
Assuming You Know: Epistemic Semantics of
Relational Annotations for Expressive Flow Policies

Andrey Chudnov
D. E. Shaw & Co., L.P.
New York NY, USA

David A. Naumann
Stevens Institute of Technology

Hoboken NJ, USA

Abstract—Many high-level security requirements are about
the allowed flow of information in programs, but are difficult
to make precise because they involve selective downgrading.
Quite a few mutually incompatible and ad-hoc approaches have
been proposed for specifying and enforcing downgrading policies.
Prior surveys of these approaches have not provided a unifying
technical framework. Notions from epistemic logic have emerged
as a good approach to policy semantics but are considerably
removed from well developed static and dynamic enforcement
techniques. We develop a unified framework for expressing,
giving meaning and enforcing information downgrading policies
that builds on commonly known and widely deployed concepts
and techniques, especially static and dynamic assertion checking.
These concepts should make information flow accessible and
enable developers without special training to specify precise poli-
cies. The unified framework allows to directly compare different
policy specification styles and enforce them by leveraging existing
techniques.

I. INTRODUCTION

A longstanding challenge in computer security is how to
specify and enforce confidentiality requirements. Confidential-
ity is difficult to define precisely, owing to the subtlety of
information flow in systems and the subtlety of requirements
which usually involve downgrading (i.e., flows of partial
information under designated conditions). An example of such
requirements is encrypted media distribution where a user
does not receive the decryption key until they have paid for
the movie, and they only learn the keys for the movies for
which they paid [3]. Those subtleties also make it difficult
to achieve high assurance of enforcement at reasonable cost,
meaning both development cost and runtime performance. The
story is similiar for integrity requirements, and the two are
intertwined [5], [24], but in this paper we streamline the
development by considering only confidentiality.

The notion of knowledge has emerged as a good approach
to specification that enables mathematically robust semantics
for confidentiality with downgrading (e.g. [11], [5], [9], [22]).
There is a mature theory of epistemic logic, including algo-
rithms for model checking that may be suitable for system
models. It is less clear how to apply such logics effectively at
the level of software interfaces and implementations.

Motivated by practical considerations, a number of works
propose specifications by means of labels on variables and
other program elements, together with special features such
as declassification statements. Studies using epistemic logic
to specify confidentiality have used relatively simple logical

formulas [9] so it may be that a less general logical formal-
ism, retaining epistemic semantics, can suffice for software
specifications. Assertions and pre-post contracts are familiar
to developers of systems concerned with high assurance, and
researchers are exploring generalizations like relational Hoare
logic which has already been shown to provide a flexible
and expressive means to specify downgrading policies in the
context of “batch programs” (i.e., pre-post observations) [38].

This paper follows up on the proposal by Chudnov et al. [25]
to use intermediate annotations—relational assumptions and
assertions—both to specify and to enforce security. In Sec-
tion II we review their policy specification approach through
examples. Unfortunately, the semantics used in [25] is intricate
and significantly different from security definitions used in
prior work. They justify the semantics by (a) showing it co-
incides with standard termination-insensitive noninterference,
for simple pre-post policies, and (b) conjecturing that some
knowledge based semantics of declassification (specifically,
[11], [7]) can be captured in their semantics using suitable
annotations.

Our first contribution is a novel epistemic semantics for
this specification approach (Section IV). We do not, however,
make a direct connection between the cited works, because
our development is in the setting of reactive programs—which
caters to requirements for confidentiality of information, not
all of which is available in the program’s initial state or
input (Section III). Unlike those works, we explicitly model
inputs and outputs, which are the observables. (As usual, the
adversary is omniscient about the program and its semantics.)

Our second contribution is to define a notion of safety,
conceptually similar to the annotation-oriented semantics of
[25] but adapted to the reactive model (Section V), and to
prove that the safety condition implies the epistemic security
condition (Section VI).

Our third contribution is to sketch how our safety semantics
can be enforced not only by monitoring (as done in [25])
but also by static verification in a relational Hoare logic
(Section VII). We wrap up with more discussion of related
work (Section VIII) and conclude (Section IX). Some proofs
are in the appendix.

II. DECLASSIFICATION BY EXAMPLE

We introduce our specifications, and illustrate their expres-
sive power, with a few examples, written in a small imperative

reactive language inspired by [18]. We add relational assertions
and assumptions, inspired by [25], for specifying information
flow requirements. The language is formally defined in sec-
tion III.

Our first example is a randomized response sampling algo-
rithm (Figure 1). The purpose of the algorithm is to provide
differential privacy and plausible deniability to the respondents
to a sensitive yes/no question, preserving the statistical char-
acteristics of the underlying data [30]. The core idea is that
each respondent provides either an honest or a random answer
depending on a random coin flip. Our example samples the raw
responses and discloses them according to the aforementioned
approach. Here we use three communication channels, Private
(P) input that feeds binary private responses to the sampler,
Random (R) input providing a source of secure random bits,
and Public (L) output, that expects the anonymized responses.
Programs consist of input handlers, one for each input channel.
Handlers run to completion and optionally produce output.
The first handler (inputP) is the input sampler. The second
handler ensures the first always has two fresh random bits.
For simplicity, we source randomness from one channel, and
thus have to ensure there are two fresh random bits, stored
in variables r1 (for the coin flip) and r2 for the randomized
reply.

For simplicity, this contrived program is intended to be used
in an environment where two bits of randomness are sent prior
to each response bit. Loss of additional random bits would not
matter but dropping response bits would be unsatisfactory.

We can ensure security of this program by enforcing the
following information flow policy. Private data is only dis-
closed to the public under the condition that r1 is true. We can
formalize this policy by labeling channels and arranging the
labels in a partial order, such that for any labels `1, `2 related
by the ordering `1 � `2 information from the input channel
with a label `1 can flow to the output channel with a label `2.
In the example, the labels are ordered such that L � P and
L � R. This baseline policy prevents direct disclosure of the
both the randomness and the responses to the public observer.
However, it also prevents the legitimate disclosure as well.
We resolve this issue by relaxing the policy in two places
in the program using downgrading annotations highlighted in
Figure 1. The annotation assumeLAr declassifies the received
bit r to the public label L. The notation alludes to the standard
two-run semantics of dependency: the formula “Ar” is read
“agreement on r”, and the policy says if two runs agree on r
then outputs on L also agree.

Note that this is different from saying that the random
channel is public, as that would make the whole random stream
visible to the attacker. The annotation assumeLBr1 ⇒ Ap
relabels the private response bit p with the label L, but only
in the case the value of r1 in that program execution is true.

In this illustrative language, program variables are all ini-
tialized to 0 at system start, and a handler parameter gets
initialized with each input.

Whether this is a reasonable program and policy depends
on the statistical properties of the channel R. In general,

inputP p. if ready > 1 then
assumeLBr1 ⇒ Ap;
if r1 then o := p; else o := r2; fi
outputLo; ready := 0; fi

inputRr. assumeL Ar;
if ready = 0 then r1 := r;
else if ready = 1 then r2 := r; fi
ready := ready + 1;

Fig. 1. Randomized response sampling algorithm

the policy specification needs to be justified in terms of
the quantitative notions of differential privacy. However, that
also requires reasoning about the environment in which the
program is run and the statistical properties of its inputs.
In contrast, the specification in the code expresses what the
observer is allowed to learn: the R values and the P values,
but only under a certain condition. This can be understood
in non-quantitative, epistemic terms as we formalize later.
Together with the assumption of randomness of the R inputs,
this gives us the security guarantee. Note that this is not an
isolated example of this issue: the security of the well-known
in the literature password checking example, where only the
outcome of the password test but not the password itself can be
declassified, depends in a large part on the length of passwords
and their distribution. A typical policy can be expressed, in
our notation, as Anumguesses ∧ (B(numguesses < 10) ⇒
A(guess = pass)). If the set of possible secret values is small
enough, even disclosing the result of this small number of tries
is unacceptable as this allows the attacker to simply explore
the space exhaustively.

These examples express downgrading in terms of current
values of program variables, although only inputs and outputs
are considered to be observable. In the next example, the
policy refers directly to recent inputs. Instead of the agreement
form Ar for a variable, it uses the agreement form A`@n that
expresses agreement on the nth value on input channel `.

The next example is a simple packet sniffer that logs the
source IP addresses of packets while ensuring confidentiality
of payloads (Figure 2). Packets are read off the secret channel
S byte-by-byte; IP addresses are logged on the public channel
P . The intended policy is that only the address, stored in the
12-th to 15-th bytes of the packet, is logged. Disclosing any
other part of the packet is against the policy.

Since the handler processes packets byte-by-byte, we also
need to perform some bookkeeping to track where in the
packet we currently are and refer accurately to the position
of the IP address in the packet. This is done by updating
two auxiliary variables: b counts the total number of bytes
received so far and p the number of bytes received in the
current packet. In order to accurately specify this policy we
also need a way to refer to the elements of the input stream.
This is done using a novel annotation type assumeL AS@n
which downgrades the n-th (0-based) input on channel S
to label L. Using this new annotation together with logical

inputSx. assumeP AS@b− p+ 12 ∧ . . . ∧ AS@b− p+ 15;
if p > 11 ∧ p < 16 then outputPx;
if p = 2 then l := x� 8;
if p = 3 then l := l + x;
outputSx;
p := p+ 1;
b := b+ 1;
if p > l then p := 0;

Fig. 2. A simple packet sniffer

conjunctions and the ability to refer to the values of program
variables, allows us to write the downgrading annotation
assumeP AS@b− p + 12 ∧ . . . ∧ AS@b− p + 15 which says
that every byte in the stream with offset between b − p + 12
and b− p+ 151 should be declassified on the public channel.

III. BACKGROUND: EVENTS, PROGRAMS, ANNOTATIONS

As illustrated in the preceding examples, we formulate
policy in terms of a fixed labeling of channels and a fixed
flow relation on labels, together with annotations to express
conditional flows that would not be allowed by the baseline
policy. This section begins the technical development by
formalizing these building blocks.

We assume given a partially ordered set L of security levels,
and write ` � `′ for the ordering. Given the availability of
declassifying assumptions, one interesting instantiation is to
use a discretely ordered set.

Events t are given by the grammar

t ::= in`n | out`n | • where ` ∈ L, n ∈ N

Identifiers t, u, v range over events. The event in`n represents
the input of value n on `’s input channel; out`n is for `’s
output channel. The tick event • is neither output nor input,
it just lets us associate an event with every transition, to
streamline notation.

An event t is visible at ` if t is an input or output at some
level `′ � `. Let In` = {in`

′
n | `′ � ` and n ∈ N}, Let

Out` = {out`′n | `′ � ` and n ∈ N} and Ev` = In` ∪ Out`.
For a sequence ts of events we write vis`(ts) for the sub-
sequence of `-visible ones, i.e., those in Ev`.

A. Programs

A program consists of a set of input handlers, one for each
security level. The program consumes a sequence of inputs,
handling each one in turn. The syntax input`x. c is for handler
associated with channel `, with body c, in which variable x
is initialized to the input value. A handler may produce zero
or more outputs, which may be on different channels from its
input. If a handler diverges, no further input is consumed.

1p − n tells us how many more bytes we need to input to see the n-th
byte from the beginning if the packet; b − n allows us to refer to the byte
the handler will see after the next n inputs. Hence, b − p + n tells us how
many more inputs need to be performed to see an n-th byte from beginning
of the packet.

Programs are input total in the sense that unless the last
handler is diverging, the next input event can be consumed.

Annotated programs

e ::= n | x | e⊕ e | ¬e expression
where n ∈ Z, x ∈ Vars,⊕ ∈ {+, ∗,=,≤,∧, . . .}

c ::= skip | x := e | output` e command
| if e then c else c | while e do c | c ; c
| assert` Φ | assume` Φ annotation

H ::= input`x. c handler

An `-annotation is a command of the form assert`
′

Φ or
assume`

′
Φ such that `′ � `. Annotations have no influence on

the runtime behavior of the program. Strictly speaking, each
occurrence of an annotation command needs to have a unique
tag, but we omit that for readability.2 The `-annotations that
are assumptions specify what the observer at level `—seeing
inputs and outputs on channels `′ � `—is allowed to learn.
Assertions are only needed for enforcement (Section V). As
shown by the introductory examples, the handler for some
level ` may have annotations for unrelated levels.

Relational formulas Φ for annotations

ϕ ::= e | ϕ ∨ ϕ | ¬ϕ | ∀x.ϕ state predicate
Ψ ::= Ae | A`@e agreement
Φ ::= Ψ | Bϕ | Bϕ⇒ Ψ basic relational formula
Φ ::= Φ ∧ Φ conjunction of basic formulas

As formalized later, Bϕ is satisfied in a pair of states if both
satisfy ϕ, and Ae is satisfied in a pair of states if they agree
on the value of e.

B. Program semantics

In the rest of the paper, we consider a fixed program i.e. set
of handlers, which is left as an implicit parameter in order to
streamline notation.

A state σ maps variables to natural numbers. At the begin-
ning of execution, all variables are 0. At the start of a handler
execution, the designated variable is set to the input value and
all other variables are unchanged. Configurations are of two
kinds. A receptive configuration 〈σ〉 contains just a state σ.
An active configuration 〈c, σ〉 represents the execution of a
handler, where c represents the current control and σ is a state.
The initial configuration is 〈σ0〉 where σ0 maps all variables
to 0. We write g t→ h to indicate that g transitions to h with
associated event t.

2 Readers of [25] please note: in that work, such tags are provided, using
the symbol ` which is used here for an entirely different purpose. Also, their
term “trace” refers to what we call pre-run.

Transition semantics g
t→ h

input`x.c is the handler for ` σ′ = (σ |x : n)

〈σ〉 in
`n→ 〈c, σ′〉

〈skip, σ〉 •→ 〈σ〉
σ(e) = n

〈output` e, σ〉 out
`n→ 〈skip, σ〉

σ′ = (σ |x : σ(e))

〈x := e, σ〉 •→ 〈skip, σ′〉
σ(e) 6= 0

〈if e then c else d, σ〉 •→ 〈c, σ〉

〈assume` Φ, σ〉 •→ 〈skip, σ〉 〈assert` Φ, σ〉 •→ 〈skip, σ〉

〈skip; c, σ〉 •→ 〈c, σ〉
〈c, σ〉 t→ 〈c′, σ′〉

〈c; d, σ〉 t→ 〈c′; d, σ′〉

The first rule consumes an input, transitioning from a
receptive configuration to an active one. The updated state
(σ |x : n) maps x to the input value n and leaves the other
variables unchanged. The other rules all start from an active
configuration, and produce either an output event or •. The
second rule transitions to a receptive configuration from an
active one in which the handler has terminated. The remaining
rules involve only active configurations.

The output command is the only one that produces an output
event. In its rule we write σ(e) for the value of expression e in
state σ. Comparisons (=,≤) and logical operators (∧,¬) return
1 or 0, and non-zero values are interpreted as true. Omitted
rules for loops and conditional are standard, as are the last
two rules which are for sequencing.

If c is different from skip then we can define redex(〈c, σ〉)
to be the unique command b such that b is not a sequential
composition and either c ≡ b ; d for some d, or b ≡ c. For
example, in the penultimate rule the redex is skip. The last
rule allows the redex in a sequence to take a step.

The semantics is deterministic and input total.

Lemma 1. For every active configuration there is a unique
output or • event and unique successor configuration. For
every receptive configuration and every input event there is
a unique successor configuration.

C. Program pre-runs and event traces

On the basis of transitions, Bohannon el al [18] define
transducers which consume a stream of inputs and produce
a stream of outputs. For our purposes it is more convenient to
start with an interpretation of programs as admitting a single
event trace containing both inputs and outputs. Knowledge is
defined in terms of the trace of events a program engages in,
but specifications are expressed as program annotations, so we
need to work with both computations and event traces.

A pre-run is a non-empty list of consecutive program
configurations, starting with the initial configuration 〈σ0〉. In

the literature on epistemic logic [9] a “run” is a complete
program execution; so we use the term pre-run as we are
considering finite prefixes only.

Some notations for lists

We use letters g, h for configurations, and plural identifiers
gs, hs for finite sequences thereof—“lists” for short. Likewise
we use ts for lists of events, and sometimes ins for lists of
input events. We write |gs| for the length of gs, and · for
catenation of lists—and also for appending an element at the
start or end of a list. We also treat lists as functions from an
initial segment of the naturals. So gs0 is the first configuration
and dom(gs) is the set of indices 0, . . . , |gs| − 1. We write
last(gs) for gs|gs|−1, and gs�i for the first i elements of gs
(i.e., the prefix up to but not including the element gsi). We
write gs′ ≥ gs to say gs is a prefix of gs′.

For any event list ts, let inp(ts) to be the subsequence of
input events. Every list ins of input events gives rise to a
unique pre-run which consumes the inputs or diverges trying
to. Before formalizing this, we define the unique sequence
of input and output events, called a trace associated with a
pre-run. To avoid confusion with the terms “produce” and
“consume”, we use a neutral term, admit.

Event trace admitted by a pre-run gs ⇓ ts

[〈σ0〉] ⇓ []
gs ⇓ ts last(gs)

t→ g

gs · g ⇓ ts · t

A pre-run is just a configuration list that admits a trace.
The pre-runs of the program under consideration comprise

the set {gs | ∃ts. gs ⇓ ts}. It is closed under nonempty
prefixes but does not contain the empty list []. In subsequent
definitions and results, quantifications over pre-runs implicitly
range over this set.

In light of determinacy, one may expect that a pre-run
gs determines a unique ts with gs ⇓ ts. Indeed, in the
configuration following an input transition one can see from
the handler body which channel’s handler is running—unless
two channels have identical handlers! Starting in Section V
we impose a mild condition that makes handler bodies distinct,
but until then we avoid relying on pre-runs determining unique
traces.

As an example consider the program with handlers

inputPx. outputQx+ 1
inputQx. outputQy; y := x+ y

It has a pre-run which admits the trace ts =
[inQ3, outQ0, •, •, •, inP 1, outQ2, •]. This trace has inputs
inp(ts) = [inQ3, inP 1]. The pre-run has distinct states
(x:0, y:0), (x:3, y:0) (Q handler), (x:3, y:3) (Q handler),
(x:1, y:3) (P handler), omitting stutters.

Owing to the possibility of divergence, input totality does
not imply that every input sequence can be fully consumed.

However, we can talk about the pre-runs that arise in con-
suming an input list ins. The gist is that we build gs by
executing the handlers on ins0, ins1, . . . , until either a handler
diverges or all inputs have been consumed. In order to describe
gs in a way that is unique in the divergence case, without
recourse to infinite sequences, the following result truncates
a divergent pre-run at the start of its handler. If some input,
say insk, causes its handler to diverge, that is described in
terms of a series of finite prefixes of the diverging sequence,
each beginning with the handler for insk, and never reaching
a receptive configuration.

Lemma 2. [pre-run from input] For any list ins of input
events, there is a unique pre-run gs such that (a) inp(gs) ≤
ins, (b) last(gs) is receptive, and (c) if inp(gs) 6= ins then
there is an infinite sequence G of nonempty lists of active
configurations such that, for all i, j we have: gs ·Gi is a pre-
run, with inp(gs ·Gi) ≤ ins, and i < j ⇒ Gi < Gj .

If the handlers for ins all terminate, then gs has all and only
the handler executions. In the case that the handler diverges on
insk, the pre-run gs given by the Lemma has inp(gs) = ins�k.
In that case, notice that inp(gs ·Gi) = ins�(k + 1) for all i.

IV. KNOWLEDGE SEMANTICS FOR DECLASSIFICATION

In this section we define what it is for a pre-run to be
secure. Section IV-A defines the notion of knowledge at a
level `: what can be learned by observing channels visible
to `. Section IV-B defines the notion of release policy at
`, expressed by `-assumptions in the program, and defines
security, which says that knowledge is gained only in accord
with release policy.

A. Knowledge

Conceptually, the `-observer decides what inputs to provide
at levels `′ � `, and learns from observing outputs on
output channels at levels `′ � `. Following Beringer’s [16]
terminology, the major pre-run or trace is the actual execution
and the minor ones are the possible executions about which
the observer reasons. For a given pre-run gs, the `-observer’s
knowledge of the inputs (on all channels) is based on their
observation of the `-visible inputs and outputs.

Knowledge from a trace k`

k`(ts) = {inp(us) | ∃gs. gs ⇓ us ∧ vis`(ts) = vis`(us)}

The condition captures knowledge as follows: having ob-
served vis`(ts), the observer knows that the possible complete
inputs ins are those that arise from some pre-run gs of the
program, with trace us that is the same to the observer.

The inputs known to be possible are closed under suffixes
that are not visible but arise from possible executions. This
observation can be made precise as follows. Suppose fs ⇓ us
and fs ·gs ⇓ us·vs, with vis`(ts) = vis`(us) and vis`(vs) = [].
Then k`(ts) contains not only inp(us) but also inp(us · vs).

For the previous example, assuming levels P,Q are incom-
parable, the Q observer sees [inQ3, outQ0, outQ2] and reasons

that the second output does not correspond to any of Q’s inputs
and, hence, must be derived from P ’s input of 1.

For another example, consider the program

inputPx. y := x; outputP y
inputQx. outputQy;

(1)

For the trace [inP 1, outP 1, inQ0, outQ1], and knowing that all
variables are initially 0 and that handlers run to completion
before further input is consumed, the Q observer seeing
[inQ0, outQ1] can infer that the most recent input on P before
her input on Q was the value 1. But she cannot rule out further
inputs on P , which would not have Q-visible effect. So the
knowledge includes not only the actual inputs [inP 1, inQ0] but
also inputs like [inP 3, inP 1, inQ0, inP 4]. On the other hand,
suppose P ’s output is visible:

inputPx. y := x; outputQ2
inputQx. outputP y;

For the trace in [inP 1, outQ2] the Q observer can infer there
was a P -input but not its value, and cannot rule out the
possibility of [inP 3] but can rule out, for example, this one
[inP 1, inP 1] because the handler for the first inP 1 would have
produced Q-visible output.

Lemma 3. (a) If t is not `-visible then k`(ts · t) = k`(ts). (b)
If t is in Out` then k`(ts · t) ⊆ k`(ts).

Proof. (a) is direct from the definition. For (b), suppose hs ⇓
us and vis`(ts · t) = vis`(us), so that inp(us) ∈ k`(ts · t).
To show inp(us) ∈ k`(ts), factor hs as hs = hs′ · g · hs′′
where the transition to g produces t. So we can factor us =
us′ · t · us′′ with hs′ ⇓ us′ and hs′ · g ⇓ us′ · t.3 We have
vis`(us′) = vis`(ts) so inp(us′) ∈ k`(ts). Hence, since t is an
output, inp(us′ · t) ∈ k`(ts). None of us′′ are `-visible (owing
to vis`(ts · t) = vis`(us)), so by the observation about suffix
closure we have inp(us′ · t · us′′) = inp(us) ∈ k`(ts).

Note that in case t is an `-visible input we should not
expect to have k`(ts · t) ⊆ k`(ts). The observer is reasoning
about what has happened, not what is going to happen. One
might formulate a notion similar to k`(ts) but including also
the possible future inputs that ` could provide, but this lacks
motivation.

The difference k`(t) \ k`(ts · t) represents what is learned
by observing output event t. The baseline policy expressed by
labels—noninterference—can be expressed by saying nothing
is ever learned: for all ts and all output events t, k`(t)\k`(ts ·
t) = ∅ or equivalently (in light of Lemma 3), k`(t) ⊆ k`(ts·t).

The notion of knowledge defined above is termination or
progress-sensitive: k`(ts) excludes input lists that drive the
program to divergence before the last input is handled (recall
Lemma 2). In reality, one cannot observe the absence of
progress—only stronger properties such as the passage of a
fixed amount of time. Moreover, enforcement of progress-
sensitive security can be costly and restrictive. So we aim

3One may think that in general hs′ · g ⇓ us′ · t implies hs′ ⇓ us′ but that
is only if hs′ is non-empty.

for a progress insensitive security property. A simple way to
formulate such a property is to entirely disregard diverging
pre-runs (as in [3]), but this fails to address the security
of visible events prior to divergence. A more sophisticated
approach (e.g., [7]) formulates security in a way that essen-
tially declassifies, at each step of execution, the fact whether
the program will diverge without producing or enabling the
consumption of further visible events. In this approach one
formulates a notion of progress knowledge k`→ defined like
k` except that in addition the observer learns there will be
another visible event.

Progress knowledge k`→

k`→(ts) = {inp(us) | ∃hs, t. t ∈ Ev` ∧ hs ⇓ us · t
∧ vis`(ts) = vis`(us) }

Lemma 4. For any ts, (a) k`→(ts) ⊆ k`(ts), and (b) if t is in
Out` then k`(ts · t) ⊆ k`→(ts).

Proof. (a) is direct from the definitions. For (b), suppose ins ∈
k`(ts · t). Thus there are hs, us with hs ⇓ us, vis`(ts · t) =
vis`(us), and ins = inp(us). To show ins ∈ k`→(ts), factor
hs = hs′ · g · hs′′ and us = us′ · t · us′′ so that hs′ ⇓ us′
and hs′ · g ⇓ us′ · t, and moreover g gives the last occurrence
of t in us, so the elements of us′′ are not in Ev`. So we
have vis`(us′) = vis`(ts) and inp(us′) ∈ k`→(ts). Since t is
an output, inp(us′ · t) ∈ k`→(ts) as well. By closure under
non-visible suffixes, inp(us′ · t · us′′) = ins ∈ k`→(ts).

Progress insensitive security conditions in the literature are
roughly equivalent to k`(ts·t) ⊇ k`→(ts) holding for all ts and
all visible outputs t. We cannot do an exact comparision with,
say, ID security of Bohannon et al. [18] because our model
is not exactly the same, e.g., they consider • be observable at
>. And other works use different program models.

Lemmas 3 and 4 do not address the question of how
knowledge is affected by visible input. Intuitively, the `-
observer learns nothing from a step in which an `-input is
provided. This is evident in the effect on knowledge sets: The
believed-possible inputs following a visible input steps are
those believed possible before, followed by the visible input,
possibly followed by unknown invisible ones.

Lemma 5. If t is an `-visible input then k`(ts · t) is the set of
input lists ins · t · ins′ such that ins ∈ k`(ts), vis`(ins′) = [],
and ins · t · ins′ is admitted by some pre-run of the program.

B. Release policy and security

Release policy is designated by assumptions in the program.
We choose to allow assumptions to refer both to inputs and to
the current state. By contrast, knowledge as formulated here
is about inputs only. Some policies are naturally expressed
in terms of the current state rather than all the inputs that
led to that state; it helps avoid the need for the policy
specification to duplicate operations also defined in the code.
Moreover, for enforcement it is helpful to use assumptions and

assertions that refer to the current state. On the other hand,
policies that refer only to inputs are less tied to the specific
program. The apparent mismatch between policy assumptions
and knowledge is resolved by existentially quantifying over the
state of the minor execution. In effect, a policy assumption
says the observer may not only learn something about the
inputs but also learn that the major execution passed through
some state that satisfied the assumption.4

A relational formula Φ is interpreted as a relation on states
paired with input lists. To define that A`@n means agreement
on the nth element of the channel-` inputs, we write ch`(ts)
to keep from ts just the events in event list ts at exactly level
`. By contrast, vis`(ts) includes events for all `′ � `.

Semantics of relational formulas σ, ins | σ′, ins′ |= Φ

σ, ins|σ′, ins′ |= Ae iff σ(e) = σ′(e)
σ, ins|σ′, ins′ |= A`@e iff

|vis`(ins)| > n and |vis`(ins′)| > n imply
(ch`(ins))n = (ch`(ins′))n where n = σ(e)

σ, ins|σ′, ins′ |= Bϕ iff σ, ins |= ϕ and σ′, ins′ |= ϕ
σ, ins|σ′, ins′ |= Bϕ⇒Ψ iff

σ, ins|σ′, ins′ |= Bϕ implies σ, ins|σ′, ins′ |= Ψ
σ, ins|σ′, ins′ |= Φ0 ∧ Φ1 iff

σ, ins|σ′, ins′ |= Φ0 and σ, ins|σ′, ins′ |= Φ1

Abbreviations (where sta projects the state of a configuration):

gs | σ, ins |= Φ =̂ sta(last(gs)), inp(gs) | σ, ins |= Φ
gs | hs |= Φ =̂ gs | sta(last(hs)), inp(hs) |= Φ

Next we define the release policy RP`(gs) for a pre-run
gs. Like knowledge, it is a set of input lists. This set of
possibilities is what `-observer is allowed to know, as specified
by the `-assumptions. Keep in mind that those are annotations
with tag `′ � `. They typically have agreement formulas for
other levels `′′ not visible to `, since their purpose is to govern
the flow of information from other levels to `′.

Release policy of a pre-run RP`

RP`([〈σ0〉])={ins | ins is a list of input events}
RP`(gs · g)={ins | ins ∈ RP`(gs)}

if redex(g) is not an `-assumption
RP`(gs · g)={ins | ins ∈ RP`(gs) ∧ ∃σ. gs · g|σ, ins |= Φ}

if redex(g) = assume`
′

Φ and `′ � `

The base case defines RP`([〈σ0〉]) to be the set of all input
lists. The second clause says that if the next configuration g
is not an assumption then the release policy is not changed by
the step. The clause embodies the policy expressed by an `-
assumption Φ. It says that when the assumption is reached, the
sequences ins deemed possible according to policy are those
that were previously deemed possible and which in addition

4One could formulate knowledge of both states and inputs. That would
capture things such as the fact that for the example (1), one can infer there
was a state in which y = 1, after observation [inP 0, outQ1].

agree according to Φ with the state, sta(g), and inputs, of the
current pre-run.

The release policy has no obvious connection with knowl-
edge: a policy specification only restricts a few sensitive
values whereas observation and logical omniscience about the
program’s semantics enables the observer to reason about what
inputs possibly occurred.

The semantics of A`@n makes it true if either input list
is shorter than n. The reason for this is to ensure that an
assumption that is falsified by a minor pre-run cannot be made
true by extending that pre-run.

Lemma 6. (a) RP`(gs ·g) ⊆ RP`(gs), and (b) ins ∈ RP`(gs)
and ins′ ≤ ins implies ins′ ∈ RP`(gs).

It is in the definition of security that the traces allowed by
release policy are cut down to those compatible with program
behavior, as expressed by k`→.

Secure pre-run

A pre-run gs is secure provided that for every prefix hs·g ≤ gs
(with hs nonempty), and every level `, the step to g is secure
at level `. For the step to be secure at ` means that, for all
ts, t with hs ⇓ ts and hs · g ⇓ ts · t, if t is not in In` then

k`(ts · t) ⊇ k`→(ts) ∩ RP`(hs · g)

Starting in Section V, security will be considered for
programs in which ts, t are uniquely determined by gs (see
Lemma 7). Always k`(ts · t) ⊆ k`→(ts) (Lemma 3), so the
condition says that k`(ts · t) is no smaller—the learning no
greater—than allowed by RP`.

The exclusion of visible input might seem to allow arbitrary
learning at visible input steps. But nothing is learned at such
steps. As per Lemma 5, the k`-set changes only by ruling out
executions in which the `-agent chose a different `-input value.
The interesting steps for security are visible outputs.

V. SMALL-STEP SEMANTICS FOR RELATIONAL LOGIC

In this section we define a notion called safety, adapted
from Chudnov et al. [25], which relates a major pre-run to
minor pre-runs with alternate input histories. This makes no
reference to observations or release policy but instead directly
interprets annotations in terms of aligned steps of the major
and minor pre-run.

A. Well specified programs

Without loss of generality, we require that the program
under consideration satisfies the following condition. A pro-
gram is well specified provided that for every `, with handler
input`x.c, we have
• c ≡ assume` Ax ; d, for some command d
• every output command output`

′
e in c is immediately

preceded in sequence by assert`
′ Ae

(We write ≡ for syntactically identical.) Let us call these
boilerplate annotations. They help streamline the formaliza-
tion in several ways, by encoding the baseline policy that is

based on channel labels and the ordering on labels. For a
concrete practical semantics one would make these annotations
implicit. Explicit annotations would then be needed only for
declassification (see the highlighted annotations in Figure. 1).
Also, in practice there may be levels that need no handler
because only the output channel is used, and multiple input
channels for which the same handler is used.

The requirement for programs to be well specified loses
no generality because the requisite annotations can be added
without altering the behavior (except for adding • events,
which are not observable).

Note that, owing to the program being well specified,
RP` rules out input lists in which the visible inputs differ
from those of the actual pre-run. Another technicality is the
following, which captures why we do not need to bother
tagging configurations with an indication of which handler is
currently executing.5

Lemma 7. If gs ⇓ ts and gs ⇓ ts′ then ts = ts′.

Proof. By induction on gs and cases on transition rules. For
steps other than input, the argument is direct from determinacy
for active configurations. For input, the argument depends on
the program being well specified. Consider a step from 〈σ〉
to 〈c, σ′〉. By semantics, c is the handler body. Because the
program is well specified, c has the form assume` Ax; . . .,
from which we have that the channel is ` and the input value
was assigned to variable x. So the event is in`n where n is
σ′(x).

In light of Lemma 7, we can define the input history,
inp(gs), for any pre-run gs. It is simply inp(ts) where ts is
the unique one with gs ⇓ ts.

B. Safety

The definition of safety is based on some technical defini-
tions concerning how one pre-run can be aligned with another.

Alignment, proper alignment for `, coverage

For pre-runs gs, hs, an alignment from gs to hs is a relation
α ⊆ dom(gs)× dom(hs) that (a) is monotone, i.e., ∀i, j, k, l
with iαj and kαl, i < k ⇒ j ≤ l and j < l⇒ i ≤ k; and (b)
has prefix-closed domain and range, i.e., i ∈ dom(α) (resp.
rng(α)) and 0 ≤ j < i imply j ∈ dom(α) (resp. rng(α)).

A proper alignment for ` from gs to hs is an alignment
α such that for all i, j with iαj, if either redex(gsi) or
redex(hsj) is an `-annotation then redex(gsi) = redex(hsj).

For α to cover the major pre-run gs (resp. the minor pre-
run hs) means that dom(α) = dom(gs) (resp. rng(α) =
dom(hs)).

An `-aligned pre-run pair is a triple (gs, hs, α) where α
is a proper alignment from gs to hs for `

The condition redex(gsi) = redex(hsj) is meant to express
that gsi and hsj are both active configurations, with exactly

5This is just an artifact of our parsimonious formalization: one could as
well keep the input history in the program configuration.

the same assumption or assertion: not just the same level and
formula but exactly the same occurrence in the program text,
i.e., point in control flow. To make that precise one can provide
each annotation occurrence with a unique identifying label (for
which see Footnote 2).

In [25], the concern is to account for all possible initial
states. Here we need to account for all possible input lists and
associated pre-runs. This account is based on a classification: a
minor pre-run may diverge or violate an assumption, in which
case it can be disregarded—we call those ‘fiats’. Alternatively,
it may be in conformance with policy, or violate policy due
to a mis-aligned annotation (called alignment failure) or due
to an assertion failure. The idea is that a computation gs is
safe if there are no alternate pre-runs resulting in assertion or
alignment failure. Assumption fiat generalizes preconditions,
removing from considerations pre-runs not relevant to policy.
Divergence fiat is considered benign, an accord with the
progress-insensitive security property.6

Classification of aligned pre-run pairs

The following are defined for level ` and for input list ins.
A conformance is an `-aligned pre-run pair (gs, hs, α)

where inp(hs) ≤ ins, α covers hs, and for all i, j, if iαj
and redex(gsi) is an `-assertion or `-assumption Φ then

gs�(i+ 1) | hs�(j + 1) |= Φ (2)

Moreover either α covers gs or inp(hs) = ins and last(hs)
is receptive.

An assumption fiat is `-aligned (gs, hs, α) where inp(hs) ≤
ins, α covers hs, and there are i, j,Φ such that i < |gs|,
j = |hs| − 1, iαj, redex(gsi) is assume`

′
Φ with `′ � `,

Eqn. (2) does not hold, and (gs�i, hs�j, β) is a conformance
for `, ins where β = {(k, l) | kαl ∧ k < i ∧ l < j}.

An assertion failure is the same as an assumption fiat,
except that redex(gsi) is assert`

′
Φ with `′ � `.

An alignment failure is `-aligned (gs, hs, α) where
inp(hs) ≤ ins, α covers hs, and there are i, j, i < |gs|,
j = |hs| − 1, iαj, such that redex(gsi) is an annotation
command for `, and redex(hsj) is an `-annotation different
from redex(gsi).

A divergence fiat is (gs, hs, α) where inp(hs) ≤ ins, α
covers hs, and there is i, i < |gs|, such that redex(gsi) is
an `-annotation command, (gs�i, hs, α) is a conformance for
`, ins, and for every n ≥ |hs| there is hs′ ≥ hs of length
n, such that inp(hs′) = inp(hs) and last(hs′) is active and
redex(last(hs′)) is not an `-annotation.

Note that in the conformance condition (2) we evaluate an
assertion or assumption in the aligned states together with the

6 Whereas in [25] assumption and divergence fiats have minor pre-runs
(‘traces’ in [25]) that end at the point of assumption violation or divergence,
here our formulation allows that the minor pre-run continues beyond that
point. Some details are also changed in accord with our treatment of
annotations being checked in the step where they become the redex, rather
than the following step.

input lists. Similarly in the conditions for assumption fiat and
assertion failure.

A subtlety in the definition of conformance has to do with
the intention to account for all steps of gs. If ins provides
enough inputs, this can be achieved, in which case α covers
gs. If ins fails to provide enough inputs for the minor pre-run
to fully align with gs, nonetheless hs should be as long as
possible, i.e., reach a receptive configuration. The case where
gs is not covered is not a satisfactory account of the safety
of gs, but this is not a problem because the safety condition
(below) quantifies over all input lists ins.

Divergence fiat needs to be understood in connection with
programs being well specified and input total. Because `-
visible inputs and outputs are accompanied by annotations
for `, a divergence fiat indicates that the minor pre-run is
continuing without producing visible output or consuming
visible input. That could be due to a nonterminating loop with
no outputs, or one with non-visible outputs. By contrast, in an
alignment failure, the minor pre-run definitely reaches another
`-annotation, but one that does not match gs.7

For example, suppose the input history of the major pre-run
gs is [in`1, in`2]. At level `, with ins = [in`3, in`2], we get
an assumption fiat regardless of the program. That is because
a well specified `-handler begins with an assumption so any
minor pre-run aligns properly and the initial agreement on
input is false.

Safe pre-run

A pre-run gs is safe for ` and inputs ins iff there are hs, α
such that (gs, hs, α) is a conformance, an assumption fiat, or
a divergence fiat for `, ins. A pre-run is safe for ` if for every
ins it is safe for `, ins. It is safe if it is safe for every `.

Given that input sequences determine pre-runs (Lemma 2),
one can define a safe input list to be one with safe pre-runs.
We do not use that notion, but we do use some results that are
used to connect safety with security. The first says extending
a failed pre-run yields the same. The second says nonempty
prefixes of a safe pre-run are safe.

Lemma 8. [forward fiat and failure] If gs · g and gs are pre-
runs and (gs, hs, α) is an assumption or divergence fiat for
`, ins, or an assertion or alignment failure for `, ins, then so
is (gs · g, hs, α).

Lemma 9. [backward safety] If gs ·g and gs are pre-runs and
gs · g is safe then so is gs.

The details in the definitions of failures, fiats, and confor-
mance are motivated by the need to make these conditions
mutually exclusive and exhaustive, as confirmed by the fol-
lowing.

7In addition to modifying the definitions of [25] to fit the reactive program
model, we have also tightened the definition of divergence failure to make it
mutually exclusive from alignment failure.

Lemma 10. [classification] For any gs, ins, and ` there are
hs and α such that (gs, hs, α) is either a conformance, an
assertion or alignment failure, or an assumption or divergence
fiat for `, ins.

The proof goes by induction on gs. Details in the classifi-
cation of aligned pre-run pairs are motivated by details in the
proof, which is provided as an appendix. The construction
of hs and α amounts to the design of an ideal monitor.
Simultaneously for the minor pre-runs of all ins, the monitor
tracks the steps of the major run and reasons about the minor
run for ins. If any ins results in an assertion or alignment
failure, then continuing execution of gs is unsafe. We return
to this in Section VII which discusses enforcement of safety.

VI. RELATIONAL SAFETY IMPLIES EPISTEMIC SECURITY

Security says that for each observer level `, what they
may learn is within what is allowed by the release policy as
specified by `-annotations. Safety implies security.

Theorem 11. A pre-run that is safe for ` is secure for `.

Proof sketch. Consider any `. In accord with the definitions,
we consider an arbitrary pre-run and go by induction on it.

The base case is the shortest pre-run, [〈σ0〉], which is secure
by definition: it has no prefixes hs · g with hs nonempty.

For the induction step, consider a pre-run gs · g that is safe.
Safe pre-runs are prefix closed (Lemma 9), so gs is safe, hence
gs is secure by induction hypothesis. So to prove gs·g is secure
it remains to consider the last step. We must show

k`(ts · t) ⊇ k`→(ts) ∩ RP`(gs · g) if t /∈ In` (3)

for the unique ts, t that satisfy

gs ⇓ ts gs · g ⇓ ts · t (4)

By Lemma 3, we have k`(ts·t) = k`→(ts) unless t is `-visible,
and this proves (3) for all transitions except a visible output
t ∈ Out`.

To prove (3) for t ∈ Out`, consider any list of inputs ins.
By safety of gs ·g at `, we have fs, α such that (gs ·g, fs, α) is
a conformance, assumption fiat, or divergence fiat for `, ins.
We must prove that ins ∈ k`→(ts) and ins ∈ RP`(gs·g) imply
ins ∈ k`(ts · t), either by refuting one of the antecedents or
by showing the consequent.

By definitions, ins ∈ k`→(ts) means there are hs, us and
u ∈ Ev` with

ins = inp(us) hs ⇓ us · u vis`(us) = vis`(ts) (5)

Also, ins ∈ k`(ts · t) means there are fs ′, vs such that

ins = inp(vs) fs ′ ⇓ vs vis`(ts · t) = vis`(vs) (6)

There are quite a number of variables in play so let us review
the situation. The major pre-run gs·g has trace ts·t. The minor
pre-run hs, with trace us · u, witnesses that inputs ins were
possible according to prior knowledge, because vis`(us) =
vis`(ts). Safety of gs · g accounts for the inputs ins by a pre-
run fs for them that is either in conformance or is ruled out
by assumption or divergence fiat.

We complete the proof by cases on whether (gs·g, fs, α) is a
conformance, assumption fiat, or divergence fiat. Conformance
lets us derive fs ′ such that (6) holds. Assumption fiat lets us
refute the policy hypothesis ins ∈ RP`(gs ·g). Divergence fiat
refutes the progress hypothesis ins ∈ k`→(ts).

Case conformance: Suppose (gs · g, fs, α) is a confor-
mance for `, ins. Because the program is well specified, from
t ∈ Out` and (4) we get that redex(last(gs)) = output`e for
some expression e, the preceding redex is skip, and the one
before that has redex assert`Ae. Call the latter configuration
gsi. By proper alignment there is j with iαj and fsj is the
same assertion. By conformance, the assertion holds, so gsi
and fsj agree on the value of e and thus the output t. Now,
conformance allows that fs may not have reached the actual
output command, but because the program is well specified it
is going to do so. So we may take fs ′ to be either fs or the
extension of fs with another step or two to reach the point
of output. It is also possible that fs already took some steps
beyond the output; these steps do not consume further input
or produce `-visible output, because gs · g does not do so, so
in that case let fs ′ = fs . Either way, fs ′ satisfies (6) and we
are done.

Case divergence fiat: Suppose (gs ·g, fs, α) is a divergence
fiat for `, ins. Suppose the divergence fiat is at i, j so that
((gs · g)�i, fs�j, α) is an `-conformance but redex((gs · g)i) is
an `-annotation and neither fsj nor any of its continuations
reach an `-annotation as redex. Thus pre-run fs�j and its
continuations are not doing further visible events following
last(inp(fs)). Owing to inp(fs) ≤ ins and determinacy
(Lemma 2), if the progress condition (5) holds then the handler
for last(inp(fs)) progresses at least as far as output b, after
having produced all of the visible outputs of gs. But there
cannot be in gs·g an annotation on which fs diverged, because
its progress to an output would result in alignment failure
not divergence failure. So divergence fiat refutes the progress
hypothesis ins ∈ k`→(ts).

Case assumption fiat: Suppose (gs ·g, fs, α) is an assump-
tion fiat for `, ins. Suppose the assumption fiat is at i, j so
that ((gs · g)�i, fs�j, α) is a conformance and redex((gs · g)i)
is an `-assumption of formula Φ (and so is redex(fsj)) but
(gs · g)�(i + 1)|fs�(j + 1) 6|= Φ. Let ins′ be inp(fs�j).
By definition of RP` we have ins′ /∈ RP`((gs · g)�i). By
Lemma 6(a) we get ins′ /∈ RP`(gs·g) and then by Lemma 6(b)
we get ins /∈ RP`(gs · g).

VII. ENFORCEMENT OF SAFETY

The knowledge based security property is proposed as an in-
tuitively clear interpretation for policies expressed as program
annotations. The safety property, on the other hand, seems less
transparent but is designed as a bridge to effective assurance
of security. This section sketches how that assurance can be
provided by runtime monitoring of individual executions and
by static analysis that verifies security of all executions.

A. Monitoring

The safety property of Section V is adapted from the work
of Chudnov et al. [25] who proposed to view a monitor as
performing an abstract interpretation to account for all the
minor pre-runs vis a vis the major one. Their work takes
safety as the security property, whereas we take safety to
be a convenient basis for enforcement of a knowledge based
security property. In this section we briefly explain their
monitor and outline how it can be adapted to safety in the
setting of our reactive language.

Chudnov et al. [25] describe an idealized monitor in terms
of configurations augmented with the monitor state, which
includes a set of relational formulas known to hold with
respect to the minor pre-runs. As an intermediate stage in
the constructive justification of an implementable monitor,
monitoring is described for the property “safe with respect
to particular inputs”, like our “safe for ins”. This property
is stronger than safety, in part because it provides a relation
at every aligned pair of steps. The monitor leverages those
relations in order to check assertions and alignment, ensuring
that it can detect possible violation of safety. A sound approx-
imation of safety can be maintained by reasoning with the
formulas and the known states of the major run, independent
of the minor pre-run. Hence the monitor effectively reasons
about all minor pre-runs simultaneously.

Following prior works on so-called hybrid monitors that
leverage static analyses, in [25] the monitor state includes
a conventional labelling of variables, as a representation of
agreements known at the current aligned points. The monitor
also maintains a stack, to track implicit flow: at an aligned
pair of execution steps, the monitor can determine whether the
minor pre-run is at the same control point, and if not then what
path it is on. This allows to update the variable labelling and
known formulas based on possible effects of “high branches”
with differing control flow.

Chudnov et al. [25] claim their approach is a systematic
way to derive monitors for richer languages. The monitor
actions are defined hand in hand with proving that the monitor
maintains the strengthened safety condition, in an argument
refining one similar to our proof of Lemma 10. Assaf et al. [8]
reformulate the ideas in terms of a compositional program
semantics and Galois connections that account for the way
relational formulas abstract from agreements. In these terms
they derive monitors by calculation—inspired by the con-
structive derivation of abstract interpreters by Cousot [28]—
and show how a monitor can leverage existing static anal-
yses formulated as abstract interpretations. In [8], variable
labellings are dispensed with and the control level stack is
implicitly represented in the recursively defined interpreter.
Their formulation seems less easy to connect with knowledge
semantics, so here we sketch how the monitor of [25] can be
adapted to the reactive language.

The language of [25] does not include handlers and out-
puts. But given that programs are well specified, the monitor
does not need to do anything special about outputs: they

are protected by assertions which the monitor checks. The
monitor does need to keep track of input values, but these
are assigned to variables, and the assumption at the start of
a handler informs the monitor that the minor pre-runs under
consideration are in agreement. As shown in [25], a significant
amount of reasoning can be done simply based on evaluating
assertions in the current pre-run state and maintaining known
agreements.

There are two significant changes that need to be made to
the monitor of [25]. The first change is to handle agreement
formulas A`@n that refer to inputs. Roughly, the monitor
needs to establish agreements on variables being output—
for assertions—based on assumed agreements on inputs. One
obvious principle is that if the monitor is maintaining a counter
i of inputs on channel `, it can assume at the beginning of
the ` handler that the input variable x of the handler has the
value chan`[i], and thus from the assumed agreement on x
we infer A`@i. Perhaps surprisingly, this does not require the
monitor to store a list of inputs seen. Our formula language
deliberately omits state predicates that refer directly to inputs
(recall Lemma 6); if that is desired in a specification, one
needs to store inputs in locals (e.g., of type list) in order to
express conditions on them. In maintaining known formulas,
the monitor needs to drop those that may have been falsified by
minor execution along a different control path. An agreement
like AS@b− p+ 15 with an expression for its offset needs to
be updated or discarded in accord with changes to b and p.

The second change is to handle multiple security levels. The
obvious idea is to maintain, for each `, monitor state for the
known agreements and level stack for alignments for safety at
level `. For a small number of levels this could be fine, but
a more sophisticated treatment is preferable in case of a large
number. For example, agreement at ` implies agreement at `′

for `′ � `; this can be exploited by the reasoning component,
to reduce the number of agreement formulas stored.

B. Relational logic

This section sketches how safety can be assured for all exe-
cutions, using techniques and tools from relational verification,
in particular relational Hoare logics (RHL). Although some
RHLs are for probabilistic or other quantitative properties
(e.g., [13]), most aim to provide verification of a simple 2-
safety property (e.g., [15], [37]). To explain, let us use plain
letters R,S, in addition to Φ, for relational formulas. In the
simplest case, the judgment {R}c ∼ d{S} says that for any
pair σ, τ of states related by R, if c terminates on σ and d
on τ then the final states are related by S. (There are other
variations: both terminate; or, if c terminates then so does d.)
For security specification, R and S express agreements, and d
is the same program as c. But the verification often requires
the general form c ∼ d for different programs. The typical
case is a “high conditional” where it cannot be ensured that
both runs take the same branch so the alternatives need to be
related somehow.

In richer languages, e.g., with pointers, the judgement also
says there are no runtime errors. In the case of judgments

under hypotheses—where c and d can call procedures that
have relational contracts—a modular correctness judgment
says that procedures are never called in states outside their
preconditions. We propose yet another variant, to cater for
intermediate assertions and assumptions.

The alignment of intermediate computation steps is not
explicit in most work on RHL, although it is explicit in some
automatic verification techniques [33]. (For clarity we focus
here on logics rather than verification tools, and in any case
logics explicate the reasoning principles that underly tools.)
Implicitly, however, the syntax directed rules of RHL designate
alignments. For example, to prove {R}c1; c2 ∼ d1; d2{S}
a standard rule is to prove {R}c1 ∼ d1{Q} and {Q}c2 ∼
d2{S} for some Q. Notice that in fact the two premises
establish that a pair of runs of c1; c2 and d1; d2 can be aligned
“at the semicolons” and Q holds at the alignment point. Here
Q is asserted as postcondition for the first part, and assumed as
precondition for the second. (Compare with the monitor, which
needs relations at intermediate alignment points.) DN:[Elaborate
here?]

Logics also need rules to relate differently structure code
fragments, like alternate high branches, for which there are
not useful intermediate alignment points.

Just as the monitor can reason that a formula Φ continues
to hold unless variables in it get updated, in RHL one finds
“frame rules” that infer {R ∧Q}c ∼ d{S ∧Q} from {R}c ∼
d{S} if Q depends on no location that is updated in c or d.

For our purposes, it is the relational annotations that are
intended to be aligned in the two runs, so for reasoning about
relational assumptions and assertions it suffices to consider
c ∼ c where c is of the form assume`Φ or assert`Φ. We ignore
` now and return to it later. The obvious axiom for assumptions
is {R}assumeΦ ∼ assumeΦ{R ∧ Φ}. One rule for assertions
is that {R}assertΦ ∼ assertΦ{R} holds if R ⇒ Φ. To verify
a reactive program, verify that {true}c ∼ c{true} for each
handler body c.

It is beyond the scope of this paper to work out details, but
we observe that most RHL rules are in fact sound with respect
to the semantics we need for judgments, which slightly gener-
alizes safety. Here is how we propose to interpret the judgment
form {R}c ∼ d{S} at level `. For any pre-run of c from any
initial state, and for every input list ins, the pre-run of d in
ins (and again from any initial state) yields a conformance,
assumption fiat, or divergence fiat. For this purpose, only the
` annotations are relevant—the rules for assume and assert
would only be used for `-annotations and other annotations
(for `′ � `) would be treated as skip. By contrast with the
definitions of knowledge, progress knowledge, and safety, here
we quantify not just over runs from the initial configuration
but runs from arbitary configurations. And we align runs of
c with runs of a possibly different program d, to validate the
RHL rules for non-synchronized conditionals and loops.

By considering all starting states, the property is composi-
tional in this sense: if {true}c ∼ c{true} is valid for every
handler body c then the complete program is safe (in the sense
of Section V).

Justifying a logic’s rules with respect to this semantics
involves reasoning about alignments, for which purpose the
work of Banerjee et al. [10] is particularly suited because their
logic provides forms closely related to relational assertions
and assumptions: special “biprogram” constructs that are used
to express syntactic alignments of code such as synchronized
procedure calls and agreeing conditionals. The operational
semantics of biprograms explicitly models step-by-step align-
ment of all intermediate points (as in a monitor) such that the
requisite agreements hold. It should be possible to extend their
semantics to include relational annotations.

In effect each level ` has an associated specification, the
`-annotations, to be verified. An obvious question is whether
multiple verifications are needed or can the different levels—
correcness with respect to observers at a level—be verified
simultaneously. The use of RHLs for multi-level information
flow has been considered in the context of SparkADA [1].
Because it is the same program being verified at each level,
one can use level-indexed formulas and suitable entailments
to combine the multiple verifications into a single one, though
not necessarily reducing the overall effort compared with a
separate verification for each of the many or few levels of
interest.

VIII. RELATED WORK

Sabelfeld and Sands [41] systematized the early work on
semantics and enforcement of declassification, classified de-
classification policies according to dimensions (what-where-
who-when) and identified restrictions that prevent unintended
disclosure of information. Much of the following work focused
on the semantics and enforcement of policies across several
dimensions.

A. Program logics and type systems for declassification

Mantel and Reinhard [35] enforce declassification policies
in the the where and what dimensions. They identify two kinds
of what properties, suitable for controlling timing leaks in
concurrent programs, but possessing different characteristics.
Enforcement is done with a type system.

Askarov and Sabelfeld [6] proposed a type system that
allowed enforcing policies in the where and what dimensions.
Their security condition, delimited localized release, fulfills
the principles identified in [41]. Later they reformulated the
security property (gradual release) in terms of attacker knowl-
edge [3]; this has given rise to a whole line of work on
epistemic information-flow security (Section VIII-C).

Barthe et al. [12] propose a modular type-and-effect system
for enforcing declassification that combines both what and
where dimensions in one construct. The security property is
related to delimited localized release. Modularity of the type
system allows straightforward proofs of typing preservation for
security preserving compilation, as demonstrated for a Java-
like language and JVM-like bytecode.

Banerjee at al. [11] propose a combination of a type
system and a program logic to specify and enforce declas-
sification policies that combine what, where and dimensions.

Enforcement is done by means of a type system that emits
proof obligations in the form of relational and non-relational
assertions.

A prudent requirement for declassification functions is to
reduce information content of the result. Yet, even a well
designed declassification function can be abused and applied to
the same value several times, disclosing more information than
intended. To address this problem Kaneko and Kobayashi [32]
proposed a linear type system that limits how often a de-
classification function can be applied, as well as how often
the declassified value can be used. This allows to bound the
information disclosed by programs. This approach can be
emulated using relational assertions only allow disclosure if
a counter c is positive (B c > 0 ⇒ Ae), and decrementing it
after each disclosure.

B. Dynamic enforcement of declassification

Demongeot et al. extend the Le Guernic’s [34] noninterfer-
ence monitor with a declassification expression and show how
to enforce delimited localized release dynamically.

Askarov and Sabelfeld [7] show how to enforce a gener-
alization of gradual release and delimited localized release
dynamically. Their I/O model is interactive and multi-channel,
but in contrast to ours, their input operations are blocking.
Other differences from our work include support of dynamic
code evaluation and both termination-insensitive and sensitive
formulations of the monitor.

Jina et al. [31] extend the inlined monitor from [26] with a
declassification primitive. They give a high level proof sketch
that the monitor enforces a knowledge-based security property
that appears similar to gradual release [3].

C. Release policies described in terms of knowledge

As pointed out in [9] and emphasized in [22], a wide range
of policies for downgrading can be described in terms of
attacker knowledge. Each step of a program can produce an
observation that the attacker can learn something about the
inputs or the initial memory of the program [3]. A release
policy [11], [7] bounds the learning.

Besson et al. [17] devise monitors that directly approximate
the attacker’s knowledge, which might used to enforce an epis-
temically specified policy. Their work focuses on improving
permissiveness for enforcement of noninterference.

D. Dynamic policies

Dynamic information flow policies have recently emerged as
an alternative to downgrading. Instead of specifying the values
to be released, the programmers are allowed to change the
policies—usually, by changing the partial ordering of security
levels.

Broberg and Sands have suggested and evolved the approach
of labels conditioned on program state [19] and using it to en-
code declassification expressions [20] and, finally, generalizing
them to a role-based model [21].

Swamy and Hicks [43] propose to specify stateful declas-
sification policies, motivated by DoD rules, using automata

and use a sophisticated type system to enforce them in a
functional language. The approach can be implemented with
our approach using relational assertions and assumptions,
additional program variables, representing the state of the
policy automaton, and program instrumentation, implementing
its transition rules. The state variables would be used as guards
for agreements on released data in relational assumptions.

Askarov and Chong [4] address policies that involve events
or conditions by using a flow ordering that is mutable. Their
epistemic semantics says that in each step, what is learned is
allowed by the current flow relation; this is a direct precursor
to our notion of release policy.

Broberg at al [22] classify dynamic policies, also giving
semantics to them in terms of attacker knowledge. They
identify facets of policies from previous work: termination
sensitivity, time-transitivity, flow replaying, direct release and
flow whitelisting. Like Askarov and Chong [4], they sug-
gest a simple approach for encoding policy changes in the
program, using A → B to enable a flow from A to B
and A 9 B to disable it. Finally, they relate dynamic
policies to declassification. Since the set of labels is fixed—
only their ordering changes—we can encode such policies in
our system, albeit verbosely. Consider two levels A and B
and a boolean variable ab. Then the simple dynamic policy
program [22] A → B; b := a; A 9 B can be expressed as
ab := 1; b := a; assumeBBab⇒ Ab; ab := 0 by representing
the flow relations in the program state itself and using them
as agreement conditions.

Buiras and van Delft [23] extend the dynamic information
flow tracking library LIO [42] with the ability to change label
ordering at run-time. The property that the library enforces is
noninterference with respect to the policy in the current state
as well as the absence of flows due to the change in policy
itself.

Arden and Myers [2] investigate the how dynamic au-
thorization and information flow policies affect each other.
They formalize their approach as a program logic for a small
functional language for specifying decentralized authorization
protocols and use it to verify two protocols. This work is a
basis for the investigation by Ceccetti et al. [24] of a new
interaction between integrity and confidentiality, specifically a
form of endorsement that is dual to robust declassification.

Bauereiß et al. [14] implement a distributed social media
platform with dynamic information flow policies formulated
in terms of trigger conditions and bounds on release. They
verify the system’s security by interactive theorem proving.

E. Information-flow security for interactive programs

O’Neill et al. [39] study the security properties of interactive
programs and devise strategies that the attacker can use to
obtain more information than intended. However, Clark and
Hunt [27] determined that strategies give the attacker no
advantage in case of deterministic programs. This justifies
works like [4] in which program semantics is formalized in
terms of an initially given complete input stream. We mention

that particular work because it appears their notion of fine-
grained policies, though formulated in a way very similar to
our notion of secure pre-run, may admit clairvoyant policies.
By contrast, this cannot happen in our program semantics
because future inputs are not given in advance.

Vanhoef et al. [44] propose a declassification approach for
event-driven programs that relies on what we call policy state,
which is updated in response to input events. This makes
possible an extensional policy formulation: at each event,
the policy says what function of the event value may be
released, depending on what kind of event and depending on
the policy state. In addition, policy specifies how the policy
state transitions in response to input events. The security
directly is not formulated in terms of knowledge, but in effect
it is similar to that in [9]. Their approach can be implemented
by instrumenting the program with a variable to store policy
state, updated upon inputs, together with assumed agreements
conditioned on predicates over the state.

F. Release policies as program annotations

Balliu et al. [9] remark that a wide range of downgrading
policies in a small fragment of epistemic temporal logic. We
aim to show in effect that correctness for this fragment can
be expressed by the very simple means of relational assertions
and assertions, as anticipated by [11].

Vaughan and Chong [45] enforce policies conditioned on
certain events (whether specific methods have ever been
invoked) and referring to inputs by indexing input streams
backwards, enabling references n-th most recent input on a
given channel.

An attractive idea in [44] is to use declassification state-
ments not as a means to specify policy, but only as a means
to inform the enforcement mechanism (in their case, secure
multi-execution [29]) what is the intended policy. One can
imagine other heuristic or methodological means for manually
or automatically (e.g. [45], [40]) annotating a program, at
runtime or prior to runtime, but that is not our concern here.
Rather, we are taking the prior step, which is to give a
semantics for annotations and show how to express various
sorts of policy using annotations, so that their semantics is in
accord with the original proposals.

IX. CONCLUSION

The suitability of relational program logic to reason about
information flow has been known for some time and continues
to bear fruit (e.g., [15], [36]). Relational annotations are less
explored and their prior use for monitoring [25], [8] involved
intricate and unusual semantics. The use of annotations to
specify declassification is attractive, in part because annota-
tions that refer to program state may be relatively easy for pro-
grammers to become familiar with and integrate into software
interfaces and practices, by contrast with specialized notations
for security. Relational assumptions are the least familiar but
our new knowledge semantics justifies an intuitive reading: an
assumed agreement on some expression, referring to program
state or directly to past inputs, means “the observer at that level

is now permitted to know this”. We suggest that while other
specialized notations may be convenient in particular settings,
they may be explained and enforced by desugaring to relational
annotations as presented here. Besides using knowledge to
justify the more intricate “safety semantics”, we have taken
first steps towards showing that the later is not only useful for
monitoring but also for static verification in relational program
logic.

Formulating security policy using assertions and assump-
tions (and relational contracts for procedures) enables sophisti-
cated policies that depend on whatever conditions are manifest
in the program code, including instrumentation provided in
support of policy specification. For example, database privacy
based on the notion of differential privacy may involve dy-
namic tracking of prior queries in order to determine whether
a candidate query risks violating a privacy budget, and key
management may involve statistics about session duration and
current risk profile. Such policies ultimately need justification
in terms of quantitative analysis of the information flows and
the environment. Good high level policies may make reference
to dynamic conditions such as prior queries, session duration,
retry count, and the exchange rate of Bitcoin. However,
verifying or dynamically enforcing that the implementation
conforms to policy is based on the code and its interfaces.
Such quantitative conditions can be expressed in terms of
ordinary assertions about program state and reasoning may
well benefit from integration with ordinary program invariants
and contracts.

Such considerations motivate further exploration of the
knowledge semantics, for example, to include the current state
in the knowledge rather than existentially quantifying it in
the release policy (which we did here for simplicity). The
semantics here is not specific to the programming language
and can easily be extended to richer features such as proce-
dures and the heap, within a sequential execution model. To
extend the semantics to encompass integrity requirements, a
key starting point is the knowledge based approach of Askarov
and Myers [5] (see also [24]). Extension to concurrency is
challenging and will necessitate dealing with nondeterminacy,
which is a significant complication for relational properties.
However, assertion based methods underlie most reasoning
systems for concurrency in programs, in particular providing
methodologies by which reasoning can be done largely in
sequential style owing to clear interaction points (locking,
wait-free atomics).

ACKNOWLEDGEMENT

The views expressed in this paper are those of the authors
and not D. E. Shaw & Co., L.P. or any of its affiliates. The first
author thanks Galois, Inc. for their support while employed
there. The second author was partially supported by NSF
awards CCF-1649884, CNS-1718713, and CCF-1521602. Dis-
cussions with Mounir Assaf were very helpful, as were the
CSF reviews.

REFERENCES

[1] T. Amtoft, J. Hatcliff, E. Rodrı́guez, Robby, J. Hoag, and D. Greve,
“Specification and checking of software contracts for conditional infor-
mation flow,” in Formal Methods, ser. LNCS, vol. 5014, 2008.

[2] O. Arden and A. C. Myers, “A calculus for flow-limited authorization,”
in IEEE Computer Security Foundations Symposium, 2016, pp. 135–149.

[3] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifi-
cation, encryption and key release policies,” in IEEE Symposium on
Security and Privacy, 2007.

[4] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in IEEE Computer
Security Foundations Symposium, 2012, pp. 308–322.

[5] A. Askarov and A. C. Myers, “Attacker control and impact for confi-
dentiality and integrity,” Logical Methods in Computer Science, vol. 7,
no. 3, 2011.

[6] A. Askarov and A. Sabelfeld, “Localized delimited release: combining
the what and where dimensions of information release,” in ACM Work-
shop on Programming Languages and Analysis for Security. ACM,
2007, pp. 53–60.

[7] ——, “Tight enforcement of information-release policies for dynamic
languages,” IEEE Computer Security Foundations Symposium, 2009.

[8] M. Assaf and D. A. Naumann, “Calculational design of information flow
monitors,” in IEEE Computer Security Foundations Symposium, 2016,
pp. 210–224.

[9] M. Balliu, M. Dam, and G. Le Guernic, “Epistemic temporal logic
for information flow security,” in ACM Workshop on Programming
Languages and Analysis for Security. ACM, 2011, p. 6.

[10] A. Banerjee, D. A. Naumann, and M. Nikouei, “Relational logic
with framing and hypotheses,” in 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,
ser. LIPIcs, vol. 65, 2016, pp. 11:1–11:16.

[11] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive declassi-
fication policies and modular static enforcement,” in IEEE Symposium
on Security and Privacy, 2008.

[12] G. Barthe, S. Cavadini, and T. Rezk, “Tractable enforcement of declassi-
fication policies,” in IEEE Computer Security Foundations Symposium,
2008, pp. 83–97.

[13] G. Barthe, T. Espitau, B. Grégoire, J. Hsu, and P. Strub, “Proving
expected sensitivity of probabilistic programs,” PACMPL, vol. 2, no.
POPL, pp. 57:1–57:29, 2018.

[14] T. Bauereiß, A. P. Gritti, A. Popescu, and F. Raimondi, “CoSMeDis: a
distributed social media platform with formally verified confidentiality
guarantees,” in IEEE Symposium on Security and Privacy, 2017, pp.
729–748.

[15] N. Benton, “Simple relational correctness proofs for static analyses
and program transformations,” in ACM Symposium on Principles of
Programming Languages, 2004.

[16] L. Beringer, “End-to-end multilevel hybrid information flow control,” in
Asian Symposium on Programming Languages and Systems, ser. LNCS,
2012, vol. 7705.

[17] F. Besson, N. Bielova, and T. P. Jensen, “Hybrid monitoring of attacker
knowledge,” in IEEE Computer Security Foundations Symposium, 2016,
pp. 225–238.

[18] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic,
“Reactive noninterference,” in ACM Computer and Communications
Security, 2009, pp. 79–90.

[19] N. Broberg and D. Sands, “Flow locks,” in European Symposium on
Programming, ser. LNCS, vol. 3924, 2006.

[20] ——, “Flow-sensitive semantics for dynamic information flow policies,”
in ACM Workshop on Programming Languages and Analysis for Secu-
rity, 2009.

[21] ——, “Paralocks – role-based information flow control and beyond,” in
ACM Symposium on Principles of Programming Languages, 2010.

[22] N. Broberg, B. van Delft, and D. Sands, “The anatomy and facets of
dynamic policies,” in IEEE Computer Security Foundations Symposium,
2015, pp. 122–136.

[23] P. Buiras and B. van Delft, “Dynamic enforcement of dynamic poli-
cies,” in ACM Workshop on Programming Languages and Analysis for
Security. ACM, 2015, pp. 28–41.

[24] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable information
flow control,” in ACM Computer and Communications Security, 2017,
pp. 1875–1891.

[25] A. Chudnov, G. Kuan, and D. A. Naumann, “Information flow moni-
toring as abstract interpretation for relational logic,” in IEEE Computer
Security Foundations Symposium, 2014, pp. 48–62.

[26] A. Chudnov and D. A. Naumann, “Information flow monitor inlining,”
in IEEE Computer Security Foundations Symposium, 2010, pp. 200–214.

[27] D. Clark and S. Hunt, “Non-interference for deterministic interactive
programs,” in Formal Aspects in Security and Trust, ser. LNCS, vol.
5491, 2008.

[28] P. Cousot, “The calculational design of a generic abstract interpreter,”
in Calculational System Design, M. Broy and R. Steinbrüggen, Eds.
NATO ASI Series F. IOS Press, Amsterdam, 1999, vol. 173, pp. 421–
506.

[29] D. Devriese and F. Piessens, “Noninterference through secure multi-
execution,” in IEEE Symposium on Security and Privacy, 2010.

[30] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[31] L. Jina, H. Zhub, and H. Mab, “Monitor inlining for declassification
policy,” Journal of Information & Computational Science, vol. 12,
no. 12, pp. 4697–4704, 2015.

[32] Y. Kaneko and N. Kobayashi, “Linear declassification,” in European
Symposium on Programming. Springer, 2008, pp. 224–238.

[33] M. Kovács, H. Seidl, and B. Finkbeiner, “Relational abstract interpreta-
tion for the verification of 2-hypersafety properties,” in ACM Conference
on Computer and Communications Security, 2013.

[34] G. Le Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt, “Automata-
based confidentiality monitoring,” in Advances in Computer Science:
Secure Software and Related Issues, 11th Asian Computing Science
Conference 2006 (Revised Selected Papers), ser. LNCS, vol. 4435, 2008.

[35] H. Mantel and A. Reinhard, “Controlling the what and where of
declassification in language-based security,” in European Symposium on
Programming. Springer, 2007, pp. 141–156.

[36] C. Müller, M. Kovács, and H. Seidl, “An analysis of universal infor-
mation flow based on self-composition,” in IEEE Computer Security
Foundations Symposium, 2015, pp. 380–393.

[37] A. Nanevski, A. Banerjee, and D. Garg, “Verification of information flow
and access control policies with dependent types,” in IEEE Symposium
on Security and Privacy, 2011.

[38] ——, “Dependent type theory for verification of information flow and
access control policies,” ACM Trans. Program. Lang. Syst., vol. 35, no. 2,
2013.

[39] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-flow security
for interactive programs,” in Computer Security Foundations Workshop,
2006. 19th IEEE. IEEE, 2006, pp. 12–pp.

[40] B. P. Rocha, S. Bandhakavi, J. den Hartog, W. H. Winsborough,
and S. Etalle, “Towards static flow-based declassification for legacy
and untrusted programs,” in Security and Privacy (SP), 2010 IEEE
Symposium on, 2010, pp. 93–108.

[41] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifica-
tion,” Journal of Computer Security, 2007.

[42] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, “Flexible dynamic
information flow control in Haskell,” in ACM Sigplan Notices: Haskell
Symposium, vol. 46, no. 12. ACM, 2011, pp. 95–106.

[43] N. Swamy and M. Hicks, “Verified enforcement of stateful information
release policies,” ACM Sigplan Notices, vol. 43, no. 12, pp. 21–31, 2009.

[44] M. Vanhoef, W. D. Groef, D. Devriese, F. Piessens, and T. Rezk,
“Stateful declassification policies for event-driven programs,” in IEEE
Computer Security Foundations Symposium, 2014, pp. 293–307.

[45] J. A. Vaughan and S. Chong, “Inference of expressive declassification
policies,” in IEEE Symposium on Security and Privacy, 2011, pp. 180–
195.

APPENDIX

A. Proof of Lemma 2

By induction on ins, with (a)–(c) as induction hypothesis.
In the base case, ins = [] and gs is [〈σ0〉]. In the induction
case, suppose ins is ins′ · t and gs satisfies (a)–(c) for ins′.

If inp(gs) = ins′ then all inputs were handled and a
receptive configuration was reached. So gs can be extended by
further transitions starting with the input of a to its handler. If
the handler diverges, then gs itself satisfies (a)–(c) so we are

done; otherwise it can be run to completion, which results in
gs ·gs′ where last(gs′) is receptive and inp(gs ·gs′) = ins′ · t.

If inp(gs) < ins′ then an earlier input is already divergent
so by induction hypothesis we get (a) and (b) for ins · t.

B. Proof of Lemma 6

(a) Direct from definition of RP`. (b) By induction on gs. In
the base case (the initial configuration) the antecedent is false
because no ins is rejected. For the induction step, suppose
ins /∈ RP`(gs · g). This can be because ins /∈ RP`(gs) or
because g is an assumption that does not hold for ins. If
ins /∈ RP`(gs) then by induction ins′ /∈ RP`(gs) whence
ins′ /∈ RP`(gs · g) by (a). If an assumption does not hold for
ins, we rely on the property of relational formula semantics
that if a formula is false for two states and two input lists then
it is also false for extensions of one or both of those lists. That
property can be proved by induction on formulas. It relies on
the formula language not providing direct means to refer to
the length of the input lists, treating the form A`@n as true for
inputs that are too short, and not allowing agreements under
negation.

C. Proof of Lemma 10

Consider any ` and ins, and go by induction on gs.
In the base case, gs is [〈σ0〉]; we take hs := [〈σ0〉] and

α := {(0, 0}. This forms a conformance.
In the induction case, gs has the form fs·g and by induction

we have hs, α with (fs, hs, α) a conformance, fiat, or failure
for `, ins. If it is a fiat or failure then so is (fs · g, hs, α),
by Lemma 8, and we are done. If ins has been exhausted,
i.e., (fs, hs, α) is a conformance such that inp(hs) = ins and
last(hs) is receptive, then (fs ·g, hs, α) is a conformance and
we are done.

It remains to consider the case that (fs, hs, α) is a con-
formance such that α covers fs and either inp(hs) < ins or
last(hs) is active. We proceed by cases of last(fs).
• If last(fs) is receptive and the transition to g is for a

visible input on some `′ � `, so redex(g) is assume`
′ Ax

(for some x) then construct hs′ ≥ hs by successive
steps, maintaining inp(hs′) ≤ ins (recall Lemma 2), until
redex(last(hs′)) is an `-annotation.

– If this is not possible because inp(hs′) = ins
and last(hs′) is receptive, then (fs · g, hs′, β) is a
conformance, where β = α ∪ {(|fs| − 1, j) | |hs| ≤
j < |hs′|}.

– If an `-annotation is reached at last(hs′) then there
are three sub-cases:

∗ If the annotation redex(last(hs′)) is the same
as redex(g), and sta(g), sta(last(hs′)) agree on
x, then (fs · g, hs′, γ) is a conformance, where
γ = α ∪ {(|fs| − 1, j) | |hs| ≤ j|hs′| − 1} ∪
{(|fs|, |hs′| − 1)}.

∗ If the annotation is the same as redex(g) but the
states do not agree on x, then (fs · g, hs′, δ) is an
assumption fiat, where
δ = α ∪ {(|fs| − 1, j) | |hs| ≤ j|hs′| − 1}.

∗ If redex(last(hs′)) differs from redex(g) then (fs·
g, hs′, δ) is an alignment failure, where δ is as in
the preceding.

– If neither ins is exhausted nor an `-annotation
reached while growing hs′, then the minor pre-run
is diverging without doing further visible input or
output. So (fs · g, hs, α) is a divergence fiat.

• If last(fs) is receptive and the transition to g is for a
non-visible input, so redex(g) is an assumed agreement
for some `′ � `, then (fs · g, hs, α ∪ {(|fs|, |hs| − 1)})
is a conformance. (Here we use that last(fs) cannot be
an annotation, so neither can last(hs).)

• If last(fs) is active, we have these sub-cases:
– If redex(g) is not an `-annotation then (fs·g, hs, α∪
{(|fs|, |hs| − 1)}) is a conformance.

– If redex(g) is an `-annotation then construct hs′ ≥
hs by successive steps, maintaining inp(hs′) ≤ ins
until redex(last(hs′)) is an `-annotation.
∗ If this is not possible because inp(hs′) = ins

and last(hs′) is receptive, then (fs · g, hs′, β) is
a conformance, where β is defined like earlier in
this proof.

∗ If an `-annotation is reached, but redex(last(hs′))
is different from redex(g), then we obtain an
alignment failure.

∗ If redex(last(hs′)) is the same as redex(g), i.e.,
an assumption or assertion at some level `′ � `
with formula Φ that is satisfied by fs ·g, hs′, then
(fs · g, hs′, γ) is a conformance, where γ = β ∪
{(|fs|, |hs′| − 1)}.

∗ If redex(last(hs′)) is the same as redex(g) but the
formula does not hold, we obtain an assumption
fiat or assertion failure.

∗ If none of the above apply, then we obtain diver-
gence fiat.

