
Inductive Invariants for Noninterference in
Multi-agent Workflows

Christian Müller
Technische Universität München

Email: christian.mueller@in.tum.de

Helmut Seidl
Technische Universität München

Email: seidl@in.tum.de

Eugen Zălinescu
Technische Universität München

Email: eugen.zalinescu@in.tum.de

Abstract—Our goal is to certify absence of information leaks in
multi-agent workflows, such as conference management systems
like EASYCHAIR. These workflows can be executed by any
number of agents some of which may form coalitions against
the system. Therefore, checking noninterference is a challenging
problem. Our paper offers two main contributions: First, a
technique is provided to translate noninterference (in presence
of various agent capabilities and declassification conditions)
into universally quantified invariants of an instrumented new
workflow program. Second, general techniques are developed for
checking and inferring universally quantified inductive invariants
for workflow programs. In particular, a large class of workflows
is identified where inductiveness of invariants is decidable, as well
as a smaller, still useful class of workflows where the weakest
inductive universal invariant implying the desired invariant, is
effectively computable. The new algorithms are implemented and
applied to certify noninterference for workflows arising from
conference management systems.

Index Terms—multi-agent workflows; non-interference; ab-
stract interpretation; inductive invariants

I. INTRODUCTION

A multi-agent system, e.g., for the management of a confer-
ence, may be used by any number of agents, while at the same
time posing non-trivial restrictions to the flow of information.
A challenging problem therefore is to certify noninterference
— independently of the number of participating agents. Work-
flows, as presented in [11], [10], describe a language for multi-
agent systems in which agent interactions are structured in
stages and recorded by relations, with each stage expressed as
a block of guarded updates to relations. For instance, one stage
of a conference management workflow could be specified by
the following workflow block:

forall x, y, p, r may.
Assign(x, p) ∧ Review(y, p, r)→ Read += (x, p, r)

which states that each PC member x may decide to read (or not
to read) the review r of the paper p, given that x is assigned
to p and some PC member y has provided the review for p.

In such a system, a security breach occurs if an agent
obtains information that she is not entitled to know, like a
PC member obtaining reviews on papers she is in conflict
with. The absence of information leaks is best expressed as
a noninterference-like property — a property on two traces,
roughly stating that from the point of view of any single agent,
there is no observable difference between two executions of the

workflow that differ in their secret information, as long as the
behavior of the other participating agents is reasonable (oth-
erwise the property specification allows for spurious attacks).
In [11], it is argued that reasonable behavior means that the
decisions or choices of an agent can only reveal information
the agent has actually observed. Such agents are called causal.
This causality assumption, while preventing false negatives,
still allows agents to form coalitions. Indeed, knowledge of
confidential information can be transmitted by agents via
the side channel of adapting their observable behaviors. A
stronger assumption on the agent behavior, also introduced
in [11], is that she acts stubbornly: stubborn agents show
the same behavior (in the two executions) independently of
their knowledge. They thus can propagate information about
confidential data to other agents only directly.

Besides the specification of the abilities of the participat-
ing agents, realistic noninterference properties for workflows
also require a specification of declassification conditions, as
sensitive information will be revealed to some agents and
considered secret for others.

To formalize such complex security properties, which en-
compass the assumptions on the agent behavior and the
declassification conditions, both [11] and [10] use a first-
order extension of HyperLTL [6]. In [10], the semantics of
workflows as well as noninterference properties are translated
into sorted FOLTL. Quite general forms of noninterference
could be proven decidable for the restricted class of non-
omitting workflows by means of a translation into a decidable
fragment of sorted FOLTL.

Here, a workflow is non-omitting if all occurring guards are
quantifier-free, and every modification of a predicate always
contains all involved agents explicitly. Many practically useful
workflows, though, are omitting, like the example workflow
block shown above, where y does not occur in the tuple
(x, p, r) to be inserted into the relation for Read . In general,
statements which use auxiliary variables for expressing guards,
naturally introduce omission. A simple and common example
is a statement that expresses the transitive closure R of some
relation E:

forall x, y, z. E(x, y) ∧R(y, z)→ R+= (x, z)

We note here that this block can be equivalently rewritten as

forall x, z. ∃y.E(x, y) ∧R(y, z)→ R+= (x, z).

However, the resulting workflow is still omitting as the guard
is not quantifier-free.

Therefore, the results from [10], while encouraging, can
only be a first step. In [10], however, it has also been shown
that already for non-omitting workflows and an unbounded
number of causal agents, noninterference with declassification
is undecidable, while for omitting workflows undecidability
already occurs for the simplest agent model, namely, for
stubborn agents. In that sense, the results of [10] are tight.
In this article, we nonetheless aim at lifting the non-omission
restriction, and thus provide practical methods for analyzing
general workflows with unboundedly many agents, causal or
stubborn. Due to the undecidability results of [10], however,
any verification approach is necessarily incomplete and/or
introduces further restrictions. We therefore concentrate on
noninterference (instead of temporal hyper-properties) with de-
classification depending on the current state only, and consider
proofs using universally quantified formulas only.

The key observation behind our approach is that, for pairs
of execution traces complying with the assumptions on agent
behavior and with the declassification conditions, the spec-
ification of noninterference boils down to checking that all
observations of a particular agent coincide on the two traces.
That is, indistinguishability of such traces can be cast as a
universal invariant, i.e., a mapping from program points of
the workflow to universally quantified formulas. Therefore, in
contrast to [11], [10], we propose in this paper not to include
the assumptions on agent behavior and declassification into
the specification of noninterference. Instead, we transform the
given workflow w so that the resulting workflow now tracks
pairs of execution traces of w that comply both with the
assumptions on agents and declassification. Proving that the
workflow satisfies an invariant can then be done by providing a
strengthening of the invariant which is inductive. We find that
it is decidable whether an assignment of formulas to the nodes
of a control flow graph of the resulting workflow is inductive
or not — whenever all formulas in question are universal, and
the weakest precondition calculation for each control flow edge
only introduces non-nested occurrences of quantifiers. This
provides us with a means for proving noninterference with
declassification for omitting workflows.

Checking an assignment for being inductive, is one thing;
inferring an inductive invariant which is sufficiently strong
for proving the given assignment, is another. The latter can be
cast as finding a solution to a constraint system for weakest
preconditions of the invariant to be verified [7]. Even if only
universal properties are of concern, the underlying lattice
for solving that constraint system has infinitely descending
chains — implying that fixpoint iteration may not terminate.
Based on an abstraction technique for formulas possibly con-
taining existential quantification, and second-order quantifier
elimination, we identify non-trivial cases where the fixpoint
iteration can be proven to terminate and then return the weakest
inductive invariant, i.e., the inductive invariant making the
least assumptions on the program states. An implementation
of our method demonstrates that the approach is able to deal

with more general workflows while still being faster than
the implementation provided for [10] — whenever that is
applicable.

The paper is organized as follows. After a brief recap of
the workflow model and a formalization of noninterference
in Section II, we present our transformation to encode agent
model as well as declassification into an ordinary workflow
in Section III. By this transformation, checking of nonin-
terference can be reduced to checking a universal invariant.
Section IV therefore considers universal invariants and proves
that for these, inductiveness is decidable. Section V presents a
method for inferring inductive invariants. This method relies
on abstract interpretation techniques for first-order formulas
and proves optimality under mild assumptions — given that
fixpoint iteration for an appropriate constraint system termi-
nates. In detail, termination is treated in Section VI where a
termination proof is presented for a natural syntactic restriction
of workflows. In Section VII the application of the given
techniques for proving noninterference is wrapped up. In
particular, it is shown that checking noninterference for a
bounded number of causal agents is not more difficult than
checking of universal invariants of workflows. Section VIII
then presents an implementation and experimental results.

II. NONINTERFERENCE FOR WORKFLOWS

A. Workflows

We fix a finite set R of relation symbols. We also fix
a set V of first-order variables and a subset X ⊆ V of
variables occurring freely in the specification. These can be
considered as constants from the universe to be interpreted.
The set R is the disjoint union of the subsets Rwf , Ro ,
and Rc . Relations in Rwf may be updated by the workflow at
each step. Relations in Ro are provided by the environment —
they can only be queried and are therefore called oracles. They
may contain confidential data and come with a declassification
condition (as detailed later in this section). The relations inRc ,
on the other hand are not explicitly mentioned in the workflow.
These represent the decisions taken by agents participating in
the workflow and are therefore called choices. We follow the
convention that agent capabilities are specified via the first
components of tuples. Concretely, an agent a can observe
all tuples of workflow relations that mention her in the first
component (i.e. all tuples of the form (a, b̄) that satisfy some
R ∈ Rwf). Also, an agent chooses all tuples of the choice
predicates C ∈ Rc that mention her in the first component.

A workflow w is defined by the grammar given in Fig. 1,
where xi, yi range over variables in V , R ranges over predicate
symbols in Rwf , and ϕ ranges over first-order formulas, pos-
sibly containing equality, with relation symbols in Rwf]Ro .
The basic constructs are statements, which represent the si-
multaneous updates of relations. As updates we only consider
guarded additions or deletions of individual tuples, simulta-
neously executed for all values of the occurring variables.
Sequences of statements are grouped into blocks. Their forall
prefix lists the variables over which the simultaneous updates
range. By convention, the first variable in the list refers to the

agent executing the block. The key word may indicates that
the agent in the first component of the tuple may choose to
participate in the execution of the block or desist. Technically,
this means for the semantics of these blocks, that the literal
C(x̄) is added to each guard occurring in the block (x̄ being
the sequence of variables listed in the forall prefix, C a choice
predicate of appropriate arity). Finally on the top-level, blocks
are organized by sequencing, alternatives, and loops, where a
particular execution is meant to be determined by external
decisions (in case of a conference management system, e.g.,
by deadlines or the PC chair).

For the syntax and semantics of the first-order formulas
serving as guards, we refer to standard textbooks such as [9].
For a statement ϕ→ R±= ȳ, we require that |ȳ| matches R’s
arity. The formula ϕ as well as the sequence ȳ = (y1, . . . , yl)
may contain variables not in x̄, where x̄ = (x1, . . . , xk) is the
sequence of variables appearing in the forall construct of the
surrounding block. These variables not in x̄ are assumed to be
in X , i.e., global constants of the workflow.

In the following, we introduce further restrictions not im-
posed in [10] — these are mild restrictions that do not exclude
any of our current examples. We assume that each R ∈ Rwf

is updated at most once in a block (i.e., it occurs at most once
in a statement of block b on the right-hand side of →). We
also assume that oracles are queried only in non-may blocks,
and in each block that queries an oracle, the same oracle is
queried. Furthermore each guard querying an oracle O is of
the form ϕ′ ∧ Ox̄ for some formula ϕ′, where the sequence
of variables x̄ coincides with the block’s quantified variables
(i.e. the block is of the form forall x̄. stmts). This restriction
is mainly used to simplify arguments later in the paper —
in Appendix A. we provide a transformation that can be
used to transform any given workflow into one that fits these
constraints for oracle usage.

w ::= ε | block w′ | loop {w′ } w′′ |
choose {w1} or {w2} w′

block ::= forall x1, . . . , xk. stmts
| forall x1, . . . , xk may. stmts

stmts ::= ε | stmt; stmts
stmt ::= ϕ→ R+= (y1, . . . , yl)

| ϕ→ R−= (y1, . . . , yl)

Figure 1. Definition of a workflow w

For completeness, we recall the definition of non-omitting
workflows, a critical assumption imposed in [10], but not here.
A workflow is called non-omitting iff for each block of the
form forall x̄ [may] stmts , and for each of its statements
ϕ→ R±= ȳ in a block, we have that ϕ is quantifier-free and
each variable in x̄ also appears in ȳ.

Example 1. The workflow

forall x1, x2. may true → R+= (x2, c, x1)

is non-omitting (when c is a constant), whereas the workflow

forall x1, x2. may R(x2)→ S −= (x1, c)

is omitting, since x2 is not mentioned in the tuple (x1, c) that
is removed from S.

% PC members may declare conflicts
(b1) forall x, p may. true → Conf += (x, p)

% PC members are assigned to papers
(b2) forall x, p may.¬Conf(x, p)→ Assign += (x, p)

% PC members write reviews for papers
(b3) forall x, p, r.

Assign(x, p) ∧O(x, p, r)→ Review += (x, p, r)
% PC members discuss about the papers
loop {

% PC members read all other reviews
(b4) forall x, y, p, r.

Assign(x, p) ∧ Review(y, p, r)→ Read += (x, p, r)
% PC members can rethink their reviews

(b5) forall x, p, r may.
Assign(x, p)→ Review += (x, p, r) }

Figure 2. EASYCHAIR-like workflow.

Example 2. As a running example, we use a similar workflow
as in [10], given in Fig. 2. The workflow models the paper
reviewing and review updating of EasyChair. In this workflow,
all PC members are agents. In a first step, they can declare
that they have a conflict of interest with some of the papers.
Then, papers are assigned to reviewers as long as they have
not declared a conflict with the respective papers. Reviewers
are then required to write an initial review of their assigned
papers. Afterwards, the discussion phase starts. Here, all
reviewers of a paper are shown all the reviews other people
wrote for the same paper. They can then alter their review
based on the information they have seen. This discussion phase
continues for multiple turns until the PC chair ends the phase.

We emphasize that the corresponding workflow from [10]
is non-omitting, while this workflow is omitting, because in
block (b4) the variable y does not occur in the symbolic
tuple (x, p, r), which represents the concrete tuples that are
added to the Read relation.

B. Semantics

We give the semantics of workflows in terms of (symbolic)
transition systems based on control flow graphs (CFGs). The
CFG for the workflow in Fig. 2 is given in Fig. 3. The control
flow graph of a workflow consists of:
• a finite set V of control points or nodes including u0, ut ∈
V as initial and terminal node, respectively;

• a finite set of edges E where each edge in E is of the
form (u, β, v) where u, v ∈ V are the start and end nodes
of the edge, and β is a sequence of blocks (usually just
one). We remark that β can also be an empty sequence
of blocks, in which case we also denote it by nop.

We assume that each node has at least one outgoing edge.
In particular, the terminal node has (ut , nop, ut) as single

u0 u1 u2 u3 u4 ut
b1 b2 b3

b4

b5

nop
nop

Figure 3. CFG of the workflow in Example 2.

outgoing edge. This convention is used to encode a finite
(terminated) execution of the workflow by an infinite trace,
where the last workflow state is stuttered. Any infinite path
through the graph represents thus an execution of the workflow
where the attained states are changed according to the labels
of the traversed edges. In the following, we view a workflow w
as given by such a control flow graph.

Consider a fixed universe U and a valuation ρ : X → U of
the constants. Assume that the set Rc contains a relation sym-
bol Cb for every may block b of the form forall x̄may. stmts;
Cb’s arity is |x̄|. Then a state s is a first-order structure
which interprets the symbols in R as relations (of right arities)
over U . The state s is initial, iff all predicates in Rwf are
empty. This means that s, ρ |= ϕ0 where ϕ0 is the conjunction
of all formulas ∀z̄.¬Rz̄, for R ∈ Rwf . The notation s, ν |= ψ
for a structure s over U , a valuation ν, and a first-order
formula ψ will be used throughout this paper to denote that
formula ψ holds in the structure s where each free variable
in ψ is interpreted according to ν. We often write Rz̄ for R(z̄).

Now assume that the execution of the workflow has reached
some control point u in state s, and an edge (u, β, u′). Let
nextβ denote the relation consisting of all pairs (s, s′) so that
s′ can be reached from s by successively executing the blocks
in β. In order to define this relation, we first consider a single
block b. For b, we introduce the substitution θb of atomic
predicates in Rwf which is defined as follows. Assume first
that b is a may block of the form forall x̄ may. stmts. Then,
for each R ∈ Rwf , we define

θb(Rz̄) :=

Rz̄ if (a)
Rz̄ ∨ ∃x̄. ϕ ∧ Cbx̄ ∧ (z̄

.
= ȳ) if (b)

Rz̄ ∧ ¬
(
∃x̄. ϕ ∧ Cbx̄ ∧ (z̄

.
= ȳ)

)
if (c)

where the conditions (a-c) are: (a) R is not updated, (b) ȳ is
added to R, (c) ȳ is deleted from R; and it is assumed that
x̄ ∩ z̄ = ∅ and that the statement in stmts that updates R (if
any) has the form ϕ→ R±= ȳ. The definition of θb when b
is a non-may block is similar, except that the Cbx̄ conjuncts
are omitted.

For a sequence β = b1 . . . bh consisting of the blocks
b1, . . . , bh, θβ = θb1 ◦ . . . ◦ θbh is the composition of the
substitutions θbi for the blocks bi in β. (θβ is the identity when
β is empty.) Then (s, s′) ∈ nextβ iff each relation R ∈ Rwf

in s′ consists of all tuples ā so that s, ρ[z̄ 7→ ā] |= θβ(Rz̄),
where ρ[z̄ 7→ ā] is the valuation which extends ρ by assigning
to each variable in the sequence z̄ the corresponding value
in the sequence ā. The interpretations of the predicates of
Ro ∪Rc in s and s′ are unrelated.

As variables in ȳ either occur in x̄ or in X , we remark
that the formulas θb(Rz̄) can be simplified by removing the

equalities zi
.
= yi, and replacing zi with the constant a if yi =

a ∈ X and replacing xj with zi and removing the existential
quantification on xj if yi = xj for some j.

Example 3. For the block b

forall x1, x2, x3 may. P (x1, x2)→ R+= (x3, a, x1),

we have
θb(R(z1, z2, c))

= R(z1, z2, c) ∨ ∃x1, x2, x3. P (x1, x2)∧
Cb(x1, x2, x3) ∧ z1

.
= x3 ∧ z2

.
= a ∧ c .= x1

≡ R(z1, a, c) ∨ ∃x2. P (c, x2) ∧ Cb(c, x2, z1)

For non-omitting workflows, the existential quantification dis-
appears completely by using the given simplification.

A trace of the workflow (now given by its CFG) is an
infinite sequence

τ = (u0, s0, β0), (u1, s1, β1), . . .

where s0 is an initial state, and for each i ≥ 0, (ui, βi, ui+1)
is a control flow edge where (si, si+1) ∈ nextβi . The control
flow path (u0, β0), (u1, β1), . . . and the sequence of states
s0, s1, . . . of the trace τ is denoted by π(τ) and σ(τ),
respectively. We use FOLTL to describe trace properties of
workflows. We refer, e.g., to [10] for the definition of FOLTL.
For a sequence of structures s̄ = s0s1 . . . over the same
universe U , a valuation ν over U , and an FOLTL formula
ψ, we use the notation s̄, ν |= ψ if ψ holds for s̄ when the
free variables in ψ are interpreted by means of ν. For ψ with
free variables in X , we write w |= ψ if σ(τ), ρ |= ψ, for each
trace τ of w.

C. Noninterference

Noninterference is best formulated as a 2-hyperproperty [6],
that is, a property of pairs of traces. In our application, the
sequence of edges traversed by an execution of the workflow is
determined externally, i.e., independent of any oracle or choice
predicate. For instance in case of a conference management
system, it is up to the PC chair to decide when a particular
stage is complete and which next stage to execute. This means
that we are only interested in 2-hyperproperties where the
considered two traces follow the same control flow path, but
may differ in the sequences of attained states. This restriction
has also been imposed in [11], [10].

Consider traces τ = (u0, s0, β0), (u1, s1, β1), . . . and
τ ′ = (u0, s

′
0, β0), (u1, s

′
1, β1), . . . of the workflow w which

agree in their control flow paths, i.e., π(τ) = π(τ ′).
Then we can combine these into the sequence τ ⊗ τ ′ =
(u0, 〈s0, s′0〉, β0), (u1, 〈s1, s′1〉, β1), In order to reason
about the pairs of states attained in τ ⊗ τ ′, we introduce
a copy R′ = {R′ | R ∈ R} of the predicates in R and
assume that the states s′i are expressed by means of the
predicates in R′. Thus, we can combine each pair 〈si, s′i〉
of first-order structures into a single structure si ⊗ s′i over
R∪R′. The sequence s0⊗s′0, s1⊗s′1, . . . is also referred to as
σ(τ⊗τ ′). Given an FOLTL formula ψ over R ∪ R′, we write
w |=2 ψ if σ(τ ⊗ τ ′), ρ |= ψ for each pair of traces τ, τ ′ with

π(τ) = π(τ ′). We thus use FOLTL to specify trace properties,
as well as 2-hyperproperties such as noninterference.

Following [11], [10], noninterference is expressed from
the point of view of a single (but arbitrary) agent, and the
notions of high/low inputs/outputs from the standard defini-
tion of noninterference [13] are interpreted with respect to
this agent. Furthermore, the property is parameterized by an
assumption, called agent model, on the behavior of agents,
and by a declassification condition, which specifies when
and what information can be legitimately exposed. Therefore,
Noninterference with Declassification and Agent model (NDA)
is expressed by the FOLTL formula

agent_model → ∀a.
(
G eqOracles(a)

)
→
(
G eqObs(a)

)
where G is the LTL “globally” operator. The property states
that for any two traces, under a given agent model, for every
agent a, the noninterference property holds iff agent a is never
able to observe a difference between two executions that differ
only in the (non-declassified) inputs from the oracles:

eqObs(a) :=
∧
R∈Rwf

(
∀z̄. Raz̄ ↔ R′az̄

)
eqOracles(a) :=

∧
O∈Ro

∀z̄.
(
declassO(a, z̄)→ (O z̄ ↔ O ′z̄)

)
For each oracle predicate O , the formula declassO(a, z̄) using
predicates from R (not from R′) encodes a declassification
condition that specifies which tuples from O can be made
visible to a without causing a security breach. For our running
example, we use declassO(a, x, p, r) := ¬Conf(a, p).

D. Agent Model

For any agent, we consider two kinds of possible behav-
ior. One agent either stubbornly makes the same choices,
independently of its observations; or its choices may depend
on previous observations, i.e., it acts causally. These two
behaviors are captured by the following formulas, respectively.

stubborn(a) := G eqChoices(a)

causal(a) := eqChoices(a)W¬eqObs(a)

where

eqChoices(a) :=
∧

C∈Rc

(
∀z̄.Caz̄ ↔ C′az̄

)
and W denotes the “weak until” LTL operator. Note that
any stubborn agent is also a causal one, thus the causality
assumption allows for more behaviors. Therefore, the most
general agent model is when each agent is causal, while the
most restrictive model is when each agent is stubborn. In [10],
it has been shown that checking NDA for an unbounded
number of causal agents is undecidable.

We thus assume that the agent_model formula from the
formalization of NDA can be instantiated with one of the
following formulas:

agent_model (c,k) := ∃a1, . . . , ak.
(∧k

i=1 causal(ai)
)
∧(

∀a. (
∧k
i=1 a 6= ai)→ stubborn(a)

)
agent_model (c) := ∀a.causal(a)

where k ≥ 0. Note that agent_model (c,0) ≡ ∀a.stubborn(a).
We denote this formula by agent_model (s).

III. ENCODING AGENT MODELS AND DECLASSIFICATION

The key issue of NDA is to verify that only the same
observations are possible — on every trace satisfying the given
sanity requirements. Instead of formalizing these requirements
by means of temporal logic formulas, we introduce a fresh
agent variable a and transform the workflow w in such a
way that the resulting workflow, for any agent value of a,
simultaneously computes the states attained at two traces
sharing the same control flow path, and additionally enforces
the sanity requirements for a on these states. NDA then
amounts to verifying a universal invariant of the transformed
workflow. Next, we instantiate this idea for causal agents.

Assume we are given a workflow w (via its CFG), and
a variable a, corresponding to the agent of concern for
noninterference. We then construct a new workflow T (c)

a w
as follows. Let R′ denote the set of primed predicates R′

corresponding to the predicates R used by w. For a first-
order formula ϕ with predicates from R, let [ϕ]′ denote the
formula obtained from ϕ by replacing each predicate R ∈ R
with the corresponding predicate R′ in R′. Then each edge
(u, β, v) of w gives rise to one edge (u, T (c)

a β, v) in T (c)
a w

where the transformation T (c)
a on sequences of blocks is

the concatenation of the transformations of the individual
blocks b in β. For a given block b, the transformation T (c)

a b
is the sequence b1b2β′, where b1, b2 represent transformations
of b that handle the updates to workflow relations, while the
sequence β′ of blocks handles the causality assumption. To
define b1, b2, β′, we make a case distinction depending on the
type of the block b, i.e. whether or not it is a may-block, and
if not, whether or not it queries an oracle. If b is non-may
block, then β′ is the empty sequence.
Parallel Updates. For a non-may block b that does not contain
a query to an oracle, the transformed workflow will simply
contain updates to both copies of the relation. In this case, b1 is
equal to b and b2 is obtained from b by replacing every update
ϕ → R += z̄ by the update [ϕ]′ → R′ += z̄, and likewise,
every update ϕ→ R−= z̄ by the update [ϕ]′ → R′ −= z̄.
Declassification. For non-may blocks that query an oracle, the
transformed workflow needs to simulate the semantics of the
declassification conditions. Thus, the blocks b1, b2 are may-
blocks, where the predicates Cb1 , Cb2 serve as the possibly
distinct versions of the oracle on the two simulated traces.
Assume b is of the form forall x̄. stmts and contains a query
to the oracle O . Then block b1 equals forall x̄may. stmts1
where the sequence stmts1 is obtained from stmts by adding
two new updates for every update ϕ∧O x̄→ R+= ȳ in stmts:

ϕ→ R+= ȳ
[ϕ]′ ∧ declassO(a, x̄)→ R′ += ȳ

Moreover, b2 equals forall x̄may. stmts2 where the sequence
stmts2 is obtained from stmts by adding one new update for
every update ϕ ∧O x̄→ R+= ȳ in stmts:

[ϕ]′ ∧ ¬declassO(a, x̄)→ R′ += ȳ

This ensures that if declassification holds, then the updates to
R and R′ use the same predicate Cb1 , and otherwise they use
distinct ones (i.e. Cb1 and Cb2). In both b1 and b2, updates that
query the oracle, but remove tuples, are treated analogously.
Causality. The remaining case is when b is of the form
forall x, ȳ may. stmts . As agents are causal, they may make
different choices when executing such blocks, provided that
they have already observed a difference in the considered
traces. (In non-may blocks, no choices are made.) Therefore,
in order to capture causality, we introduce a new unary
predicate Informed(x), which is used to record all agents x
that have already made observations depending on secret
information — so their choices can diverge. Causality then
states that the corresponding choice relations must be the
equal for x whenever ¬Informed(x) holds. We will use the
predicates Cb1 , Cb2 to encode this conditional equivalence. In
case the choice relations should be equal, both updates will
only use Cb1 . Thus, blocks b1, b2 are obtained from b in the
following way: For each update ϕ→ R+= z̄ in b, the block
b1 contains the two updates

ϕ→ R+= z̄
[ϕ]′ ∧ ¬Informed(x)→ R′ += z̄

and b2 contains the update

[ϕ]′ ∧ Informed(x)→ R′ += z̄

Removals ϕ→ R−= z̄ are handled analogously. Finally, the
sequence β′ of blocks specifies how the Informed relation is
updated. Namely, for every statement ϕ → R += (x, ȳ) or
ϕ → R −= (x, ȳ), the sequence β′ contains a corresponding
block that handles the updates to the Informed relation:

forall x, ȳ. R x ȳ 6↔ R′ x ȳ → Informed += (x)

Example 4. Consider the block

forall x, p, r may. Assign(x, p)→ Review += (x, p, r)

Then the transformation results in the blocks

forall x, p, r may.
Assign(x, p)→ Review += (x, p, r)
Assign′(x, p) ∧ ¬Informed(x)→ Review′ += (x, p, r)

forall x, p, r may.
Assign′(x, p) ∧ Informed(x)→ Review′ += (x, p, r)

forall x, p, r.
Review(x, p, r) 6↔ Review′(x, p, r)→ Informed += (x)

The fact that the two updates to Review′ are split into two
blocks captures the semantics of causality. If x is informed,
the update will be done by the second block, and thus use
Cb2 — a (possibly) different predicate than the one used for
the update of Review. If not, the update will be done by the
first block and use the same Cb1 predicate that is used for the
update of Review.

The transformation for stubborn agents, denoted T (s)
a w, is

similar. It consists only of the first two cases of the transfor-
mation for causal agents. For completeness, it is described in
Appendix B.

The transformed workflow T (c)
a w (or T (s)

a w) captures all
pairs of traces of w that satisfy the causal (or stubborn) agent
model together with declassification, relative to a.

Theorem 1. Let w be a workflow. Then for each m ∈
{s, c} and for every FOLTL formula ψ using predicates from
Rwf ∪ R′wf possibly mentioning a, the following statements
are equivalent:
• w |=2 agent_model (m) → ∀a.

(
G eqOracles(a)

)
→ ψ(a)

• T (m)
a w |= ψ(a)

The proof is by establishing a simulation relation between
states s ⊗ s′ attained during a pair of traces of w satisfying
agent_model (m) ∧ G eqOracles(a), and states s̄ attained dur-
ing a corresponding trace of T (m)

a w.

IV. VERIFICATION OF INVARIANTS

We have now transformed NDA into a universal invariant on
the transformed workflow. In following sections we will now
focus on the problem of proving that a universal invariant
holds for a given workflow. In this section, we show that
for any given universal invariant, we can prove or disprove
inductiveness.

We let ∃∗FOL, ∀∗FOL, ∃∗∀∗FOL, and ∀∗∃∗FOL denote the
fragments of first-order logic (FOL) consisting of those for-
mulas whose prenex normal form equivalent has the quantifier
prefix of the respective form.

We call a workflow w guard-restricted iff for each of its
statements ϕ→ R±= ū, the FOL formula ϕ is in the ∃∗FOL
fragment. Guard-restrictedness will not affect the correctness
of our methods. For workflows that are not guard-restricted,
however, our methods will be incomplete. It is called leveled
if each predicate can be assigned a level in N so that (1) the
levels of all predicates updated in a block b agree, and (2) the
level of R is less than the level of S whenever R occurs in the
guard of an update to S. Intuitively, leveledness restricts how
information flows from one predicate into another so that only
predicates from lower levels may affect predicates on higher
levels. Absence of leveledness, though, will not affect the
correctness of our proposed methods. It rather will serve as one
ingredient for a sufficient condition under which termination
of our inference procedure can be guaranteed. In particular,
the workflow from Fig. 2 is guard-restricted and leveled.

We remark that leveledness is a real restriction only in
strongly connected components. For straight-line parts of
the workflow, each update of a relation R that (in)-directly
depends on R itself can be replaced by an update to a fresh
relation R′ that will be used to replace R in the following
blocks.

Weakest Preconditions. Let w be a workflow and let ψ be
any FOL formula with predicate symbols from Rwf . For a
block b, we define the weakest precondition of ψ for b, denoted
WP[[b]](ψ) by ∀Ab.(θbψ) where Ab is a second-order variable.
If b is a may block, then Ab is chosen as Cb. If b queries the
oracle O , then Ab = O. Otherwise, we may choose Ab as any
predicate symbol from Rc , as then ∀Ab.(θbψ) is equivalent to

θbψ. The transformation WP[[b]] for blocks is readily extended
to sequence β of blocks bh . . . b1 by

WP[[β]](ψ) = WP[[bh]](. . .WP[[b1]](ψ) . . .)
= ∀Aβ .(θβ ψ)

where Aβ is the sequence Abh , . . . , Ab1 of second-order
variables corresponding to the blocks in β. The next lemma
formalizes the intuition behind the WP[[·]] function.

Lemma 1. Let ρ be a valuation of the first-order variables
in X , let β be a sequence of blocks, and let s, s′ be states so
that (s, s′) ∈ nextβ . Then s′, ρ |= ψ iff s, ρ |= WP[[β]](ψ).

It is particularly convenient when for all sequences β label-
ing edges in the workflow w, WP[[β]] introduces no alternating
first-order quantifiers. In this case, we call w edge-uniform.
Edge-uniformity is, e.g., granted whenever the workflow is
guard-restricted and has at most one block per edge (which
is naturally provided by the standard representation of the
workflow as a control flow graph). 1 Edge-uniformity is also
preserved by the transformations introduced in Section III
(Assuming that all declassification conditions are in ∃∗FOL).
Therefore, it is a reasonable assumption in our context. A
workflow is then called uniform if it is edge-uniform and
also within each strongly connected component of w, every
modified relation is either only modified by +=, or only by
−=. Intuitively, uniformity implies that predicates will change
only monotonically inside loops. Again, this restriction will
not affect the correctness of our methods, but rather form the
second ingredient of our sufficient condition for termination
of the inference algorithm. The workflow from Fig. 2 is both
edge-uniform and uniform.

Invariants. An invariant is an assignment Φ which maps
each program point u of the workflow to a first-order formula
Φ[u] over predicates in Rwf with free variables from X . An
invariant Φ is universal if each formula Φ[u] is in ∀∗FOL. It
is valid if Φ[u] holds whenever program point u is reached
on a trace starting in (u0, s0) for some initial state s0, i.e.,
s0, ρ |= ϕ0. The invariant Φ of w is inductive iff for every
edge (u, β, v) of the workflow, Φ[u] → WP[[β]](Φ[v]) holds.
Then an inductive invariant Ψ is valid iff ϕ0 → Ψ[u0] holds.

Theorem 2. Let w be an edge-uniform workflow and Φ
a universal invariant. It is decidable whether or not Φ is
inductive and ϕ0 → Φ[u0] holds.

We remark that the restriction to edge-uniform workflows
can be lifted by means of the abstraction techniques provided
in the next section — leading to an incomplete verification
method for universal invariants on unrestricted workflows.

Proof. Equivalently, we check whether ϕ0∧¬Φ[u0] as well as
Φ[u]∧¬WP[[β]](Φ[v]) are unsatisfiable, for each edge (u, β, v)
of the workflow. We focus on the latter formula, as the other
case is similar. Since w is edge-uniform and Φ[v] is a universal

1A scenario where there is more than one block per edge corresponds to
the situation where we are interested in properties only at specific program
points.

formula, WP[[β]](Φ[v]) is of the form ∀Aβ .∀ȳ.ψ where ψ
has only existential first-order quantifiers, i.e., is contained in
∃∗FOL. Therefore, ¬WP[[β]](Φ[v]) is given by

∃Aβ .∃ȳ.¬ψ

where ¬ψ is in ∀∗FOL. Since the only second-order quantifiers
in Φ[u] ∧ ¬WP[[β]](Φ[v]) are the existential quantifiers for
the variables in Aβ , satisfibility of this formula is equiv-
alent with satisfiability of a first order-formula consisting
of two conjuncts, one in ∀∗FOL (namely, Φ[u]) and the
other in ∃∗∀∗FOL. So its unsatisfiability can be effectively
checked [5].

V. INFERRING INDUCTIVE INVARIANTS

Unfortunately, not every invariant is naturally inductive.
Thus, in this section we show how to compute a strengthening
of a given universal invariant that is inductive.

Assume that we want to verify an assignment Ψ0 of program
points to assertions for an arbitrary workflow w, i.e., verify that
Ψ0[u] holds whenever the program point u of the workflow w
is reached. Such a certificate can be obtained from an inductive
invariant Ψ of w so that

(a) Ψ[u]→ Ψ0[u] for all program points u; and
(b) ϕ0 → Ψ[u0] for the start point u0 of w.

In case that Ψ0[u] = ψ for all u, we then have verified that
Gψ holds for the given workflow w. The required inductive
invariant Ψ (if it exists) may be complicated and not easy to
guess. As in the last section, we restrict ourselves to universal
inductive invariants using predicates of the workflow only.
This means that we are interested in the refined question:
Can the assignment Ψ0 be certified by a universal inductive
invariant?

In light of requirement (b), it thus suffices to determine
the weakest universal inductive invariant Ψ̄ satisfying require-
ment (a). Given that this invariant exists and is computable,
then the assignment Ψ0 can be certified by means of a
universal inductive invariant iff ϕ0 → Ψ̄[u0].

In order to determine Ψ̄, we put up the constraint system C:

X[u]→ Ψ0[u] (1)
X[u]→WP[[β]](X[v]) if (u, β, v) is an edge of w (2)

where the unknown X[u] represents the potential formula
assigned to program point u. By definition, any assignment X
satisfying all constraints (2) is inductive where property (a)
for X is expressed by the additional constraint (1). The set
of universal formulas (modulo semantic equivalence) forms a
lattice, when implication is seen as the ordering relation v.
W.r.t. this ordering, the greatest and least elements > and ⊥
are represented by the formulas true and false , respectively.
Likewise, the greatest lower bound of a finite set of formulas
is given by their conjunction. The lattice is, however, not
a complete lattice, i.e., not all sets of formulas necessarily
have a greatest lower bound. In particular, it may have infinite

decreasing chains — at least if there are two or more binary
predicates E and T . To see this, consider the formulas

ck = (E(x0, x1) ∧ . . . ∧ E(xk−1, xk))→ T (x0, xk)

ϕk = ∀x0, . . . , xk. c0 ∧ . . . ∧ ck

for k ≥ 1. Then all formulas ϕk are pairwise inequivalent,
while at the same time ϕk+1 → ϕk for all k ≥ 1 holds.
In general, it is thus not guaranteed that a greatest solution
(corresponding to the weakest inductive invariant) exists. In
order to come up with practical means for solving system C
at least in some cases, we consider two useful constructions,
namely an abstraction technique of existential (first-order)
quantifiers, and an algorithm for eliminating second-order
universal quantifiers. These two techniques will allow us to
further simplify the right-hand sides in the constraints of C.

A. Approximating First-Order Existential Quantification

Consider a sequence of blocks β occurring in an edge label
of the workflow w. Then the substitution θβ may introduce
fresh existential as well as fresh universal quantifiers. Since we
are interested in universal inductive invariants only, our goal is
to systematically remove the occurring existential quantifiers.
We find:

Theorem 3. For every formula ψ with free variables from X ,
a formula ψ] can be constructed using universal quantification
only so that the following two properties are satisfied:
(1) ψ] → ψ;
(2) If ψ is in ∀∗∃∗FOL, then ϕ→ ψ] holds for every universal

formula ϕ with free variables from X such that ϕ→ ψ.

In light of the second statement of Theorem 3, the formula
ψ] can be seen as the uniquely determined weakest strength-
ening of formulas ψ in ∀∗∃∗FOL to a universal formula. The
formula ψ] is called the universal abstraction of ψ.

Proof. W.l.o.g., let us assume that ψ is in negation normal
form (i.e., using conjunction and disjunction as only boolean
connectives, and negation only applied to atomic propositions),
and that nested universally bound variables are distinct.

We proceed by induction on the structure of ψ. For that, we
introduce a transformation [.]]X′ on subformulas of ψ, for a
set X ′ of variables intended to be those free variables in the
current subformula which are universally quantified in ψ. Then
ψ] is defined as [ψ]]X . The transformation [.]]X′ is defined as
follows:

[∀x.ψ′]]X′ = ∀x.[ψ′]]X′∪{x}
[∃y.ψ′]]X′ =

∨
x∈X′ [ψ′]

]
X′ [x/y]

[ψ1 ∨ ψ2]]X′ = [ψ1]]X′ ∨ [ψ2]]X′

[ψ1 ∧ ψ2]]X′ = [ψ1]]X′ ∧ [ψ2]]X′

[ψ′]]X′ = ψ′ otherwise

We claim that ψ] implies ψ. For that, we prove for each
finite subset X ′ of variables X ′ and each subformula ψ′, that
[ψ′]]X′ → ψ holds. The proof is by induction on the structure
of ψ′. The only interesting case is when ψ′ is of the form

∃y. ψ′′. By induction hypothesis, [ψ′′]]X′ → ψ′′ holds. Thus,
also [ψ′′]]X′ [x/y] → ∃y. ψ′′ holds for each x ∈ X ′. From that
the claim follows for ψ′.

For statement (2), consider any formula ϕ with
ϕ → ψ. Then ϕ ∧ ¬ψ is unsatisfiable. Let ψ equal
∀x1, . . . , xr.∃y1, . . . , ys.ψ′ with ψ′ quantifier-free. Then

∃x1 . . . xr. (ϕ ∧ ∀y1 . . . ys.¬ψ′)

must be unsatisfiable. Since that formula is equisatisfiable with

∃x1 . . . xr. (ϕ ∧
∧r
i1=1 . . .

∧r
is=1 ¬ψ′[xi1/y1, . . . , xis/ys])

this implies that also ϕ∧¬(ψ]) is unsatisfiable. Consequently,
ϕ→ ψ] holds.

Applying Theorem 3 to our setting, we find:

Corollary 1. Assume that β is a sequence of blocks so
that WP[[β]](ψ′) is of the form ∀Ah, . . . , A1.ψ

′′ for some
formula ψ′′ in ∀∗∃∗FOL. Then ψ → WP[[β]](ψ′) iff ψ →
∀Ah, . . . , A1.(ψ

′′)] holds.

Proof. It suffices to prove that ψ ∧ψ′′ is unsatisfiable iff ψ ∧
(ψ′′)] is unsatisfiable. That, however, follows from Theorem 3.

We remark that the abstraction function (. . .)] commutes with
substitutions.

Lemma 2. Let ψ,ϕ be formulas, R a predicate of arity r,
and x̄ the sequence of variables x1 . . . xr. Let θ1, θ2 denote
the substitutions Rx̄ 7→ Rx̄ ∨ ϕ and Rx̄ 7→ Rx̄ ∧ ¬ϕ. Then
the following holds:

1) (θ1ψ)] = (θ1(ψ]))];
2) (θ2ψ)] = (θ2(ψ]))].

When universal invariants are of concern, Lemma 2 implies
that it does not make a difference whether we abstract first
and apply substitutions later, or postpone the abstraction to
the very end.

We remark that the given technique for strengthening formu-
las with existential quantifiers by means of universal formulas
only, can be applied to prove a given universal invariant
inductive — irrespective of whether the workflow is edge-
uniform or not.

B. Eliminating Second-Order Universal Quantification

Now consider a sequence of blocks β occurring in an
edge label of the workflow w, which is either a may block
or queries an oracle. Then the weakest precondition WP[[β]]
introduces universal quantification over some predicates Aβ ,
not mentioned by the workflow and thus also not mentioned
by any of the formulas assigned to program points u or v.
In the following, we provide a method for eliminating such
second-order quantifications.

Fact 1. The clause

∀A. Az̄1 ∨ . . . ∨Az̄r ∨ ¬Az̄′1 ∨ . . . ∨ ¬Az̄′s (3)

for sequences z̄i, z̄′j of variables is equivalent to
r∨
i=1

s∨
j=1

z̄i
.
= z̄′j (4)

where the equality between sequences of variables equals the
conjunction of the equalities between corresponding variables.

Proof. Let us fix some values for the occurring first-order
variables. First assume that the formula (4) holds (w.r.t. that
variable assignment). Then there are some i, j so that the
conjunction of equalities z̄i

.
= z̄′j holds. Then Az̄i ∨ ¬Az̄′j is

equivalent to true for every predicate A. Therefore, formula
(3) holds as well. For the reverse implication, assume that (4)
does not hold for the given variable assignment. Then for all
i, j, the sequences zi, z′j are different. Then some predicate
A exists so that Az̄i is false for all i, and Az̄′j is true for
all j. For that particular predicate A and the given variable
assignment, the clause Az̄1 ∨ . . .∨Az̄r ∨¬Az̄′1 ∨ . . .∨¬A′z̄′s
is false . Therefore, formula (3) evaluates to false as well, thus
proving the reverse implication.

Universal quantification generally satisfies the following laws:

∀A. ϕ1 ∧ ϕ2 = (∀A.ϕ1) ∧ (∀A.ϕ2) (5)
∀A. ϕ1 ∨ ϕ2 = ϕ1 ∨ (∀A. ϕ2) if A does not occur in ϕ1 (6)

Therefore, Fact 1 gives rise to an effective second-order
quantifier elimination.

Theorem 4. Assume that ψ is a quantifier-free formula. Then
a quantifier-free formula ψ′ can be constructed so that ψ′ ↔
∀A.ψ holds.

Proof. Assume, w.l.o.g., that ψ is in conjunctive normal form.
Since universal quantification distributes over conjunctions,
we may apply quantifier elimination to each clause c of ψ
separately. Any given clause c can be written as c1∨ c2 where
c1 does not contain occurrences of A and c2 collects all literals
with predicate A. Then ∀A. c is equivalent to c1 ∨ c′2 where
c′2 is determined from c2 according to Fact 1. This completes
the construction.

The proposed procedure for second-order quantifier elimina-
tion is not new (Isabelle, e.g., easily verifies Fact 1). Implicitly,
our procedure can be considered as a particular instance of the
SCAN algorithm [12], [14].

Let ψ be quantifier-free and in conjunctive normal form. A
predicate A covers another predicate A′ in ψ if the following
two properties are met by all clauses c of ψ:

1) Whenever c has a literal A′z̄, then c also has a literal Az̄;
2) Whenever c is of the form c′ ∨ ¬A′z̄, then c′ ∨ ¬Az̄ is

also a clause of ψ.

Lemma 3. Let A,A′ be two predicates in ψ so that A covers
A′. Let ψ′ be obtained from ψ by removing all literals A′z̄ and
all clauses containing ¬A′z̄. Then ∀A,A′. ψ is equivalent to
∀A. ψ′.

Proof. The idea is that all conjunctions of equalities z̄ .
= z̄′

introduced into clauses by removal of universal quantification

over A′ are already introduced by universal quantification
over A.

C. The Fixpoint Iteration

In light of the constructions from the last two subsections,
we introduce the abstracted constraint system C] consisting of
the constraints:

X[u] → Ψ0[u]
X[u] → ∀Aβ(θβX[v])] if (u, β, v) is an edge of w

According to our assumptions, Ψ0[u] is a universal formula us-
ing the predicates from the workflow w only. By applying the
abstraction of existentials, followed by second-order quantifier
elimination, each evaluation of a right-hand side of C] on a
given assignment X returns a universal first-order formula. For
h ≥ 0, let X(h) denote the assignment of program points to
formulas which is attained after h rounds of fixpoint iteration,
i.e., X(0)[u] = Ψ0[u], and for h > 0,

X(h)[u] = Ψ0[u]∧
∧
{∀Aβ . (θβ(X(h−1)[v]))] | (u, β, v) edge}

For a block b, let θ(j)b denote the substitution corresponding
to b where the predicate variable Ab is substituted with the
predicate Aj (of appropriate arity). Moreover, let Π(h)[u, v]
denote the set of sequences of blocks occurring on paths of
length at most h starting from u and reaching v. Then we have

Lemma 4. For every h ≥ 0 and every program point u,

X(h)[u] =
∧
{∀Am . . . A1.(θ

(m)
bm

. . . (θ
(1)
b1

Ψ0[v]) . . .)] |

bm . . . b1 ∈ Π(h)[u, v]} (7)

Proof. The proof is by induction on h. For h = 0, Π(0)[u, u]
consists of ε only, and Π(0)[u, v] = ∅ for u 6= v. Since
X(0)[u] = Ψ0[u], the claim follows. Now assume that the
assertion is true for h− 1. We have the sequence of equalities
given in Figure 4, where equality (∗) follows by distributivity
of substitutions and (. . .)] with ∧ and compatibility of (. . .)]

with substitutions.

Lemma 4 assures that after h rounds of fixpoint iteration, a
formula at u is attained which is the weakest universal pre-
condition of Ψ0 w.r.t. paths of length at most h. Furthermore,
due to Theorem 4, all second-order quantifiers therein can
be eliminated. Thus, the only reason why fixpoint iteration
for constraint system C] may not terminate, is that an ever
growing number of first-order universally quantified variables
is introduced. We obtain:

Theorem 5. Assume that w is a workflow, and Ψ0 is an
initial assignment of program points to universal formulas
using predicates from w only. Assume further that during the
fixpoint iteration for the constraint system C] only finitely many
universally quantified first-order variables are introduced.
Then the iteration terminates with an assignment Ψ such that
the following holds:
(1) Ψ is a universal inductive invariant of w with Ψ[u] →

Ψ0[u] for all program points u of w.

X(h)[u] = Ψ0[u] ∧
∧
{∀Ab1 . . . Abµ .(θb1(. . . (θbµ X

(h−1)[u′]) . . .))] | (u, b1 . . . bµ, u′) edge}
= Ψ0[u] ∧

∧
{∀A1 . . . Aµ.(θ

(1)
b1

(. . . (θ
(µ)
bµ

X(h−1)[u′]) . . .))] | (u, b1 . . . bµ, u′) edge}
= Ψ0[u] ∧

∧
{∀A1 . . . Aµ.(θ

(1)
b1

(. . . (θ
(µ)
bµ

∧
{∀A1 . . . Am.(θ

(1)
bµ+1

(. . . (θ
(m)
bµ+m

Ψ0[v]) . . .))] |
bµ+1 . . . bµ+m ∈ Π(h−1)[u′, v]}) . . .))] | (u, b1 . . . bµ, u′) edge} by IH

= Ψ0[u] ∧
∧
{∀A1 . . . Aµ.(θ

(1)
b1

(. . . (θ
(µ)
bµ

∧
{∀Aµ+1 . . . Aµ+m.(θ

(µ+1)
bµ+1

(. . . (θ
(µ+m)
bµ+m

Ψ0[v]) . . .))] |
bµ+1 . . . bµ+m ∈ Π(h−1)[u′, v]}) . . .))] | (u, b1 . . . bµ, u′) edge}

= Ψ0[u] ∧
∧
{∀A1 . . . Aµ+m.(θ

(1)
b1

(. . . (θ
(µ+m)
bµ+m

Ψ0[v]) . . .))] |
bµ+1 . . . bµ+m ∈ Π(h−1)[u′, v], (u, b1 . . . bµ, u

′) edge} (∗)
= Ψ0[u] ∧

∧
{∀A1 . . . Aµ+m.(θ

(1)
b1

(. . . (θ
(µ+m)
bµ+m

Ψ0[v]) . . .))] | b1 . . . bµ+m ∈ Π(h)[u, v]}

Figure 4. Equalities used in the proof of Lemma 4.

(2) If w is guard-restricted, then Ψ is the weakest assignment
with property (1).

Still, it is desirable to have widely applicable structural con-
ditions which are sufficient for guaranteeing termination of
fixpoint iteration.

VI. TERMINATION

In this section we show that fixpoint iteration for the
constraint system C] terminates for workflows which are both
uniform and leveled. Intuitively, this sufficient condition means
that inside strongly connected components of the control flow
graph for w, each predicate either only increases or only
decreases, and no guard of such a modification of a predicate
R, directly or indirectly depends on R itself.
Termination of fixpoint iteration even for uniform and leveled
workflows is by no means trivial, as each application of the
weakest precondition operator may introduce further univer-
sally quantified variables. Here is our main technical theorem.

Theorem 6. Assume that the workflow w is uniform and
leveled, and Ψ0 is an initial assignment of program points to
universal formulas using predicates of w only. Then there is
a weakest universal inductive invariant Ψ with Ψ[u]→ Ψ0[u]
for all program points of w. Moreover, Ψ can be effectively
computed.

Proof. Every inductive invariant Ψ′ so that Ψ′[u]→ Ψ0[u] for
all program points u, is a solution of the constraint system C].

By Lemma 4, the formula X(h) is equivalent to a con-
junction of formulas ∀Ah′ . . . A1.((θh′ ◦ . . . ◦ θ1)Ψ0[v])]. By
Theorem 7, each such formula is equivalent to a similar
formula, where the number of applied substitutions is bounded
by some fixed number M . Up to logical equivalence, there are
only finitely many of such formulas. Accordingly, for each
program point u and each h ≥ 0, there are only finitely
many possible values for X(h)[u]. Therefore, for some h ≥ 0,
X(h+1)[u] ↔ X(h)[u] for all program points u. In that case,
X(h) represents the greatest solution of C] and therefore is the
desired weakest inductive invariant.

Theorem 6 does not require the workflow w to be guard-
restricted. In case that w makes use of arbitrary first-order
quantification in guards, the algorithm still is guaranteed to

terminate. However, it will terminate with some universal
inductive invariant — not necessarily the weakest.

Assume that the set of predicates Rwf comes together with
an assignment of levels. Assume further that we are given
a finite set B of blocks b, each of which gives rise to a
substitution θb of a subset of predicates which are all of the
same level i. In that case, we say that i is the level of b.
Let Θ denote the set of all these substitutions. For i ≥ 1, let
Ai denote a sequence of fresh distinct predicate names. For
a sequence β = bh . . . b1 of blocks, let θβ = θh ◦ . . . ◦ θ1
where θi is obtained from the substitution θbi for block bi by
replacing the predicate Abi (if present) with Ai.

Theorem 7. Let m be the maximal number of distinct substi-
tutions in Θ. Furthermore, let r denote the number of levels of
predicates in Rwf . Assume that ψ is a first-order formula with
predicates from Rwf . Assume that θβ = θh ◦ . . . ◦ θ1 is a se-
quence of substitutions corresponding to a sequence of blocks
β of length h. Then there is a sub-sequence θ′ = θj1 ◦ . . .◦θjl
of θβ with l < (1 + m

r)r such that the following equivalence
holds.

∀A1 . . . As. (θβψ)] ≡ ∀Aj1 . . . Ajl . (θ′ψ)] (8)

The proof is based on the observation that the substitution
corresponding to the same block b may produce only finitely
often new contributions to the composition — at least, if the
corresponding second-order quantifiers are later eliminated.
The full proof can be found in Appendix C.

VII. APPLICATION TO NONINTERFERENCE

As a warm-up, let us consider stubborn agents only. Assume
that the guard-restricted workflow w is uniform and leveled.
Then the same is true for the transformed workflow T (s)

a w
which takes care of stubbornness of agents and declassifica-
tion relative to a. Accordingly, we obtain as applications of
Theorem 6:

Theorem 8. Consider a workflow w which is uniform and
leveled, and assume that all agents participating in w are
stubborn. Assume furthermore that all declassification predi-
cates declassO(a, x̄) are quantifier-free. Let a be some agent
variable and Ψ0 an assignment of the nodes of w to universal

formulas using predicates from Rwf ∪R′wf and free variables
from {a} ∪ X . Then

(1) T (s)
a w is again uniform and leveled.

(2) A universal inductive invariant Ψ of T (s)
a w can be effec-

tively constructed so that Ψ[u] → Ψ0[u] for all program
points u.

(3) If w is guard-restricted then the invariant Ψ from (2) can
be chosen as the weakest universal invariant with that
property.

Corollary 2. For a given workflow w which is uniform
and leveled, it is decidable whether there exists a universal
invariant that implies NDA of w for agent_model (s).

We would like to apply the same strategy to certify noninter-
ference also for causal agents. Again assume that the workflow
w is uniform and leveled. The workflow T (c)

a w then, however,
is no longer leveled. This is due to the auxiliary informedness
predicate Informed introduced by T (c)

a . That predicate is
queried at the update of every predicate R′, R ∈ Rwf , and
likewise its update is guarded by formulas which also depend
on R′. Still, we then can apply the given fixpoint iteration —
which, however, is no longer guaranteed to terminate. Thus,
we obtain an incomplete method to certify non-interference for
agent model agent_model (c). The potential non-termination,
however, does not come as a surprise as noninterference in
general is undecidable for an unbounded number of causal
agents [10]. Interestingly, the situation is different when only
a fixed bounded number of agents behaves causally, while all
others behave stubbornly.

Assume that at most k ≥ 0 behave causally, while all other
agents are stubborn. Our goal is again to modify the workflow
in order to take care of the agent model and declassification.
In case of at most k causal agents, the informedness predicate
may receive only finitely many values. That finite value
therefore can be encoded into the program points of the
transformed workflow. Updates to informedness then show up
as guards as last actions at a control flow edge. These thus
now have the form (u, βg, v) for some first-order formula g —
with the intended semantics that the edge can only be taken if
the state s attained after executing the blocks in β, satisfies g,
i.e., s, ρ |= g. Accordingly, the weakest precondition operator
for g is defined by WP[[g]](ψ) = ¬g ∨ ψ.

Let y1, . . . , yk denote a sequence of k distinct fresh vari-
ables. Consider a block b of w, of an edge (u, β, v) of w. For
simplicity, we assume that b is the only block at this edge, i.e.,
β = b. Let Y, Y ′ ⊆ {y1, . . . , yk}, Y ⊆ Y ′, denote the subsets
of agents which are informed before and after executing the
block b, respectively.

First, assume that b is not a may block. Then T (c)
Y,Y ′b is

defined analogously to T (c)b — with the major difference that
now a guard gY,Y ′ is introduced to take care of the required
update of informedness. Thus, T (c)

Y,Y ′b = βgY,Y ′ where the
sequence of (one or two) blocks β is defined analogously to

the corresponding blocks in T (c), and the guard gY,Y ′ is the
conjunction of formulas

yj ∈ Y ∨ ∃ z̄.Ryj z̄ 6↔ R′yj z̄

for all yj ∈ Y ′ and predicates R updated in the block b. Here,
the expression yj ∈ Y is a shortcut for

∨
yi∈Y yj

.
= yi.

Now assume that b is of the form forall x, x̄′. may stmts.
Then T (c)

Y,Y ′b = b1b2gY,Y ′ where the blocks bi, with i ∈ {1, 2},
are of the form forallx, x̄′. may stmtsi where for every update
ϕ→ R+= z̄ of stmts, stmts1 has the statements

ϕ→ R+= z̄
[ϕ]′ ∧ (x 6∈ Y)→ R′ += z̄

and stmts2 has the statement

[ϕ]′ ∧ (x ∈ Y) → R′ += z̄

An update ϕ→ T−=z̄ is treated analogously. Here, the guard
gY,Y ′ is defined identically as for non-may blocks.

The new workflow T (c,k)w then consists of all control flow
edges

(〈u, Y 〉, T (c)
Y,Y ′β, 〈u, Y ′〉)

for edges (u, β, v) of w and Y, Y ′ ⊆ {y1, . . . , yk} with
Y ⊆ Y ′. The size of the resulting workflow has increased by
a factor of 2k. All occurrences of the predicate Informed , on
the other hand, have disappeared — implying that T (c,k)w
is leveled whenever w is leveled. Moreover, all guards g
occurring in T (c,k)w are contained in ∃∗FOL, implying that
the transformation preserves edge-uniformity. The correctness
of the transformation can be proven along the same lines as
Theorem 1. Theorem 6 can still be applied, since the only
guards introduced inside strongly connected components are
of the form gY,Y — and thus always equivalent to true .
Therefore, we finally obtain:

Theorem 9. Consider a workflow w which is uniform and
leveled, and assume that k ≥ 0 of the agents participating
in w are causal, while all other agents are stubborn. Assume
furthermore that all declassification predicates declassO(a, x̄)
are quantifier-free. Then for some agent variable a and an
assignment Ψ0 of universal formulas using predicates from
Rwf ∪R′wf and free variables from {a} ∪ X to the nodes of
w, the following holds.

(1) T (c,k)
a w is again uniform and leveled.

(2) A universal inductive invariant Ψ of T (c,k)
a w can be

effectively constructed so that Ψ[u] → Ψ0[u] for all
program points u.

(3) If w is guard-restricted, the invariant Ψ from (2) can
be chosen as the weakest universal invariant with that
property.

Corollary 3. For every k ≥ 0 and a given workflow w which is
uniform and leveled, it is decidable whether there exists a uni-
versal invariant that implies NDA of w for agent_model (c,k).

VIII. EXPERIMENTAL EVALUATION

We have implemented our approach into the tool NIWO-
invariants. The source code together with all examples can
be found on the authors’ website . As input the tool takes
the specification of a workflow together with declassification
conditions and the agent model where we consider all stubborn
or all causal agents only. It then encodes agent model and
declassification conditions into the workflow and solves the
corresponding constraint system C]. The resulting verifica-
tion conditions in ∃∗∀∗FOL are then strengthened further by
replacing equalities with false . This allows to encode the
syntactically occurring literals as propositional variables and
thus reduce the verification conditions to boolean satisfiability
problems. These are then checked by Z3 [8].

Experiments. We used several variations of a conference
management system to showcase the properties of our ap-
proach. Conference_linear is the motivating example used in
[11]. It is a simpler version of the workflow from Example 2,
which does not use loops, and already exhibits an attack for
causal agents. Thus, no invariant exists that proves NDA when
considering causal agents. Conference_linear_fixed is the fixed
version presented by the authors. It is a naturally omitting
workflow, which could not be dealt with automatically by
previous work. It can now be proven safe by our tool. Confer-
ence_omitting is the omitting workflow from Example 2. Our
implementation proves it safe for stubborn agents. It cannot
be proven safe for causal agents, as there is a possible attack.
Conference_omitting_fixed is a modification which excludes
the given attack. This example is again omitting, and so could
not be dealt with automatically so far. Our tool is able to prove
it safe. Conference_nonomitting is the motivating example
used in [10]. It is an non-omitting variant of Example 2, and
accordingly less realistic. It also exhibits an attack for causal
agents, but can be proven safe for stubborn ones. All these
workflows except the fixed versions, are uniform and leveled.

Results. Our tool is able to prove safe all examples that do
not exhibit attacks. Interestingly, even though termination is
not guaranteed for causal agents or for non-leveled workflows,
our tool still terminated on all examples we considered.
The results of the experiments are shown in Fig. 5. The
first columns give workflow type (omitting/non-omitting), the
size of the workflow (the number of blocks the workflow
consists of, not counting choice and loop constructs), and the
considered agent model. The result is marked as valid iff our
tool could find a strengthened universal inductive invariant
that implies NDA and it is marked as invalid otherwise.
The number of strengthenings (column #Str.) is the maximal
number of updates of assertions at program points. The size of
the largest/average assertion (columns Max./Avg. inv.) is the
number of nodes in the formulas’ abstract syntax trees. The
last column reports the time (in milliseconds) for checking
validity (averaged over 10 runs).

All experiments were carried out on a desktop machine
using an Intel i7-3820 clocked at 3.60 GHz with 15.7 GiB

of RAM and running Debian. As expected of a modern
satisfiability solver, Z3 was able to check the satisfiability
of our formulas easily even though the size of the resulting
boolean formula is exponential in the maximum universal
quantifiers per block and the number of strengthenings needed.
For stubborn agents, all examples terminated after at most
2.5 seconds. For causal agents, the number of strengthenings
increased and invariants became significantly larger. Still, all
examples terminated within at most 22 seconds.

Comparison to other tools. The only tool for automatic
workflow verification we are aware of is NIWO, described in
[10]. It implements a procedure to verify NDA by compiling
it to an equisatisfiable LTL formula to be checked by an off-
the-shelf LTL satisfiability solver. As it is not able to deal with
omitting workflows, it can only be applied to a more restricted
class of workflows. It is also not able to deal with the agent
model where all agents are causal, but only applicable to a
fixed number of causal agents. In contrast, our tool is able
to find a universal invariant that implies NDA. In addition,
our tool is faster than NIWO on all examples they can both
be applied to. While NIWO takes several seconds to several
minutes to solve even comparatively simple examples, our tool
handled all examples in a fraction of the time.

IX. RELATED WORK

The work closest to ours is [10], which we have already
discussed in the introduction and throughout the paper. The
workflow model for web-based systems that we use has been
introduced in [11]. That workflow language did not have a
loop construct and it thus enabled a bounded model check-
ing approach for verification. Generally, there is a growing
interest in verifying infinite-state or parametric systems via
a formalization in first-order logic. One such attempt is the
programming language Ivy [20], which has been used to
model and check a variety of parameterized systems, for
instance the Paxos protocol [19]. Ivy is similar to the workflow
language considered here in that its only data structure are
finite relations. As in our work, the language restricts its
statements in such a way that checking whether universal
invariants are inductive reduces to checking the satisfiability
of an ∃∗∀∗FOL formula. However, in contrast to our work, Ivy
restricts the control flow to a single loop. Furthermore, there
is no attempt to infer invariants. Another recent verification
approach is present in the VeriCon system [2], which has
been proposed for describing and verifying the semantics of
controllers in software-defined networks. The semantics of
the underlying language is also specified, as in our work, in
terms of relations. However, as detailed in [10], the semantics
in [2] and that of workflows differ and cannot easily simulate
one another. Network invariants are checked with Z3 and
iteratively strengthened if they are not inductive — without
providing termination guarantees.

First-order transition systems have also been used in other
domains, such as AI, where an application is to model reach-
ability problems that arise in robot planning. For instance,

Name Type Size Model Result #Str. Max. inv. Avg. inv. Time
Conference_linear non-omitting 4 stubborn valid 3 179 75 338 ms
Conference_linear non-omitting 4 causal invalid 3 1670 562 1537 ms
Conference_linear_fixed omitting 5 stubborn valid 4 247 84 322 ms
Conference_linear_fixed omitting 5 causal valid 4 4285 1107 2352 ms
Conference_omitting omitting 6 stubborn valid 5 220 81 347 ms
Conference_omitting omitting 6 causal invalid 7 2615 1066 2924 ms
Conference_omitting_fixed omitting 7 stubborn valid 6 709 202 1059 ms
Conference_omitting_fixed omitting 7 causal valid 8 9226 2132 5450 ms
Conference_nonomitting non-omitting 4 stubborn valid 5 585 195 2170 ms
Conference_nonomitting non-omitting 4 causal invalid 9 60359 19781 21488 ms

Figure 5. Experimental Results

GOLOG [16] is a programming language based on first-
order language designed for representing dynamically chang-
ing systems. A GOLOG program specifies the behavior of the
agents in the system. The program is then evaluated with a
theorem prover, and thus assertions made in the program can
be checked for validity. The problem of inferring inductive
invariants in first-order transition systems is more challenging
that of invariant checking, and has received less attention in
the context of first-order transitions systems. [18] considers
precisely this problem, for certain classes of transition systems
for which the transition relation is given by formulas in the
∃∗∀∗FOL fragment together with a background theory. The
authors show, in particular, that inferring universal induc-
tive invariants is decidable when the transition relation is
expressed by formulas with unary predicates and a single
binary predicate restricted by the background theory of singly-
linked-lists. The same problem becomes undecidable when the
binary symbol is not restricted by a background theory. In
our work, the termination argument relies on also imposing
certain constraints on the structure of the transition system (in
particular, workflows are leveled), rather than on the formulas
alone.

Business processes are another type of multi-agent workflow
systems in which agents perform activities in a predefined
flow. In contrast to the workflows considered here, where
workflow steps are executed synchronously by a set of agents,
in business processes activities are executed asynchronously.
Information flow in business processes has been considered,
e.g., in [3], which uses the MASK framework for possibilistic
information flow security [17] to manually prove the absence
of information leaks. Concrete workflow systems, such as
conference management systems [15], [1], or a social media
platform [4], have recently been proposed and analyzed. In
contrast to these works, which focus on the verification of
one specific system, we propose a verification approach for
arbitrary workflows.

X. CONCLUSION

The goal of this paper was to provide methods for verifying
complex NDA properties in practically relevant workflows. We
proceeded in two steps. First, we simplified NDA by encoding

execution of two traces together with both the agent model and
declassification into the workflow. For verifying the simplified
property, we then relied on inductive universal invariants of the
resulting workflows. For checking inductiveness as well as for
inferring inductive invariants, we found it useful to abstract
arbitrary formulas by universal formulas. We also applied a
complete method for second-order quantifier elimination. For
a non-trivial class of workflows, we thus succeeded to compute
the best, i.e., weakest universal invariant which is inductive.
We practically evaluated these methods on example workflows,
which formalize non-trivial aspects of conference management
systems. On these examples, our algorithms turned out to be
surprisingly fast. It remains open whether one can extend
the class of workflows for which best inductive universal
invariants can be inferred. Also, more experimentation is
required to better evaluate how well the proposed methods
work in practice. It would also be interesting to search for
further agent models possibly occurring in practice.

Acknowledgments.: This work was partially supported by
the German Research Foundation (DFG) under the project
“SpAGAT” (grant no. FI 936/2-1) in the priority program “Re-
liably Secure Software Systems - RS3” and in the doctorate
program “Program and Model Analysis - PUMA” (no. 1480).

REFERENCES

[1] Arapinis, M., Bursuc, S., Ryan, M.: Privacy supporting cloud computing:
Confichair, a case study. In: Proc. POST 2012. pp. 89–108. Springer
Verlag (2012)

[2] Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv,
M., Schapira, M., Valadarsky, A.: Vericon: towards verifying controller
programs in software-defined networks. In: Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI
2014). pp. 282–293. ACM (2014)

[3] Bauereiß, T., Hutter, D.: Information flow control for workflow man-
agement systems. it - Information Technology 56(6), 294–299 (2014)

[4] Bauereiß, T., Pesenti Gritti, A., Popescu, A., Raimondi, F.: Cosmedis: A
distributed social media platform with formally verified confidentiality
guarantees. In: IEEE Symposium on Security and Privacy, SP 2017. pp.
729–748. IEEE Computer Society (2017)

[5] Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem.
Perspectives in Mathematical Logic, Springer (1997)

[6] Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer
Security 18(6), 1157–1210 (2010)

[7] Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and
interpretations. In: The Future of Software Engineering. pp. 48–71.
Springer (2011)

[8] De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems. pp.
337–340. Springer (2008)

[9] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press,
San Diego, CA, USA (1972)

[10] Finkbeiner, B., Müller, C., Seidl, H., Zălinescu, E.: Verifying security
policies in multi-agent workflows with loops. In: 15th ACM Conf. on
Computer and Communications Security (CCS’17). pp. 633–645. ACM
Press (2017)

[11] Finkbeiner, B., Seidl, H., Müller, C.: Specifying and verifying secrecy
in workflows with arbitrarily many agents. In: Proc. of the 14th Int.
Symposium on Automated Technology for Verification and Analysis
(ATVA 2016). Lecture Notes in Computer Science, vol. 9938, pp. 157–
173 (2016)

[12] Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order
predicate logic. In: Proc. of the 3rd Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR’92). pp. 425–435. Morgan
Kaufmann (1992)

[13] Goguen, J.A., Meseguer, J.: Security policies and security models. In:
Proc. of the IEEE Symposium on Security and Privacy. pp. 11–20 (1982)

[14] Goranko, V., Hustadt, U., Schmidt, R.A., Vakarelov, D.: SCAN is
complete for all sahlqvist formulae. In: Relational and Kleene-Algebraic
Methods in Computer Science: 7th Int. Seminar on Relational Methods
in Computer Science and 2nd Int. Workshop on Applications of Kleene
Algebra. Lecture Notes in Computer Science, vol. 3051, pp. 149–162.
Springer (2004)

[15] Kanav, S., Lammich, P., Popescu, A.: A conference management system
with verified document confidentiality. In: Proc. of the 26th Int. Conf. on
Computer Aided Verification (CAV 2014). pp. 167–183. Springer Verlag
(2014)

[16] Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog:
A logic programming language for dynamic domains. The Journal of
Logic Programming 31(1), 59 – 83 (1997)

[17] Mantel, H.: Possibilistic Definitions of Security – An Assembly Kit.
In: Proc. of the 13th IEEE Computer Security Foundations Workshop
(CSFW). pp. 185–199. IEEE Computer Society (July 3–5 2000)

[18] Padon, O., Immerman, N., Shoham, S., Karbyshev, A., Sagiv, M.: De-
cidability of inferring inductive invariants. In: Proc. of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016. pp. 217–231. ACM (2016)

[19] Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable
reasoning about distributed protocols. PACMPL 1(OOPSLA), 108:1–
108:31 (2017)

[20] Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy:
safety verification by interactive generalization. In: Proc. of the 37th
ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation, PLDI 2016. pp. 614–630 (2016)

APPENDIX A
TRANSFORMATION FOR ORACLES

In Section I, we introduced the restriction that oracles are
only queried in non-may blocks, i.e., blocks of the form
forall x̄. stmts which additionally satisfy:

1) Every statement in stmts makes use of the same oracle;
2) Each guard querying an oracle O is of the form ϕ′∧Ox̄,

i.e., the sequence of arguments of O coincides with the
block’s quantified variables.

Here, we will show how to transform any given workflow to
adhere to this restriction.

Intuitively, the idea is to introduce for each oracle O, an
auxiliary predicate RO in Rwf in which the relation of O
is stored for use in the next block. The predicate RO can
then be set before its use by means of a single non-may
block comprising of a single statement, and reset to the empty
relation afterwards. The problem with this construction is
that, according to our definition of observable tuples, each
tuple (a1, . . . , ak) of the oracle would become known to the

agent a1. If this flow of information is undesirable, it can
be avoided by introducing an extra first component to the
auxiliary predicate RO and fill it with some constant c.

The most natural way to exclude this constant from the
agents of the system, is to introduce sorts into the model as
well as into the logic (see [10] for details). Then the constant
could simply be assigned a non-agent sort.

Alternatively, the declassification condition could be used
to explicitly allow flows of information to this constant and
fix the agent model for c to stubborn.

Example 5. Assume we are given a workflow that contains
the block:

forall x, y, z may.
R(x, z) ∨ ¬O1(x)→ S += (x, z)

O2(y, z)→ T += (x, y, z)

It will be transformed to the following sequence of blocks:

forall x. O1(x)→ RO1 += (c, x)

forall y, z. O2(y, z)→ RO2 += (c, y, z)

forall x, y, z may.
R(x, z) ∨ ¬RO1(c, x)→ S += (x, z)

RO2(c, y, z)→ T += (x, y, z)

forall x. true → RO1 −= (c, x)

forall y, z. true → RO2 −= (c, y, z)

where the declassification predicates declassOi(a) are up-
dated to the extended predicates

declassOi(a) ∨ (a = c)

This transformation only adds non-omitting blocks. So if the
initial workflow was non-omitting, the transformed workflow
will be non-omitting as well. The same holds for edge-
uniformity as well as leveledness — all RO are fresh and
information only flows from O to RO. However, uniformity
is not preserved, since tuples are both added to and subtracted
from RO.

APPENDIX B
TRANSFORMATION FOR STUBBORN AGENTS

For completeness, we also detail the transformation T (s)
a . It

transforms the given workflow to compute all pairs of traces
that satisfy declassification where all participating agents act
stubbornly, i.e. according to agent_model (s).

Given a workflow w (via its CFG) and an agent variable
a, we construct a new workflow T (s)

a w as follows. Let R̄ =
R∪R′ denote the set of predicates R used by w extended by
the corresponding distinct primed predicates R′. For a first-
order formula ϕ with predicates from R, let [ϕ]′ denote the
formula obtained from ϕ by replacing each predicate R ∈ R
with the corresponding predicate R′ in R′. Then each edge
(u, β, v) of w gives rise to one edge (u, T (s)

a β, v) in T (s)
a w

where the transformation T (s)
a on sequences of blocks is the

concatenation of the transformations of the individual blocks b
in β. It is defined as follows.
Case 1. b does not contain a query to an oracle. In this case,
T (s)
a b is obtained from b by adding to every update ϕ →
R += z̄, the update [ϕ]′ → R′ += z̄, and likewise, for every
update ϕ→ R−= z̄, the update [ϕ]′ → R′−= z̄. As a result,
the same predicate Cb is used for both updates (in case of
may) and stubbornness is enforced.
Case 2. b is of the form forall x̄. stmts and contains a query to
the oracle O . W.l.o.g., we may assume that each statement in
stmts queries O . In order to simulate declassification, we set
T (s)
a b = b1b2 for may blocks b1, b2 where the predicates Cb1 ,

Cb2 serve as the possibly distinct versions of the oracle on the
two simulated traces. The block b1 equals forall x̄.may stmts1
where the sequence stmts1 is obtained from stmts by collecting
for every update ϕ∧O x̄→ R+= ȳ in stmts, the two updates:

ϕ→ R+= ȳ
[ϕ]′ ∧ declassO(a, x̄)→ R′ += ȳ

Updates that query the oracle, but remove tuples, are treated
analogously. We note that the parameter a of the declassi-
fication formula declass, is considered as a constant in the
workflow T (s)

a w.
Moreover, b2 equals forall x̄.may stmts2 where the se-

quence stmts2 is obtained from stmts by collecting for every
update ϕ ∧O(x̄)→ R+= ȳ in stmts, the update:

[ϕ]′ ∧ ¬declassO(a, x̄)→ R′ += ȳ

Again, updates that query the oracle, but remove tuples, are
treated analogously.

Example 6. Consider the block

forall x, p, r. Assign(x, p)∧O(x, p, r)→ Review += (x, p, r)

Then the transformation results in the following two blocks:

forall x, p, r may.
Assign(x, p)→ Review += (x, p, r)
Assign′(x, p) ∧ (¬Conf(a, p) ∨ ¬Conf′(a, p))

→ Review′ += (x, p, r)
forall x, p, r may.

Assign′(x, p) ∧ (Conf(a, p) ∧ Conf′(a, p))
→ Review′ += (x, p, r)

The workflow T (s)
a w captures all pairs of traces of w that

satisfy the assumptions of stubbornness and declassification.

APPENDIX C
PROOF OF THEOREM 7

Theorem 7. Let m be the maximal number of distinct substi-
tutions in Θ. Furthermore, let r denote the number of levels of
predicates in Rwf . Assume that ψ is a first-order formula with
predicates from Rwf . Assume that θβ = θh ◦ . . . ◦ θ1 is a se-
quence of substitutions corresponding to a sequence of blocks
β of length h. Then there is a sub-sequence θ′ = θj1 ◦ . . .◦θjl
of θβ with l < (1 + m

r)r such that the following equivalence
holds.

∀A1 . . . As. (θβψ)] ≡ ∀Aj1 . . . Ajl . (θ′ψ)] (8)

Proof. The proof is based on the observation that the sub-
stitution corresponding to the same block b may produce
only finitely often new contributions to the composition —
at least, if the corresponding second-order quantifiers are later
eliminated.

Assume that θ′ is a subsequence of θ of minimal length
so that (8) holds. W.l.o.g., we assume that each predicate can
be assigned a distinct level 1 < . . . < r so that for each
block b, all updated predicates in that block receive the same
level. Let mi ≥ 1 denote the number of substitutions in Θ of
the predicates with level i, and B[i] the maximal number of
occurrences of substitutions θjλ in θ′ substituting predicates
of level at most i.

We claim that for each i = 0, . . . , r, B[i] ≤ (m1 + 1) · . . . ·
(mi + 1)− 1 holds. In particular, B[0] = 0.

Consider a level i ≥ 1. First we claim that θ′ does not
contain two occurrences of substitutions corresponding to
the same block of level i so that inbetween there are only
substitutions corresponding to blocks of the same level or
higher.

Assume for a contradiction, this were not the case, i.e., there
are jλ < jλ′ so that θjλ and θjλ′ both are obtained from θb
for some block b. Let θ′′ denote the substitution where θjλ′
has been removed. Let ψ′ denote the negation normal form
of the formula which is obtained by applying the substitution
θ′ to ψ, and ψ′′ the negation normal form of θ′′ψ. Then ψ′

is obtained from ψ′′ by replacing some positive literals Ajλ z̄
with the disjunction Ajλ z̄ ∨Ajλ′ z̄, and some negative literals
¬Ajλ z̄ with the conjunction ¬Ajλ z̄∧¬Ajλ′ z̄. The same holds
true after abstraction of existentials and bringing into prenex
normal form. In particular, both formulas result in the same
quantifier prefix. Now consider the corresponding conjunctive
normal forms ∀x.

∧
S′ and ∀x.

∧
S′′ of the resulting formulas

(where S′ and S′′ are the corresponding sets of clauses) which
are obtained by exhaustively applying the distributivity laws.
Then the following properties hold:

1) If Ajλ′ z̄ occurs in a clause of S′, then also Ajλ z̄; and
2) If c′ ∨ ¬Ajλ′ z̄ is a clause of S′, then also c′ ∨ ¬Ajλ z̄;

and
3) S′′ is obtained from S′ by dropping all positive occur-

rences of the predicate Ajλ′ z̄ and by removing all clauses
containing negative occurrences of Ajλ′ z̄.

Thus, Ajλ dominates Ajλ′ in the conjunctive normal form of
(θ′ψ)]. From that it follows that θjλ′ can be removed without
changing the equivalence (8) — which leads to a contradiction.

Now assume that B[i − 1] is the maximal length of the
subsequence of substitutions of the i−1 least predicates in θ′,
and b is a block at level i. Then a substitution corresponding
to b can occur at most B[i − 1] + 1 times. We conclude that
the maximal number B[i] of substitutions of at level at most
i can be bounded by

B[i] ≤ (B[i− 1] + 1) ·mi +B[i− 1]
< (B[i− 1] + 1) · (mi + 1)
= (m1 + 1) · . . . · (mi−1 + 1) · (mi + 1)

— what we wanted to prove.

