability properties: In the voting phase, only the
voter must know his intended vote. Therefore, to check that
his vote was recorded as intended, each voter must carry out
an individual verifiability check. Our definition of individual
verifiability is based on [17].
Definition 7.

Individual verifiability := {tr | (Vote(H, vH) ∈ tr ∧
verifyv(H, 〈fstcodeH , sndcodeH〉 ∈ [code], true) ∈ tr)

=⇒ ∃hV, pkS, r, [code′].BBc([code′]) ∈ tr ∧
〈fstcodeH , sndcodeH〉 ∈ [code′] ∧ fstcodeH = {vH , hV }rpkS}

This states that whenever a voter verifies that his code
〈fstcodeH , sndcodeH〉 is in the list of all recorded codes [code],
then one of the recorded codes on BB corresponds to his vote
vH . The following lemma is established with Tamarin.

Lemma 7. Alethea satisfies individual verifiability, even with
a compromised server S.

We next establish the universal verifiability property that
any auditor can verify that the votes are counted as recorded.
This property is essential since we do not trust S with respect
to the integrity of the voting result. Recall that all the checks
can be done by the voter H himself who can also instantiate
the auditor role.

Definition 8.

Universal verifiability of the tally :=

{tr | (verifyv1(A,VeqP(proofV , [fst(code)], [pV ]), true) ∈ tr∧
verifyv2(A, [fst(pV )] = [v], true) ∈ tr)

=⇒ BBc([code]) ∈ tr ∧ BBv([v]) ∈ tr∧
∃[hV ], [sndcode], [r], k, π. π[code] = [〈{v, hV }rk, sndcode〉]}

The left side of the implication denotes that an auditor verifies
that the first parts of the codes were correctly decrypted into
the pairs [pV ] and the first elements of these pairs correspond
to the published votes. If these checks are verified, then the
bulletin board contains the same lists of codes and votes, such
that the codes are correct encodings of the votes, but their
order can be permuted. We establish the following lemma for
two voters in Tamarin and complete the proof for arbitrarily
many voters in Appendix C.

Lemma 8. Alethea satisfies universal verifiability of the tally,
even with a compromised server S.

End-to-end verifiability is the conjunction of individual and
universal verifiability. The following theorem therefore follows
from Lemmas 7 and 8.

Theorem 1. Alethea satisfies end-to-end verifiability, even with
a compromised server S.

For random sample voting, it must also be verifiable that
only the selected sample voters cast votes. For this purpose,
each ballot code includes the sender’s voter code in the second
encryption. We establish that it is verifiable that S correctly
decrypts this part of the codes. As it is public which voter
codes correspond to sample voters, auditors can then easily
check that all votes were sent by sample voters.

Definition 9.

Universal verifiability of voter codes := {tr |
(verifyy1(A,VeqP(proofY , [snd(code)], [pY ]), true) ∈ tr∧

verifyy2(A, [fst(pY )] = [y′], true) ∈ tr)

=⇒ BBc([code]) ∈ tr ∧ BBy′([y′]) ∈ tr∧
∃[hY ], [fstcode], [r′], k, π. π[code] = [〈fstcode, {y′, hY }r′k 〉]}

Similarly to universal verifiability of the tally, the definition
states that if an auditor verifies that the second part of the



codes have correctly been decrypted to the pairs [pY ] and that
each first part of a pair pY corresponds to a unique voter
code y′ ∈ [y′], then all voter codes [y′] on BB are contained
in a unique code on BB. We automatically prove the following
lemma for two voters in Tamarin and manually prove it for
arbitrarily many voters in Appendix C.
Lemma 9. Alethea satisfies universal verifiability of voter
codes, even with a compromised server S.

2) Global properties: As in the selection phase, we exam-
ine the probability of an undetected manipulation by the server,
given the number of individual verifiability checks made. We
only considers the sample voters, as only they can cast a vote,
and denote the number of sample voters by m.
Definition 10. Let V,X, Y : Ω→ N be random variables that
count, respectively, the number of sample voters in a trace, the
number of voters whose ballot code is not correctly included
on the bulletin board, and the number of voters that check
whether their code is included on the bulletin board. Let Z be
the event that no manipulation is detected. Formally,

V (tr) = |{H | ∃v. Vote(H, v) ∈ tr}|
X(tr) = |{H | ∃cH , ind.∀[code].

(send(H, ‘empty’) ∈ tr ∧ recv(H, 〈H, cH , ind〉) ∈ tr
∨send(H, 〈cH , ind〉) ∈ tr) ∧ ¬(BBc([code]) ∧ cH ∈ [code])}|
Y (tr) = |{H | ∃p, b. verifyv(H, p, b) ∈ tr}|

Z = {tr ∈ Ω | ∀H, p. verifyv(H, p, false) 6∈ tr}

Global individual verifiability of votes is defined by the set

{tr |Prob(Z|V (tr) = m,X(tr) = o, Y (tr) = a) ≤
(
m−o
m

)a}.
The definition gives an upper bound for the probability that

no one detects that S has manipulated some ballot codes. The
probability is computed under the assumption that there are m
sample voters, a voters perform their individual checks, and
S did not correctly include o ballots. We prove the following
lemma in Appendix C.
Lemma 10. If the probability measure Prob is such that
verification is independent of manipulation (Definition 1), then
Alethea satisfies global individual verifiability of votes.

3) Privacy properties: Privacy denotes that an adversary
cannot link voters to their votes. We define it as the property
that an adversary cannot distinguish a left system where voter
A votes v1 and voter B votes v2 from a right system where
A votes v2 and B votes v1 [6], [12]. We use the notation
℘m1←m′

1,m2←m′
2

to denote the specification of the protocol ℘
where each occurrence of the terms m1 and m2 is replaced
by m′1 and m′2, respectively.
Definition 11. Let vA and vB be the term that denotes A’s and
B’s vote, respectively, and let v1 and v2 be message terms.

Vote privacy :=

{(trL, trR) ∈ TR(℘vA←v1,vB←v2)× TR(℘vA←v2,vB←v1) |
trL ≈ trR}

This set contains all indistinguishable trace pairs, such that the
first trace is from the left system, where A votes v1 and B
votes v2, and the second trace is from the right system, where
A votes v2 and B votes v1. Recall from Section II-B that we
establish privacy properties with respect to an honest server
S. The following lemma is proven by Tamarin.

Lemma 11. Alethea satisfies vote privacy with an honest server
S.

Even though we assume honest voters (Trust Assumption 3),
it is important that a protocol preserves privacy even if voters
are forced by an adversary to reveal private information. A
protocol is receipt-free, if it is not possible for a voter to
generate a receipt for how he voted, even if he reveals his
secrets to the adversary.

To model receipt-freeness, we consider two voters, A and
B, and change the original protocol ℘ to ℘′ where A sends all
his secrets to the adversary except that A always claims that
his vote is v1. As with vote privacy, A votes v1 in the left and
v2 in the right system. Voter B votes in each system opposite
to A so that the end result is the same in both systems [12].
We define receipt-freeness as privacy, but with respect to ℘′.

Definition 12. Let ℘′ be the protocol obtained from ℘ as
described above, let vA and vB be the term that denotes A’s
and B’s vote, respectively, and let v1 and v2 be message terms.
Receipt-freeness of the protocol ℘ is defined as follows.

Receipt-freeness :=

{(trL, trR) ∈ TR(℘′vA←v1,vB←v2)× TR(℘′vA←v2,vB←v1) |
trL ≈ trR}

This set defines all indistinguishable trace pairs such that the
traces are from two systems where A and B vote the opposite
way. The difference to privacy is that A reveals all secrets,
except he claims in both systems that he votes v1, which is
only true in the left system. We establish with Tamarin that
the following lemma holds.

Lemma 12. Alethea satisfies receipt-freeness with an honest
server S.

D. Randomness of the sample group

In this section we assume that the bulletin board contains
exactly one voter code per voter. We established by global
individual verifiability of voter codes the probability that no
one detects a manipulation if this does not hold. Under this
assumption and assuming that the output produced by the
environment E based on event ev is random, we show next
that S cannot influence the sample group’s selection, no matter
how S chooses the voter codes for the voters. Moreover,
we show that the sample group is indistinguishable from
random. To prove these properties on a more detailed level
than the symbolic model allows, we first define pseudo-random
permutations and explain how we construct the function select
based on them.

Let G be the group of all permutations of lists of length n.
A random permutation (RP) πR is chosen from G uniformly at



Fig. 5. Game PR-PRP

random. A pseudo-random permutation (PRP) πPR is chosen at
random from a subset of G’s elements, denoted by subset(G).

As is standard, we assume that a PRP is indistinguish-
able from a RP for the adversary. More precisely, we de-
fine indistinguishability by the security game depicted in
Figure 5. In the game, the adversary provides the en-
vironment with an input [x]. The environment chooses
r ∈ {R,PR} and outputs πr[x]. The adversary must out-
put a decision r′. The adversary’s advantage is defined by
|Pr[r′ = PR | r = PR]− Pr[r′ = PR | r = R]| and we assume
that it is negligible as a function of n.

To define the function select that samples m voters from
n eligible voters, we first define the initialization list [v0] =
[1, 1, ..., 1, 0, 0, ..., 0], where the first m entries are 1 and the
remaining n−m entries are 0.

Definition 13. Let comb([vc], [b]) : voterList ×
selectionList → voterAssignment be a function of
two inputs, a list of voter codes and a list of bits. The
function’s output is a list of voter codes and zeros and all
three lists are the same length. The function combines the
lists element-wise as follows.

comb([vc], [b]) =

[{
vci if bi = 1

0 if bi = 0

]
i∈{1,...,n}

Let set([l]) be a function that takes a list [l] as input and
outputs the set of its nonzero elements. We define the sample
group as the set SG = set(comb([y], π [v0])), where the voter
codes [y] can be chosen by S, but such that each voter has
exactly one corresponding voter code. The randomness r in
the function select(r, [y]) can be understood to determine π.
Given this construction, we first assume a random permutation
π ∈ G and show that S cannot influence SG in this optimal
case. We prove the lemma in Appendix D.

Lemma 13. For each list of voter codes [y], if π ∈ G is selected
uniformly at random, then SG = set(comb([y], π[v0])) is a
uniformly random m-element subset of set([y]).

We next show that, even if π is a PRP, S cannot influence the
sample group by its choice of [y]. For this purpose, we define a
game INFL–SG that an adversary wins if she can successfully
influence the sample group as determined by a predicate g
that denotes the adversary’s goal. Given a set s, g(s) is true if
the adversary has reached her goal on the selection s. We are
only interested in goals for which a computationally bounded
adversary can judge whether she succeeded. Therefore, we
only consider polynomial time functions g.

Fig. 6. Game INFL–SG

Definition 14. The game INFL–SG is depicted in Figure 6 and
runs as follows. The environment fixes a permutation π and
the adversary outputs a goal g. Then the environment gives
the list [v0] to the adversary and the adversary outputs the
voter codes [y]. She wins the game if g(set(comb([y], π [v0])))
holds.

Let |SGg| = |{SG | ∃[y], π. SG = set(comb([y], π[v0])) ∧
g(SG)}| be the number of valid sample group choices that
meet the goal g and let SG# be the total number of possible
sample groups. We have shown in Lemma 13 that if π is
random, the choice of sample group SG is random. Thus, the
probability that the result meets the goal g is given by pR =
SGg

SG#
, independent of S’s choice of [y]. The following lemma

states that even if π is a PRP, S cannot significantly improve
the probability of influencing the sample group. We define
the adversary’s advantage in winning the INFL–SG game by
|Pr[g = true | r = PR] − Pr[g = true | r = R]|. We refer to
Appendix D for the proof.
Lemma 14. The adversary’s advantage in winning the INFL–
SG game with a PRP over an RP is bounded by her advantage
in the RP–PRP game.

If follows from the preceding lemma that the selection of
the sample group is indistinguishable from random for the
adversary even if a PRP π is used.

V. EXTENSIONS

We next present different protocol extensions and explain
informally how they achieve even stronger security guarantees.

A. Improved verifiability of voter codes

We established in Lemma 2 that for each voter who verifies
a check, there is a voter code on BB. Furthermore, Lemma 5
established that even if not all voters make a check, the
probability that no manipulation is detected is low. Next we
describe how to further decrease this probability by a factor
1
d for any positive integer d.

We propose a standard cut-and-choose mechanism where
the server S produces d sets of voter codes. That is, for each
voter, S computes d many secrets x and corresponding voter
codes y = h(H,x). S then posts commitments to all these
values on BB. Based on a second publicly verifiable random
event ev2, a random number k := rand(ev2) ∈ {1, . . . , d} is
drawn, which decides that the kth set of voter codes is the
one to be used in the election. S then posts the voter codes of
the kth computation on BB. Furthermore, S reveals all values
x and y from the remaining d− 1 sets. An auditor can verify
that all published values match the previous commitments



and that S computed y correctly from x in all revealed sets.
An incorrect computation of S is not detected only with
probability 1

d .

B. Towards coercion resistance

We analyzed our protocol against a remote adversary who
can only learn those terms the voters send to the network. We
introduce an extension that allows an adversary to be with the
voter, except for the moment when the voter enters his vote
on the device. Recall the voting phase from Figure 4. A voter
can enter votes as often as he wants on his device D and,
each time, D computes a new code based on a fresh index
ind. This ensures that if a voter learns the ballot code in the
absence of the adversary, he cannot later reproduce a receipt
for the vote. Each produced code will be new, no matter what
vote-choice is entered.

Similarly, if a voter chooses to abstain from voting, he
enters on his device that he wants to cast the empty vote.
The first time he does so, the voter learns the correct code,
which is based on the index ind0. Each subsequent time he
enters ‘empty’, the device will use a new index. Thus, if the
adversary is not present at the time of the first check, she
cannot learn that a voter abstained from voting. This is similar
to the assumption that the adversary cannot be present at the
time when a voter who casts a vote learns his code.

Finally, note that a voter could video record his interaction
with D to prove to an adversary how he voted. This scenario is
similar to the case where the adversary is always with the voter
and we do not attempt to solve this. However, to mitigate the
motivation of a voter to engage in such an attack, the device
displays the voter’s identity H together with the code. If H
thus records the process and sends a video of it to somebody,
he risks that legal entities learn that he tried to sell his vote.
For this to work, the voter’s identity must be displayed in a
way that it is impossible for H to hide its identity and display
the code.

VI. RELATED WORK

We discuss related work on random sample voting, (classi-
cal) voting protocols, and security properties.

A. Random sample voting

Chaum’s [8] account of random sample voting is the closest
related work. In contrast to our analysis, Chaum does not for-
mally prove his claimed security properties. Another difference
is that Chaum considers a much weaker adversary. Chaum’s
adversary is rational and only performs attacks that benefit
her. We consider a standard Dolev-Yao adversary, who always
attacks, regardless of the benefit.

Alethea satisfies receipt-freeness in the Dolev-Yao adversary
model, as a voter cannot reveal any secrets to the adversary that
constitute a proof of how he voted. Chaum suggests to avoid
coercion by introducing decoy ballots. These are ballots that
can be sold to an adversary because they are indistinguishable
from real ballots; however they are not counted in the final
tally. Thus, Chaum’s protocol does not satisfy receipt-freeness

in a Dolev-Yao adversary model since a legitimate voter
can prove to the adversary how he voted. Nevertheless, the
adversary does not know if a given receipt is for a real or for
a decoy ballot. Therefore, a rational adversary is not motivated
to engage in vote buying.5

Chaum’s protocol and Alethea also differ in how the sample
group is published. With Alethea each voter learns whether he
is selected by checking the information on the BB. In contrast,
in Chaum’s protocol the sample voters learn that they have
been chosen to vote by the fact that they receive a ballot
without requesting it. To verify that each sample voter indeed
received his ballot, they must be explicitly asked by an external
auditor at the end of the protocol.

B. Voting protocols

Alethea’s voting phase is a remote voting protocol that
achieves both end-to-end verifiability and receipt-freeness.
There are many voting protocols that satisfy similar properties.
Several of these protocols, e.g. [9], [15], [22], are designed for
poll-site voting which is impractical for random sample voting
due to the small number of voters and the need to keep their
identity anonymous.

Helios [1] is a remote voting protocol that satisfies ver-
ifiability but not receipt-freeness. Two voting protocols that,
like Alethea, achieve both verifiability and receipt-freeness are
BeleniosRF [7] and Civitas [10]. Voters cast encrypted ballots
that are processed by homomorphic tallying in BeleniosRF and
by mixnets in Civitas. In both protocols, it is universally ver-
ifiable that the ballots are tallied as recorded but nevertheless
impossible for a voter to prove to an adversary how he voted.
In order for these protocols to work, a voter must encrypt his
ballot with the help of a machine.

For random sample voting, we must assume that a general
purpose platform is compromised. This necessitates that the
protocol specification contains separate roles for the human
voter and his devices. However, many existing remote voting
protocols do not make such a separation [7] or require that
the voter’s platform must be trusted [10].

We have therefore developed Alethea as new voting protocol
separating the human voter role and his devices from the
start and using [4] and [5] for guidance. This enabled us to
examine what properties hold under the realistic assumption
that a voter’s platform is compromised while the voter himself
is honest and casts his vote with the platform’s help. In
addition to a general purpose computing platform, we propose
a specialized trusted device. This device only needs limited
computing capabilities and need not be connected to the
Internet. We argue that it is more realistic to trust such a device
than a general purpose platform.

C. Security properties

We focus on definitions and formal models of standard
security properties for voting protocols. Delaune et al. [12]
introduce the first symbolic definition of receipt-freeness and

5The economic justification that decoy ballots are effective and stop vote
buying is extremely subtle and does not necessarily hold [3].



coercion resistance in the applied pi calculus. Similarly to their
work, we define privacy and receipt-freeness as observational
equivalence properties. We model receipt-freeness by modi-
fying the protocol such that one voter communicates all his
secrets to the adversary in one system and only pretends to do
so in the other system. To better understand different notions
of privacy, receipt-freeness, and coercion resistance, Dreier
et al. [14] consider a new family of privacy properties that
includes attacks such as vote-copying and forced-abstention.
They also model these properties in the applied-pi calculus.

A review of existing definitions of verifiability is presented
by Cortier et al. [11]. They cast all definitions in the same
framework to analyze and compare them. In particular, they
analyze the definitions of individual and universal verifiability
by Kremer et al. [17] which are similar to our definitions but
defined in the applied pi calculus. Kremer et al. also define
eligibility verifiability as the property that everyone can check
that each vote in the final tally was cast by an eligible voter
and no voter could vote more than once. Even though this
property is defined with respect to all eligible voters, it is
comparable to our definition of universal verifiability of voter
codes, which ensures that all tallied votes were cast by sample
voters.

VII. CONCLUSION

As new forms of democracy are an active research area in
political economy, it is important to demonstrate the feasibility
and limitations of protocols that support them from a security
perspective. This work is a first step to better understand the
formal properties of random sample voting.

We have introduced Alethea, the first random sample voting
protocol that satisfies receipt-freeness. Alethea is also the first
formally verified random sample voting protocol.

To verify Alethea, we formulated and proved new as well
as standard security properties. In particular, we showed that
the voting server cannot influence the selection of the sample
group and that the selection is random and universally verifi-
able. Moreover, we established that the sample voters remain
anonymous and we proved that Alethea satisfies end-to-end
verifiability and receipt-freeness.

A premise of end-to-end verifiability is that the voters per-
form a number of verifications. With our new global properties
we make the realistic assumption that many voters will skip
some verification steps and we quantify the probability that
manipulations are not detected under this assumption. If this
probability is sufficiently small, the global property justifies
that proving end-to-end verifiability in a possibilistic trace
model is worthwhile. We have also defined and proved an
analogous global property for the selection phase of Alethea.

As future work, we intend to build on Alethea to develop
protocols for other alternative forms of democracy that require
a random group, such as Co-Voting [16].
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APPENDIX

We give proofs for the lemmas in Sections III-D to IV-D.

A. Proof of complexity

Proof of Lemma 1. We consider each role’s time complexity
for the two protocol phases. Recall that n is the number of
voters and m is the number of sample voters, where m ≤ n.

Voters: H’s time complexity is dominated by searching the
lists [y] and [ySG] in the selection phase and the list [code]
in the voting phase, which requires O(n) + O(m) + O(m)
operations and is dominated by O(n).

Server: In the selection phase, S requires O(n) time to
compute a voter code for each voter and to send them to the
devices and to BB. If select is realized as proposed in Section
IV-D, it includes the permutation of a list of length n and
the element-wise combination of two lists of length n. Thus
the selection phase’s time complexity is O(n). In the voting
phase, S has to process lists of length m, including unpairing
all elements, decrypting all elements, and permuting the lists,
which requires O(m) steps. If cp is implemented as in [21],
the generation of the zero knowledge proofs requires O(m)
steps. S’s total time complexity is thus dominated by O(n).

Auditors: In the selection phase, A computes the select
function (O(n)) and receives lists of sizes n and m (O(n)).
In the voting phase, A receives five lists of length m and two
proofs. If cp is realized as in [21], the verifications of the
zero knowledge proofs require O(m) time. Finally, A has to
test if the lists [y′] and [ySG] are equal, which are both of
length m. This can be done by sorting then comparing the
lists in O(m log(m)) steps. A’s total time complexity is thus
O(n) +O(m log(m)).

Bulletin Board: BB only receives and displays messages.
The time complexity of the selection phase is dominated by the
processing of the voter code list, O(n), and of the voting phase
by handling five lists of length m and to proofs of lengths
O(m). This results in O(n) total time complexity.

Device, platform, and environment: In both phases, D,
P , and E send, receive and compute a constant number of
messages. Their total time complexity is O(1).

Thus all roles have time complexity in O(n), except for the
auditor role, which has time complexity O(n)+O(m log(m)).

B. Proofs for selection phase

Proof of Lemma 4. Let tr ∈ TR(℘) be a trace. Since A is
honest, it only performs a verification if it has previously

received all necessary messages. Therefore

verifySG(A, [ySG] = select(r, [y]), true) ∈ tr

(1)
=⇒[ySG] = select(r, [y]) ∧ recv(A, [ySG]) ∈ tr ∧

∃e.recv(A, 〈e, [y]〉) ∈ tr

(2)
=⇒∃BB, e.send(BB, [ySG]) ∈ tr ∧ send(BB, 〈e, [y]〉) ∈ tr

(3)
=⇒BBSG([ySG]) ∈ tr ∧ BBy([y]) ∈ tr .

Implication (2) holds as A is honest and only accepts the
received values [ySG] and [y] over an authentic channel and
from BB. By the properties of an authentic channel, we
conclude that BB has sent [ySG] and [y]. Implication (3) holds
as BB is honest and only sends the values [ySG] and [y]
after the signals that these values are posted on the bulletin
board.

Proof of Lemma 5. By Lemma 2, for each voter who verifies
the individual verifiability of the voter code, there exists a
corresponding voter code on the bulletin board.

Consider a trace with n voters. By the lemma’s hypothesis
for each voter, the event that the voter code was manipulated
is independent of the event that the voter code was verified.
Hence, we compute the probability that no manipulation is
detected when there are n voters, o manipulated voter codes,
and a voters who verified their voter codes as follows.

Prob(Z|V (tr) = n,X(tr) = o, Y (tr) = a)

= n−o
n · n−o−1

n−1 · · ·
n−o−(a−1)
n−(a−1) ≤ (n−o

n )a

The inequality follows as x−1
y−1 <

x
y when 1 < x < y.

C. Proofs for voting phase

Proof of Lemma 8. Let tr ∈ TR(℘) and suppose that
q = verifyv1(A,VeqP(proofV , [fst(code)], [pV ]), true) ∈ tr ∧
verifyv2(A, [fst(pV )] = [v], true) ∈ tr holds. Then q

(1)
=⇒q ∧ ∃[x], [r], k, π. [pV ]=[〈v, x〉] ∧ π[fst(code)] = [{pV }rk]

(2)
=⇒q ∧ ∃[x], [r], k, π. π[fst(code)] = [{v, x}rk]

(3)
=⇒q ∧ ∃[x], [r], [sndcode], k, π. π[code]=[〈{v, x}rk, sndcode〉]
(4)
=⇒∃[pY ], [y′], proofY .

recv(A, 〈[code], [pV ], [v], [pY ], [y′], proofV , proofY 〉) ∈ tr

(5)
=⇒∃BB, [pY ], [y′], proofY .

send(BB, 〈[code], [pV ], [v], [pY ], [y′], proofV , proofY 〉) ∈ tr

(6)
=⇒BBc([code]) ∈ tr ∧ BBv([v]) ∈ tr

Implication (1) holds because the verifications succeed as
indicated by the third argument (true) in the verify signal: The
list of votes corresponds to the list of the first elements of the
pairs [pV ]. This denotes a one-to-one correspondence between
votes v and vote pairs pV . The verification of the proof proofV
ensures that each element of [fst(code)] corresponds to an
encryption of a unique element of [pV ], but the lists can be
permuted differently. (2) holds by the facts that each pair pV



corresponds to a unique vote v and each fst(code) encrypts
a unique pair pV . Thus, each fst(code) corresponds to the
encryption of a unique vote. (3) holds because for each vote
there is also a unique code that consists of the fst(code) and
some second part sndcode. In (4) we use the assumption that
the auditor A is honest and follows its role specification. We
conclude that A uses in the verifications only terms that it
has previously received. (5) holds because A only accepts the
receiving of these messages over an authentic channel from
BB. By the properties of an authentic channel, BB must thus
have sent these messages. (6) holds because BB is honest, so
it only sends these messages after having included the same
message terms in the signals.

We have thus verified universal verifiability of the tally.
Note that none of the implications rely on the server’s honesty.
Therefore, the proof holds for a compromised server S.

We only give a high level proof sketch of Lemma 9 as the
proof is analogous to the proof of Lemma 8.

Proof Sketch of Lemma 9. Assume a trace tr ∈ TR(℘) and
that the given verifications are true in the trace. Because the
verifications hold, we conclude that each voter code y′ is
contained in a unique pair in [pY ] and that each such pair pY is
encrypted in a unique element in [snd(code)]. As in the proof
of Lemma 8, we conclude from these properties that for each
voter code y′ there is a unique code 〈fstcode, {y′, hY }r′k 〉 ∈
[code] that contains it.

Moreover, we observe that an honest auditor A must have
received the terms [code], [pY], [y′], and proofY authentically
from BB. Therefore BB must have sent these terms. Also,
because BB is honest, the same terms are on the bulletin board.
Together, we conclude that the terms [code] and [y′], as used
in A’s verification signals, are present on BB and have the
required relation.

Proof of Lemma 10. By Lemma 7, if a voter verifies the indi-
vidual verifiability check, his ballot code is correctly included
in the list of ballot codes on BB.

Consider a trace with m voters in the sample group. By the
lemma’s hypothesis, for each voter the event that his ballot was
manipulated is independent of the event that it was verified.
Hence, we compute the probability that no manipulation is
detected when there are m voters, o ballots are manipulated,
and a ballots are verified as follows.

Prob(Z|V (tr) = m,X(tr) = o, Y (tr) = a)

= m−o
m · m−o−1

m−1 · · ·
m−o−(a−1)
m−(a−1) ≤

(
m−o
m

)a
The inequality follows as x−1

y−1 <
x
y when 1 < x < y.

D. Proofs for sample group

Proof of Lemma 13. Let [y] be a list and SG a m-element sub-
set of set([y]). Thus there is a vector [v] ∈ {0, 1}n of Hamming
weight m = |SG| such that SG = set(comb([y], [v])).

We first prove that there exist at least m!(n − m)! many
choices of π ∈ G such that SG = set(comb([y], π[v0])). Since

Fig. 7. Reduction from RP-PRP to INFL–SG

G contains all permutations of lists of length n, there exists
π ∈ G, such that [v] = π[v0]. For each permutation π′ that
only permutes the ones and zeros of [v0], it also holds that
[v] = ππ′[v0]. Since there are m many ones and (n − m)
many zeros in [v0], there are m!(n−m)! many permutations
π that map an input [y] to SG.

We next prove that there are exactly m!(n − m)! many
choices of π ∈ G such that SG = set(comb([y], π[v0])). SG is
a selection of m voters out of n voters, so there are

(
n
m

)
=

n!
(n−m)!m! many possible outputs SG. Since for each output SG
there are at least m!(n − m)! many choices of π ∈ G such
that SG = set(comb([y], π[v0])) and there are n! permutations
in G, it follows that for each SG there are exactly m!(n−m)!
many choices of π ∈ G such that SG = set(comb([y], π[v0])).

Since the π ∈ G are chosen uniformly at random it follows
that the set of all possible outputs SG is a uniformly random
m-element subset of set([y]).

Proof of Lemma 14. Let pPR = Pr[g = true | r = PR] and
pR = Pr[g = true | r = R] be the probability that the adversary
wins the INFL–SG game given a PRP and an RP, respectively.
Suppose the adversary’s advantage in winning the INFL–SG
game with a PRP over an RP is greater than ε, i.e., |pPR−pR| >
ε. We show that she can use this to distinguish an RP from a
PRP in the RP–PRP game with an advantage greater than ε.

The reduction from the RP–PRP game to the INFL–SG
game is shown in Figure 7. The adversary first outputs
[x] = [v0] to the environment in the RP–PRP game. She then
plays the INFL–SG. That is, she outputs g, takes [v0], and
outputs [y]. Next, the adversary takes the input πr[v0] from
the environment in the RP–PRP game and the output [y] from
the INFL–SG game and computes g(set(comb([y], πr[v0]))).
If the predicate g is satisfied, she outputs r′ = PR otherwise
she outputs r′ = R. In case r = PR, the adversary wins the
inner game with probability pPR. The output of the outer game
is r′ = PR and the adversary wins the outer game in this
case with the same probability. In case r = R, the adversary
wins the inner game with probability pR. Thus, with the same
probability she incorrectly outputs r′ = PR in the outer game.

Thus her advantage in distinguishing an RP from a PRP
is |Prob[r′ = PR | r = PR] − Pr[r′ = PR | r = R]| =
|Prob[g = true | r = PR]− Pr[g = true | r = R]| > ε.


