
Enforcing ideal-world leakage bounds in
real-world secret sharing MPC frameworks

José Bacelar Almeida
INESC TEC and

Universidade do Minho, Portugal

Manuel Barbosa
INESC TEC and FCUP

Universidade do Porto, Portugal

Gilles Barthe
IMDEA Software Institute,

Spain

Hugo Pacheco
INESC TEC and

Universidade do Minho, Portugal

Vitor Pereira
INESC TEC and FCUP

Universidade do Porto, Portugal

Bernardo Portela
INESC TEC and FCUP

Universidade do Porto, Portugal

Abstract—We give a language-based security treatment
of domain-specific languages and compilers for secure
multi-party computation, a cryptographic paradigm that
enables collaborative computation over encrypted data.
Computations are specified in a core imperative language,
as if they were intended to be executed by a trusted-third
party, and formally verified against an information-flow
policy modelling (an upper bound to) their leakage. This
allows non-experts to assess the impact of performance-
driven authorized disclosure of intermediate values.

Specifications are then compiled to multi-party protocols.
We formalize protocol security using (distributed) proba-
bilistic information-flow and prove security-preserving com-
pilation: protocols only leak what is allowed by the source
policy. The proof exploits a natural but previously missing
correspondence between simulation-based cryptographic
proofs and (composable) probabilistic non-interference.

Finally, we extend our framework to justify leakage can-
celling, a domain-specific optimization that allows to first
write an efficient specification that fails to meet the allowed
leakage upper-bound, and then apply a probabilistic pre-
processing that brings leakage to the acceptable range.

I. INTRODUCTION

Secure multi-party computation (MPC) is a power-
ful cryptographic paradigm. MPC protocols allow two
or more mutually distrusting parties to collaboratively
compute over their private data, revealing nothing more
than the result of the computation. MPC eliminates
the need for delegating secure computations to a TTP
(trusted third party), significantly reducing logistical and
trust management problems, as well as security risks
inherent to having a TTP as a single point of failure.
As a consequence (and after two decades of sustained
breakthroughs in its underlying technology) MPC is
increasingly used for practical applications [1]–[3].

One key element for the practical success of MPC has
been the emergence of domain-specific languages and

compilers [4]–[12]. These MPC software stacks give (non-
expert) programmers the ability to develop applications in
traditional (sequential) programming languages, as if the
computation was to be run by one TTP. These programs
are then compiled to (probabilistic) protocols that realize
the computation in a distributed, multi-party, setting.

To achieve efficient realizations, MPC programs tend
to avoid computations that are expensive in a distributed
setting, such as accessing arrays with secret indexes or
securely branching based on secret values. A common
approach to expose these constraints is via a standard
information flow type system, with MPC-specific public
control-flow restrictions (control-flow guards and array
access expressions for imperative languages [13], or
conditionals, fixpoint recursion [12], sum types and
higher-order functions [6] for functional languages).1

The type system does not constrain the expressivity of
the language, thanks to declassify statements, which turn
an arbitrary expression to public. This suggests that its
goal is not to enforce a secure information flow policy—a
programmer is always free to declassify information—but
to make programmers aware that the MPC application
will perform some otherwise expensive computations
publicly—as a performance optimization technique—and
to ensure that data is consistently translated between
public and secret semantic domains. Hence, while the
type system is useful, it fails to capture rigorously how
much information is released via declassification.

The lack of a rigorous mechanism for analyzing

1It is possible to express oblivious control-flow by computing all
possible outcomes and algebraically selecting the correct result, but the
overhead can be prohibitive in practical applications. Most often, this
process can be performed as a compilation step (cf. [6], [12]), but we
adopt the approach of [13] where programmers handle oblivious control-
flow explicitly, which simplifies our presentation and formalization.

leakage at source level is a serious hindrance for MPC
technology, in particular because obtaining meaningful
security guarantees has a significant impact on produc-
tivity. Even though high-level domain-specific source
languages are tailored for non-experts, it is extremely
hard to simultaneously achieve good performance, which
implies declassifying intermediate results, and guarantee
that leaked information is not harmful within a particular
application, which usually calls for a MPC expert.

This paper demonstrates how to leverage language-
based techniques to provide users of MPC domain-
specific languages early and accurate feedback on the
security of their programs. Technically, this is achieved in
two steps: source-level analysis and secure compilation.

a) Source-level analysis: We propose an automated
method for proving security of source programs. Our
notion of security is expressed as a variant of non-
interference, and states that inputs related by a leakage
specification yield equal leakage, where leakage is mod-
eled using an instrumented source-level semantics. Verifi-
cation relies on relational program verification techniques,
and is performed with minimal overhead. Indeed, we
observe that MPC source programs, through information
flow types and declassify statements, expose sufficient
information to adapt a technique developed for analysing
timing leaks in assembly code [14]. Our main contribution
at this level is to adapt and extend this technique to deal
with a real-world MPC programming language, and to
demonstrate its application to proving meaningful (not
trace-based) leakage upper-bounds. Using our tool for
source-level analysis, a programmer that is not a MPC
expert can prove a leakage upper-bound that can be
matched to the security requirements of the application.

b) Secure compilation: We prove that low-level
protocols do not leak more information than source
programs from which they are generated. The central
challenge here is to connect formally information flow-
based notions of security for source programs and
cryptographic simulation-based notions of security for
protocols. Our solution is based on an alternative notion
of protocol security, leveraging probabilistic information
flow. We define a distributed probabilistic semantics that
gives meaning to securely computing a functionality using
a distributed protocol and introduce the notion of each
party’s view of the protocol. Our notion of protocol
security states that parties executing the protocol correctly
(a.k.a. honest-but-curious parties) cannot distinguish
between two runs of the protocol on related inputs;
precisely, the views—distributions over local execution
traces—of each party are identical in the two runs.

We show that our security notion composes to justify

secure multiparty compilation used in MPC software
stacks: generating MPC protocols for arbitrary source
programs by plugging simple atomic cryptographic com-
ponents. Our main theorem states that, for any correctly
typed program, source-level security is preserved as
distributed information flow security of the compiled
protocol. We conclude by proving that, for correct
executions of the program, this implies the intended
simulation-based notion of cryptographic security.

The challenge of secure compilation for MPC has been
previously addressed by Mitchell et al. [12] and, indeed,
our secure compilation theorem has a similar flavour.
However, there are two main differences. i. We focus
on secret sharing-based MPC, which allows us to give a
unified probabilistic information-flow notion of protocol
security that applies to both atomic and complex protocols.
We prove that this property composes, greatly simplifying
our secure compilation proof; we can work purely at the
information-flow level, rather than reasoning inductively
about the indistinguishability of distributions; and ii. We
establish a natural but previously missing connection
to standard security notions for information-theoretically
secure MPC, by showing that our information-flow notion
of protocol security is strong enough to imply the
existence of a cryptographic simulator that requires only
the leakage allowed by the source-level upper-bound to
perfectly simulate real-world traces.

As an independent contribution related to performance,
we leverage our framework to model leakage cancelling,
a pattern usually performed by experts for optimizing
MPC protocols in two steps: i. implement a specification
p that leaks more than what is allowed, and then ii.
use an efficient (oblivious) probabilistic preprocessing
of inputs that renders leakage useless to an attacker. We
give a sufficient condition (C) such that the following
composition theorem holds: the sequential composition
p0; p of a Ψ-secure program p0 satisfying (C) and a Φ-
secure program p is itself Φ-secure. Here, Φ-security
means that two inputs satisfying a leakage specification
Φ lead to identical leakage under program p.

Our main technical contributions are the following:
• an information flow-based definition of source-level

leakage, and an automated method for proving that
a program satisfies a leakage policy;

• an information flow-based definition of protocol
security, and a proof that it entails the expected
cryptographic notion of security;

• a proof (using a new technique) that compilation
from programs to protocols preserves security;

2

Server Server

Server

TTP

Real World Ideal World

(x1, x2, x3) = Share(x)(x1, x2, x3) = Share(x)

y = Unshare(y1, y2, y3)y = Unshare(y1, y2, y3)

(y1, y2, y3) = ⇡(x1, x2, x3)(y1, y2, y3) = ⇡(x1, x2, x3)

y = f(x)y = f(x)x1x1 y1y1 x2x2 y2y2

x3x3 y3y3

Figure 1: Real world versus ideal world.

• a formalization of leakage cancelling that attests its
validity as a secure optimization technique;

• an implementation of our techniques for a real-world
MPC language and an evaluation on challenging case
studies from the literature.

All the proofs and more detailed technical discussions
can be found in the accompanying technical report [15].

c) Limitations: Our language-based security frame-
work is limited to passive security and private outputs.
In the passive security model, honest-but-curious parties
execute the protocol correctly, i.e., we do not consider
adversaries that deviate from the protocol execution arbi-
trarily. Removing this assumption without compromising
efficiency is an active area of research in cryptography,
and extending our results to this setting is an important
direction for further work. The standard security model
for MPC protocols is universal composability, where
attackers get to observe the raw protocol outputs. Our
language-based security notion is slightly weaker than
this, to practical gain, but it is well known [16] that a
standard (and efficient) post-processing permits removing
this caveat. We further discuss both limitations below. s

II. OVERVIEW AND MOTIVATING EXAMPLES

The family of MPC protocols that we study in this
paper is based on secret sharing, a cryptographic primitive
that permits splitting secret data between multiple parties,
in such a way that accessing an incomplete subset of
these shares reveals nothing about the secrets.2

Formally, a n-party secret sharing-scheme over a set S
is defined by two algorithms: i. a probabilistic algorithm
Share that takes a secret to be shared x and produces a
distribution over n-tuples of shares (x1, . . . , xn) ∈ Sn;

2We will describe these protocols in the deployment setting typically
adopted by platforms such as Sharemind, where there are one or more
clients providing inputs and receiving outputs from the computation and
a set of workers that carry out the computation over secret share data.
Still, our results are also applicable to scenarios where input/output
parties participate in the computation.

and ii. a determistic algorithm Unshare that takes a tuple
(x1, . . . , xn) and reconstructs the secret x. Correctness of
secret sharing states that Unshare(Share(x)) = x holds,
for every x in S. For concreteness, we will consider an
additive secret sharing scheme, where secrets are elements
in a finite field F. On input x, Share samples finite field
elements x1, . . . , xn uniformly at random, conditioned
on x = x1 + . . .+ xn = Unshare(x1, . . . , xn).

The goal of MPC is then to perform (local or dis-
tributed) computations over shares, known as protocols,
that are homomorphic to computations over the original
secrets. This is naturally captured by the real-world vs.
ideal world paradigm (see Figure 1 for a specialization to
the 3-party case). On the right, the ideal world is emulated
by the MPC platform: a user can offload secret data x to
a TTP, that computes a function f over this data to obtain
a result y. On the left, using a secret sharing-scheme, a
user can offload shared data (x1, x2, x3) to three servers
in a secure way, and then obtain a secret-shared value
(y1, y2, y3) that results from the execution of a distributed
protocol π between the three servers. We say that protocol
π correctly implements f iff Unshare(y1, y2, y3) = f(x),
for every secret x and such that (x1, x2, x3) = Share(x).

Designing MPC protocols requires trade-offs between
efficiency and security. For instance, the following
program, annotated with security types, avoids branching
on secret values by using a declassify statement:3

secret minimum (secret xs) {
secret min = x[0];
for (i = 1; i < size(xs); i += 1)

if declassify(x[i] < min) { min = x[i]; }
return min; }

Even for this simple snippet, the first non-obvious
question is how much information is leaked. Leakage
at protocol level (messages exchanged among parties) is
also rather different from source-level leakage (public
values). The second question is whether a protocol π
securely implements a program p, i.e. π does not leak
more than p. In this paper we address both questions.

We provide a method for programmers to specify
allowed leakage using annotations. For the above snippet,
the programmer could declare that the function can leak
comparisons between the vector elements. In the source
annotation language proposed in this paper, this can be
expressed as a pre-condition over an initial state xs:
forall uint i; 0<=i && i<size(xs)

&& 0<=j && j<size(xs) ==> public(xs[i] < xs[j])

Under the hood, this annotation is interpreted as a
relational pre-condition on two initial states xs and xs′:

3Note that declassify statements can be inferred, but we follow the
common practice of requiring that programmers manually insert them.

3

{
size(xs) = size(xs′) = k
∀ 0 ≤ i, j < k.xs[i] < xs[j]⇔ xs′[i] < xs′[j]

Our source-level verification can establish that this
leakage bound is valid at source level using a notion
of security that defines what source leakage is, and
imposes that two executions of the above program on two
related inputs states leak the same. A security preservation
theorem then guarantees that the source-level bound is
preserved by compilation to a distributed protocol.

Next, consider the following implementation of the
partition operation for quick sort:
secret partition (secret xs, secret p) {

for (i = 0; i < size (xs); i=i+1) {
secret y = xs[i];
if (declassify(y <= p)) {ls = snoc(ls,y);}
else {rs = snoc(rs,y);}

} return (ls,rs); }

Our verification approach can show that the above
leakage bound holds. Moreover, this leakage can be
cancelled by probabilistic pre-processing. Intuitively, ap-
plying a random permutation to the quick sort input makes
the sequence of comparisons look random, and useless
to an attacker that does not know which permutation
was applied. This yields a performance gain as random
shuffling can be efficiently computed obliviously [17].
We leverage our formal framework to provide sound
conditions for applying this optimization technique.

s

III. SOURCE-LEVEL LANGUAGE

a) Syntax: Our work considers SecreC [4], a com-
mercial MPC language resembling C++, supporting high-
level programming features such as procedures, templates
or recursion, and used for writing secure applications in
the Sharemind framework [13]. For our formal develop-
ment, we will use a core imperative language extended
with a declassify operator.4 For clarity of presentation and
w.l.o.g., we make a syntactic distinction between secure
operations sop and public operations pop , and restrict
the use of secure operations to top-level expressions. The
syntax of programs appears in Figure 2.

b) Instrumented semantics: The semantics of our
source language gives meaning to evaluating a MPC
specification as if a TTP would be computing directly
over the data, with full knowledge of secret and public
variables. Despite being agnostic to security, this seman-
tics is instrumented to construct a leakage trace including
all branching conditions and all declassified values.

4This makes our results more widely applicable and helps distin-
guishing them from language features that are orthogonal to security
analysis, but would complicate the formalism without additional insight.

p ::= skip | p1; p2 | while e do p lv ::= x | x[e]

| lv := ae | if e then p1 else p2 e ::= v | x | x[e]

ae ::= e | e1 sop e2 | declassify (e) | e1 pop e2

Figure 2: Syntax of source-level language.

〈p1,m〉 →l 〈 skip ,m′〉
〈p2,m

′〉 →l′ 〈p
′
2,m

′′〉
〈p1; p2,m〉 →l·l′ 〈p′2,m′′〉

〈p1,m〉 →l 〈p′1,m
′〉

p′1 6= skip

〈p1; p2,m〉 →l 〈p′1; p2,m′〉

p =

{
p1 if JeK(m) = tt

p2 if JeK(m) = ff

〈 if e then p1 else p2,m〉 →JeK(m) 〈p,m〉

p′ =

{
p; while e do p if JeK(m) = tt

skip if JeK(m) = ff

〈while e do p,m〉 →JeK(m) 〈p′,m〉
JeK(m) = v

〈lv := e,m〉 →ε 〈 skip ,m[lv 7→ v]〉
sop (Je1K(m), Je2K(m)) = v

〈lv := e1 sop e2,m〉 →ε 〈 skip ,m[lv 7→ v]〉
JeK(m) = v

〈lv := declassify (e),m〉 →v 〈 skip ,m[lv 7→ v]〉

Figure 3: Source-level instrumented semantics.

The semantics is defined using the standard notion of
transitions between configurations (Figure 3). A configu-
ration 〈p,m〉 denotes a program p to be executed under
a memory m. A memory m maps variables x or array
elements x[i] to values v. The evaluation of expression
e under memory m is written JeK(m). A transition from
configuration c to c′ is denoted by 〈c〉 →l 〈c′〉. An
execution of a program is then a sequence of config-
urations. Configuration 〈p,m〉 terminates in m′ with
leakage l, written 〈p,m〉 ⇓l m′, if 〈p,m〉 →∗l 〈 skip ,m′〉,
where →∗ forms the reflexive transitive closure of →
and leakage is concatenated into a leakage trace.

Source-level semantics leaves as undefined the meaning
of unsafe programs. A program is safe when its semantics
is defined for every initial state. In particular, this entails
that the program terminates on all inputs. This property
can be checked using standard verification techniques
supported by our tool mentioned further in the paper.

c) Source-level security: Our notion of source-level
security is an information flow policy that sets an upper
bound on the leakage of a secure program.

Definition 1 (Source-level security). Let Φ be relations
over memories. A program p is Φ-secure whenever:(

〈p, x1〉 ⇓l1 y1

〈p, x2〉 ⇓l2 y2

)
⇒ Φ(x1, x2) ⇒ l1 = l2

4

Γ ` skip

Γ ` p1 Γ ` p2

Γ ` p1; p2

Γ `e e : public Γ ` p
Γ ` while e do p

Γ `lv lv : s
Γ `ae ae : s′ s′ v s

Γ ` lv := ae

Γ `e e : public
Γ ` p1 Γ ` p2

Γ ` if e then p1 else p2

Γ(x) = s

Γ `lv x : s

Γ(x) = s Γ `e e : public

Γ `lv x[e] : s

Γ `e v : public

Γ `lv lv : s

Γ `e lv : s

Γ `e e1 : public
Γ `e e2 : public

Γ `e e1 pop e2 : public

Γ `e e : s s v s′

Γ `e e : s′
Γ `e e : private

Γ `ae declassify (e) : public

Γ `e e : s

Γ `ae e : s

Γ `e e1 : private Γ `e e2 : private

Γ `ae e1 sop e2 : private

Figure 4: Type system of our source language.

Note that every program is secure w.r.t. full leakage,
i.e., the equality relation, since the instrumented semantics
is deterministic. Further, we can assume w.l.o.g. that Φ
is an equivalence relation, as Φ-security and Φ∗-security
coincide—as usual, Φ∗ denotes the reflexive, symmetric
and transitive closure of Φ. Finally, note that every
function ` mapping states to an arbitrary type L induces
a leakage relation Φ`(x, y) defined as `(x) = `(y).

The definition is an instance of observational non-
interference, where it is required that observation traces
l1 and l2 (rather than program outputs) are equivalent
under related program inputs. An implication of source-
level security is that, when dealing with Φ-equivalent
inputs, two executions of a source-secure program are
guaranteed to run in lock-step, i.e., all Φ-equivalent inputs
have identical control flow. This is because all branching
conditions are included in the leakage traces.

IV. SOURCE-LEVEL SECURITY VERIFICATION

a) Type system: As we have seen in Section II,
MPC languages have an intrinsic notion of security
domains, forming a security lattice L satisfying the
ordering public v private. We formalize a type system for
our source-level language (Figure 4) that statically assigns
security labels to intermediate variables. A security
environment Γ : V → L defines a mapping from variables
to security labels, and Γ(x) denotes the security label of
variable x in environment Γ. We define typing judgments
for programs p (Γ ` p), and auxiliarly for left-values lv
(Γ `lv lv : s), expressions e (Γ `e e : s) and assignment
expressions ae (Γ `ae ae : s) under security label s. Note
that the type rules impose that branching conditions and
array indices are public. As noted in the introduction, this
is a design choice that we inherit from Sharemind [13].

Our type system is reminiscent of security type systems
for information-flow with declassification [12], [18],
which typically enforce trace-based notions of flow-
insensitive non-interference or delimited release. Still, in
this paper it only serves to syntactically restrict programs
to a form—secret variables are only directly assigned
to secret variables, or used as input to sop or declassify
operations—compatible with our distributed semantic
evaluation rules, where public values can be transparently
used as secret ones, but the contrary is not true.5

b) Leakage analysis: A security type system can
serve as a preliminary security analysis. Indeed, if
declassify statements are not used (the program has no
leakage), it can enforce source-level security for all leak-
age relations that guarantee equality of public inputs, but
says little about security in the presence of leakage. Thus,
we introduce a Security Hoare Logic (SHL) that provides
a more powerful way to reason compositionally about
source-level security w.r.t. a general leakage relation. We
start by considering a security post-condition.

Definition 2 (Composable source-level security). A pro-
gram p is (Φ,Ψ)-secure, written {Φ} p {Ψ}, whenever:(
〈p, x1〉 ⇓l1 y1

〈p, x2〉 ⇓l2 y2

)
⇒ Φ(x1, x2) ⇒ Ψ(y1, y2) ∧ l1 = l2

The triple {Φ} p {Ψ} forms a security contract: the pre-
condition Φ is an upper bound on the leakage of program
p, and the post-condition Ψ evinces known leakage after
running p. The rules of SHL are given in Figure 5, and are
similar to those of standard Hoare Logic, with additional
implications for leakage traces. Intuitively, it models the
advice that a security verification system can give to a
programmer who needs to justify leakage.

Formally, SHL has a relational interpretation consistent
with source-level security, and reasons about pairs of
executions of the same program running in lockstep.

Theorem 1. � {Φ} p {Ψ} is derivable iff {Φ} p {Ψ}.

A consequence of having public control-flow is that
source-level security can be verified using deductive ver-
ification techniques over a self-composed program, with
complexity in the same class as the original program.6

5Note that source-level security may allow the contrary if the secret
values are publicly known from the leakage relation. This, in particular,
is consistent to running a sop with public arguments; in practice,
languages can offer a specialized sop relying on public information,
e.g., instead of lifting a constant public value 3 and securely multiplying
it by a secret variable y ((∗) 3 y), securely performing (3∗) y.

6The verification techniques also support programs with secret control
flow, but become less tractable. We could also apply our leakage
verification after a secret-to-public control-flow compilation step.

5

� {Φ} skip {Φ}
� {Φ} p1 {Θ} � {Θ} p2 {Ψ}

� {Φ} p1; p2 {Ψ}
� {Φ ∧ e} p1 {Ψ}
� {Φ ∧ ¬e} p2 {Ψ}

Φ⇒ public (e)

� {Φ} if e then p1 else p2 {Ψ}

Φ⇒ Φ′

� {Φ′} p {Ψ′}
Ψ′ ⇒ Ψ

� {Φ} p {Ψ}
� {Φ ∧ e} {Φ}
Φ⇒ public (e)

� {Φ} while e do p {Φ ∧ ¬e}
Φ = Ψ[e/lv]

� {Φ} lv := e {Ψ}
Φ = Ψ[e1 sop e2/lv]

� {Φ} lv := e1 sop e2 {Ψ}
Φ = Ψ[e/lv]⇒ public (e)

� {Φ} lv := declassify (e) {Ψ}
public (e)(x1, x2) , JeK(x1) = JeK(x2)

Figure 5: Inference system for Security Hoare Logic.

V. LOW-LEVEL LANGUAGE

In this section we give a meaning to securely com-
puting a source-level program using a distributed, secret
sharing-based, cryptographic protocol. We will do this
by providing a (low-level) distributed semantics for the
specification language we introduced in the previous
section. We start by introducing some notation.

a) Notation: Our low-level distributed semantics
keeps a state of n separate maps M = (M1, . . . ,Mn),
each corresponding to the local state of a different
party. Together, they satisfy the (informal) invariant
that (M1, . . . ,Mn) encodes the state of the source-level
computation. Each Mi : V 7→ {0, 1} ∗ S maps variables
to pairs, where each stored value holds an encoding bit
and a share. The encoding bit is used to identify values
stored in shared form from a special encoding of public
values. A variable v holding a shared value x̄ will be
stored in the n maps as Mi[v] = (0, xi), for 1 ≤ i ≤ n.
To simplify the encoding of public values and w.l.o.g., we
assume that n is odd. A variable v holding a public value
c will be stored as Mi[v] = (1, c), for odd 1 ≤ i ≤ n
and M2[v] = (1,−c) for the remaining parties.

This representation allows to locally reconstruct c
without communication, and is consistent with its shared
representation, as c = (n/2 + 1)c− (n/2)c. The decision
to share public values was taken so that there would be
a greater integration with MPC. The public values can
thus always be used as shared (secret) values, but the
converse is not true. We will use the notation ‖(b, a)‖i
to represent the decoding of a stored value:

‖(b, a)‖i := if b = 1 ∧ i mod 2 = 0 then (−a) else a .

The low-level distributed semantics assumes the ex-
istence of basic cryptographic protocols for all secure
operators sop in the source language. Each of these
is a n-party protocol π, whose (distributed) execution

π declassify (u1, . . . , un; c1, . . . , cn):
For i = 1 to n− 1: Pi sends ci to Pi+1; Pn sends cn to P1

P1 computes u′1 ← u1 + cn − c1, broadcasts u′1
For i = 2 to n: Pi computes u′i ← ui + ci−1 − ci, broadcasts u′i
For i = 1 to n, s.t. i is odd:

Pi computes u = Unshare(ū′), locally returns u
For i = 1 to n, s.t. i is even:

Pi computes u = Unshare(ū′), locally returns (−u)

Figure 6: Declassify protocol.

is denoted (ȳ, t, c)←←π sop (x̄, x̄′), as short-hand for:
i. sampling random coins c = (c1, . . . , cn) in the
appropriate spaces, ii. running the n parties on inputs
((x1, x

′1), . . . , (xn, x
′n)) = (x̄, x̄′) and random coins, iii.

recording the interaction between parties in trace t, and
iv. collecting outputs (y1, . . . , yn) = ȳ. We will use ti,
for 1 ≤ i ≤ n to denote the part of the communications
trace that is within the view of each party (both sent and
received messages). We note that the local behaviour of
each participant i is fully determined by its local input
shares xi, x′i its random coins ci and its local trace ti.
We can therefore meaningfully refer to the recomputing
of a local output as yi ← πi(xi, x

′
i, ti, ci).

For illustrating the two semantic domains, we explicitly
define a π declassify protocol (Figure 6), that moves secret
shared distributed values to public local values.

b) Distributed semantics: The distributed semantics
for the SecreC language is presented in Figure 7. It relies
on the following expression evaluation rules.

JvK(Mi) = Mi[v]
JxK(Mi) = Mi(x)

Jx[e]K(Mi) = Mi(x)[‖JeK(Mi)‖i]
Je1 pop e2K(Mi) = (1, v)

where v1 = ‖Je1K(Mi)‖i
v2 = ‖Je2K(Mi)‖i
‖(1, v)‖i = pop (v1, v2)

We present the semantics from a local evaluation per-
spective, as transitions do not require interaction between
the parties, except for the evaluation rules of sop or
declassify operators that have explicit communication:

Je1 sop e2Kae((M1, . . . ,Mn)) = (v̄′, t, c)

where ∀1 ≤ i ≤ n, Je1K(Mi) = (·, v1,i)
∀1 ≤ i ≤ n, Je2K(Mi) = (·, v2,i)
(v̄′, t, c)←←π sop (v̄1, v̄2)

J declassify (e)Kae((M1, . . . ,Mn)) = (v̄′, t, c)

where ∀i, JeK(Mi) = (·, vi)
(v̄′, t, c)←←π declassify (v̄)

6

〈 skip ; p,Mi〉V 〈p,Mi〉
〈p1,Mi〉V 〈p′1,Mi

′〉
〈p1; p2,Mi〉V 〈p′1; p2,Mi

′〉
JeK(Mi) = (b, v)

〈lv := e,Mi〉V 〈 skip ,Mi[lv 7→ (b, v)]〉

pj =

{
p1 if ‖JeK(Mi)‖i = tt

p2 if ‖JeK(Mi)‖i = ff

〈 if e then p1 else p2,Mi〉V 〈pj ,Mi〉

p′ =

{
p; while e do p ‖JeK(Mi)‖i = tt

skip ‖JeK(Mi)‖i = ff

〈while e do p,Mi〉V 〈p′,Mi〉
Je1 sop e2Kae(M) = (v̄′, t, c)

〈lv := e1 sop e2,M〉Vt,c 〈 skip , ∀i : Mi[lv 7→ (0, v′i)]〉
J declassify (e)Kae(M) = (v̄′, t, c) b1,3,5... = 0 b2,4,6... = 1

〈lv := declassify (e),M〉Vt,c 〈 skip , ∀i : Mi[lv 7→ (bi, v′i)]〉

Figure 7: Low-level distributed semantics.

The pre-requisites in these two transition rules will block
the progress of all local evaluations until all parties
synchronously execute them. Furthermore, only these
rules contribute to the global execution trace.

As before, V∗ forms the reflexive transitive closure
of V. The execution trace for the distributed evaluation
of the program is the concatenation of rule traces. An
execution of a program is then a sequence of distributed
configurations. Configuration 〈p, (M1, . . . ,Mn)〉 termi-
nates execution in configuration (M′1, . . . ,M

′
n) with trace

(t, c), written 〈p, (M1, . . . ,Mn)〉 ⇓(t,c) (M′1, . . . ,M
′
n), if

∀1 ≤ i ≤ n : 〈p, (Mi)〉V∗(t,c) 〈(skip), (M′i)〉 .

We slightly abuse notation and refer to the distributed
evaluation of secure operators sop and declassify as

〈 sop , x̄〉 ⇓(t,c) x̄
′ 〈 declassify , x̄〉 ⇓(t,c) x̄

′ .

We have intentionally written our distributed semantics so
that it can be seen as a high-level cryptographic protocol
that relies on lower level ones to evaluate a program
p. Put differently, our distributed semantics describes a
compiler that takes a high level MPC specification and
produces a composite protocol πp. We will prove strong
cryptographic security properties for this protocol in the
style of certified compilation: if p is source-level secure,
then πp will guarantee that this security is translated into
standard cryptographic security guarantees.

c) Low-level correctness and security: To reason
about the guarantees provided by our MPC software
stack, we introduce correctness and security notions
for low-level evaluations. The definitions apply to high-
level cryptographic protocols πp and also to low-level
cryptographic protocols π sop and π declassify .

Intuitively, correctness states that whatever behaviours
are observable at the source level will be also observable
at target level, modulo the sharing relation.

Definition 3 (Low-level correctness). A protocol π is
low correct for specification s ∈ {p, sop , declassify } if,
for all sharings x̄, we have

〈s,Unshare(x̄)〉 ⇓ Unshare(ȳ)⇒ 〈π, x̄〉 ⇓t,c ȳ

We define security by means of a probabilistic non-
interference notion.

Definition 4 (Low-level security). Let Φ be a relation
over unshared inputs. A protocol π is secure for Φ if,
for all 1 ≤ i ≤ n and all sharings x̄, x̄′ such that
x = Unshare(x̄) and x′ = Unshare(x̄′) we have

Φ(x, x′) ∧
(
〈π, x̄〉 ⇓t,c ȳ
〈π, x̄′〉 ⇓t′,c′ ȳ′

)
⇒ (ti, ci) = (t′i, c

′
i)

Informally, this definition states that messages ex-
changed (traces t) and randomness (coins c), as seen by
each party throughout two distinct executions of the same
protocol, will have identical distributions and thus leak
no information about the (unshared) inputs in addition to
that revealed by the leakage relation; two distributions
are equal iff they assign the same probability to every
element in their support.

Note that leakage relations are expressed over (un-
shared) values, and therefore low-secure protocols guar-
antee that no information about specific shares is revealed.
This is extremely important when relating our security
notion to cryptographic security definitions, where the
attacker is able to see part of the shares.

d) Compositional reasoning: Compositionality is
an important property of the correctness and security
definitions for low-level distributed executions.

Lemma 1 (Low-level composability). Let protocols π1,
π2 be correct w.r.t. programs p1, p2 and secure w.r.t.
leakage relations Φ1, Φ2. Then, π(x̄) = π2(π1(x̄)) is
correct for p2 ◦ p1 and secure for Φ = Φ1 ∧ Φ2 ◦ p1.
Similarly, π(x̄) = (π1(x̄), π2(x̄)) is correct for p2 × p1

and secure for Φ1 ∧ Φ2.

7

The proof of Lemma 1 can be found in [15].

VI. SECURITY-PRESERVING COMPILATION

Our main theorem shows that our MPC software
stack preserves source-level information-flow security to
probabilistic distributed non-interference at the low-level.
As a result, we will show in the next section that such
systems guarantee security in the cryptographic sense.

Theorem 2 (Main Theorem). Assume by hypothesis that
all π sop are correct and secure for the leakage relation
that accepts all inputs (nothing leaks). Let p be a program,
such that Γ ` p for some security context Γ, and let Φ
be a leakage relation. Then, if p is source-level secure
for Φ, we have that πp is correct for p and secure for Φ.

Proof. The proof proceeds in two steps that we formalize
using two lemmas presented below. We first prove in
Lemma 2 correctness of the low-level execution by
relying on the composability of low-level correctness and
the fact that the program type-checks (this guarantees
that no secret-encoded value is used in a local public
computation). We then prove in Lemma 3 that, for
all MPC specifications p, the composability of low-
security implies that the distributed execution will leak
no more than the source-level traces. In other words,
we get low-level security for the low-level leakage
function that imposes equality of source-level traces (the
leakage function is based on the source-level instrumented
semantics). By transitivity, we can therefore conclude that
πp is Φ-low-secure, as source-level security guarantees
source-level trace equality over inputs satisfying Φ.

Lemma 2. Assume by hypothesis that all π sop are sop -
low-correct. Let p be a program such that Γ ` p for
some security context Γ. Then πp is correct for p.

Lemma 3. Assume by hypothesis that all π sop are low-
secure for the empty leakage relation. Let p be a program
such that Γ ` p for some security context Γ. Let also Φp
be the leakage relation that imposes source-level leakage
equality. Then, we have that πp is Φp-secure.

The proofs of Lemmas 2 and 3 can be found in [15].

VII. CRYPTOGRAPHIC SECURITY

Cryptographic security of MPC protocols is typically
defined using the simulation paradigm. Intuitively, the
definition states that no attacker can distinguish a real
world from an ideal world. In the real world, an attacker
A interacts with the cryptographic protocol π directly,
according to a set of rules that define an attack model In
the ideal world, the parties relying on the protocol have
access to an ideal functionality F representing a TTP.

game RealΠ,A():
(x̄, i, st)←←A1()

(ȳ, t, c)←←Π(x̄)
y ← Unshare(ȳ)
Return A2(x̄, y, yi, ti, ci, st)

game IdealF〈p,`〉,S,A():
(x̄, i, st)←←A1()
x← Unshare(x̄)
y ← p(x)
l← `(x)
(yi, t, c)←←S(i, l, xi)
Return A2(x̄, y, yi, ti, ci, st)

Figure 8: Cryptographic privacy.

The ideal functionality also defines what information
from the participant’s inputs can be leaked to the attacker.
Then, a simulator S must be able to fool the attacker
into thinking it is actually in the real world based on this
leakage, even when the attacker sees the outputs produced
by the ideal functionality on inputs of its choosing. The
existence of S shows that whatever the adversary sees
in its attack can contain no more information about the
inputs than what is specified by the functionality in the
ideal world. Furthermore, since the attacker can observe
the protocol outputs, and compare them to the ideal
functionality output, it also implies that the protocol
must be correct. The simulation-based definition that
we adopt, and discuss later in this section, is called
privacy [16]. Our notion of simulation-based security
implies standard (computational) MPC security [19],
since our simulators are polynomial time. This means
that the resulting protocols can be directly used by
cryptographers in combination with other constructions
satisfying computational security in a compositional
setting such as the Universal Composability framework.

We will consider a simple class of ideal functionalities.
We denote such functionalities as F〈p, `〉, to indicate
that they are parameterized by a source program p and
a leakage function `. The functionality specifies what a
cryptographic protocol should achieve when executed on
some shared initial state x̄ = (M1, . . . ,Mn):

i. produce a result y such that y = p(Unshare(x̄)),
where the meaning of this evaluation is given
by the source-level semantics (in cryptography all
specifications are total, and so p must be safe);

ii. Leak at most `(Unshare(x̄)) information about the
unshared input.

The security definition is given in Figure 8.
The attacker gets to pick the shared input and the

identity of one party that will be corrupted.7 This means
that the attacker will know whatever this party knows,
and still the protocol must leak only what the ideal

7The corruption of a single party is made for clarity of presentation.
The same model and results can trivially be generalised to allow for
an arbitrary set of corrupt parties under some adversarial threshold.

8

functionality specifies. In practice this ensures that, if
there is an honest majority that does not collude to break
the protocol, security is guaranteed.

In the real world the attacker observes the unshared
protocol output and the part of the trace corresponding
to the corrupted party. In the ideal world, the attacker
sees the ideal functionality output and a simulated trace.
We note that the ideal world simulator gets to see the
input share of the corrupt party and the allowed leakage,
and it must simulate the rest of the corrupt party’s view.

Definition 5 (Cryptographic privacy). We say a pro-
tocol π is (`, p)-private if there exists a probabilistic
polynomial-time simulator S such that, for all adversaries
A, the following definition of advantage is 0:

AdvΠ,F,A,S = Pr[RealΠ,A] − Pr[IdealF,S,A] ,

where games Real and Ideal are described in Figure 8.

We do not impose a bound on the attacker’s com-
putational power, meaning that we obtain information-
theoretic security. The following theorem states that low-
level security and correctness as defined in Section V
imply cryptographic privacy, which allows us to rely only
on language-based security techniques to reason about the
security of our MPC software stack. Our result requires
leakage functions to be efficiently invertible, in the sense
that there exists a polynomial-time algorithm that, given
l, computes some input x′ such that `(x′) = l. If this
is not the case, then we get a weaker notion of security
where the simulator must also be unbounded (the proof
is the same except for this detail).

Theorem 3 (Cryptographic privacy from probabilistic
non-interference). Let π be a protocol, p a safe program
in our source language and ` a leakage function. Assume
also that ` is efficently invertible.8 Then, if π is low-
correct for p and it is low-secure for leakage relation
Φ`, we have that π is (`, p)-private.

A full game-based version of the proof can be found
in Appendix A. Combined with the main theorem in the
previous section, this result yields the following corollary.

Corollary 1 (Privacy-preserving compilation). Assume
that all π sop are correct and secure for the empty leakage
relation. Let p be a safe program such that Γ ` p for
some security context Γ and let ` be a leakage function.
Then, if p is Φ`-secure, we have that πp is (p, `)-private.

8 Requiring leakage functions to be efficiently invertible is not a
significant caveat. This is true for the empty leakage function, and for
all practical examples we have encountered, except if p is computing
a cryptographic function for which efficient inverters are not known.

a) Relation to Universal Composability: The stan-
dard model for describing security of secure compu-
tation protocols is the Universal Composability (UC)
framework [20]. The notion of privacy that we consider
in this paper is weaker than UC-security, because the
attacker does not see the raw output of the protocol in its
shared form. However, this is not a significant limitation.
Indeed, our results readily extend to a UC-realization
of an arithmetic black box (ABB) [21] using standard
techniques. ABBs are a common abstraction of secure
computation applications when the goal is to design
a system that performs several basic operations before
producing an output [22]–[24]. Furthermore, the presented
model considers static corruptions, while results in [16]
consider adaptive corruptions. In [15], we discuss how
our results can easily be extended to adaptive corruptions
under the same assumptions.

VIII. LEAKAGE CANCELLING

The resolution of the security versus performance
contention in MPC has led to interesting optimization
techniques. One such technique consists of composing
a program p that is secure for a leakage relation Φ
with a probabilistic pre-processing step p0, resulting in a
(probabilistic, yet) functionally equivalent program p′ that
satisfies a weaker leakage relation Ψ. The requirement
that Φ implies Ψ reflects the natural information-theoretic
interpretation of relations, and ensures that the program
p′ leaks less information than p. A typical example is
sorting: p leaks the length of the array and the sequence of
the comparison, as modeled by the relation Φ cmp defined
in Section II, and we want p′ to only leak the length
of the array. Leakage cancelling can be achieved in this
case by obliviously randomly shuffling the input array.
We provide a rigorous justification of this technique.

We model probabilistic behaviors by extending the
expression language with probabilistic operators. The
instrumented semantics of programs is modified accord-
ingly: 〈p, x〉 ⇓l̃ ỹ now states that executing program p
with initial memory x terminates with distribution ỹ on
output memories and a distribution on leakage traces.9

When programs have deterministic leakage, i.e., all their
guards and declassified expressions do not depend on
values computed by probabilistic operators, we write
〈p, x〉 ⇓l ỹ to state that executing program p with
initial memory x terminates with distribution ỹ on output
memories and leakage trace l.

9We implicitly assume that programs are safe, so that we consider
distributions rather than sub-distributions, and leakage traces have
bounded length. A more precise semantics would consider the joint
distribution of ỹ and l̃, but this is not required for our purposes.

9

The following theorem provides sufficient conditions
for leakage cancelling, stated in terms of a lifting of
source-level security for arbitrary probabilistic programs.

Definition 6 (Probabilistic source-level security). A
probabilistic program p is Φ-secure whenever:

Φ(x1, x2) ∧
(
〈p, x1〉 ⇓l̃1 ỹ1

〈p, x2〉 ⇓l̃2 ỹ2

)
⇒ l̃1 = l̃2

The following theorem is proved in [15].

Theorem 4 (Secure pre-processing). Let p0 and p be Ψ-
secure and Φ-secure programs, respectively, such that p0

has deterministic leakage. Then, for every input states x1,
x2 such that Ψ(x1, x2), 〈p0, x1〉 ⇓l1 ỹ1, 〈p0, x2〉 ⇓l2 ỹ2

and all output states y:

Pry1←ỹ1 [Φ(y1, y)] = Pry2←ỹ2 [Φ(y2, y)]

In particular, Theorem 4 holds for all pre-processing
functions that yield uniformly distributed outputs. Tech-
nically, for every x, ỹ, y1 and y2 [25]:

〈p0, x〉 ⇓l ỹ ⇒ Pry←ỹ[Φ(y1, y)] = Pry←ỹ[Φ(y2, y)]

For completeness, we also provide a correctness
criterion for leakage cancelling.

Definition 7 (Correct pre-processing). A probabilistic
program p0 is a correct pre-processing for a deterministic
program p iff for every initial memory x

〈p, x〉 ⇓l y ∧ 〈p0; p, x〉 ⇓l′ ỹ =⇒ ỹ = 1y

where 1y is the Dirac distribution assigning probability
1 to y and 0 to all other elements.

Finding a preprocessing program p0 that satisfies the
leakage cancelling conditions is often simple, and the
practical benefits have been extensively compared in [17],
[26]–[28]. For example, for sorting and all algorithms
based on array comparisons, leaking the results of these
comparisons can be cancelled by randomly pre-shuffling
the array (assuming that all elements are distinct). For
this optimization, it is critical that there exist (relatively)
efficient oblivious shuffling protocols for the random
shuffle operator (without any leakage). In platforms
such as Sharemind [13], these protocols are offered as
probabilistic instruction extensions at the source level, of
the otherwise deterministic source language.

Automated verification of leakage cancelling is left
for future work. Deterministic leakage can be enforced
by an adaptation of the information flow type system
for deterministic programs and the remaining conditions

Figure 9: SecreC verification infrastructure.

can be established using probabilistic relational Hoare
logic [29], using tools like EasyCrypt [30].

We conclude with a discussion of how to extend
our secure compilation to encompass leakage cancelling.
Lifting this result for probabilistic programs is out of the
scope of this paper. However, there is a simple extension
for probabilistic preprocessing scenarios. Since the prepro-
cessing stage has no leakage, by leakage cancelling this is
also the case for the final composed protocol. Assuming
the existence of an atomic preprocessing protocol, the
extended compiler simply prepends it to the compiled
protocol. The leakage cancelling theorem then implies
the existence of a cryptographic simulator that works as
follows: sample any input and execute the program p to
obtain some leakage; then run the simulator described
in Theorem 3 to obtain a simulated trace. Intuitively, by
leakage cancelling any input will lead to a leakage trace
that is distributed exactly as in the real-world, and hence
the simulator for the compiled protocol suffices.

IX. IMPLEMENTATION

This section describes our verification infrastructure for
source-level analysis of deterministic MPC specifications:
the frontend translates SecreC programs into an interme-
diate language close to Figure 2; the backend deploys
our source-level analysis on top of the Dafny-Boogie
verification toolchain. The architecture of our verification
infrastructure is illustrated in Figure 9. The development
is available at https://github.com/haslab/SecreC.

Using our infrastructure, A non-MPC expert is able
to construct a SecreC program, annotate it and prove
a leakage upper-bound for the program that justifies
all the declassify statements as a function of the input.
MPC experts typically come into play in the case
of leakage cancelling, which at the moment is not
supported by our verification infrastructure. For code

10

https://github.com/haslab/SecreC

without declassify statements, the type system trivially
suffices for guaranteeing security. Security verification
is required for snippets involving declassify statements.
Nevertheless, guaranteeing cryptographic security of
compiled protocols programs requires proving safety and
termination of SecreC programs, which is a classical
deductive verification process.

A. Frontend

a) Integration: Our verification infrastructure sup-
ports the SecreC language bundled with the Sharemind
SDK. This enables programmers to use our verification
tools together with the Sharemind interpreter, compiler,
secure execution engine and cloud deployment services.
The internal operation of the Sharemind system is much
more complex than the formal view of the compiler
presented in this paper, as it was designed to allow for
a high-degree of generality and flexility with respect
to low-level protocols, data types and operations. For
instance, it allows linking external protocols that are
secure according to Definition 5. The main performance
distinction between our formal language and Sharemind-
bundled SecreC lies in the fact that we do not capture an
optimization that groups operations in a SIMD style in
order to save communication rounds. Even so, the general
principles of the Sharemind operation match the compila-
tion strategy we have described in our formalization, as
can be seen by the cryptographic security arguments that
support the system [13], which are given at a comparable
(if not higher) level of abstraction.

b) Language: Much like C++, SecreC supports
high-level programming features such as procedures, ar-
rays, templates or recursion, and domain-specific support
for array programming and security type polymorphism.
Seeing SecreC programs as specifications of ideal secure
functionalities, it becomes natural to express the security
properties directly in the SecreC language. For that
purpose, we have extended SecreC with an annotation
language inspired by Dafny [31], a general-purpose verifi-
cation language with support for procedures, loops, arrays,
user-defined datatypes and native collection theories.

c) Typechecker: We have implemented a parser
and a typechecker for our extended SecreC language
in Haskell, and the typechecking algorithm for security
type polymorphism and templates greatly resembles the
treatment of ad-hoc polymorphism and type classes in
Haskell. After typechecking, we apply a series of SecreC-
to-SecreC simplification steps, such as removing implicit
(subtyping) coercions or inlining template applications.

B. Backend

The backend translates an annotated SecreC intermedi-
ate program into two complementary Dafny programs: the
first encodes functional correctness; the second assumes
functional correctness and encodes security.

a) Functional embedding: As we have seen above,
cryptographic MPC specifications must be (by defini-
tion) total, and our notions of source-level security
are termination-insensitive. Therefore, our functional
embedding of SecreC into Dafny always checks that a
SecreC program is safe. It preserves the original program
structure and is almost one-to-one, reducing the functional
correctness of SecreC programs to that of the Dafny
embedding. Under the hood, the Dafny verifier checks
for functional correctness by translating to Boogie code.

b) Security embedding: Our SecreC specification
language allows programmers to express leakage upper
bounds and their flow through a program as annotations
using the public keyword. These look like standard
assertions but have a relational interpretation in the
Security Hoare Logic from Section III.

The security analysis explores the existing translation
from Dafny to Boogie to propagate security properties
from SecreC to Boogie programs. We adapt the constant-
time verification approach from [14] and implement a
Boogie-to-Boogie transformation that computes a product
program (for a SecreC program with public control flow).
In the Boogie input language, procedures are defined
as a sequence of basic blocks that start with a label,
contain straight-line statements, and may jump at the end.
For each procedure, we make shadow copies of program
variables and duplicate all statements inside basic blocks
to mention shadow variables instead, with two exceptions:
i. procedure call statements are converted to single
statements calling the product procedure with twice as
many inputs and outputs; and ii. security assertions are
translated to relational assertions expressing first-order
logic formulas that relate original and shadowed vari-
ables, by translating public(e) expressions to equality
expressions e == e.shadow.

X. EXPERIMENTS

We have evaluated our infrastructure by analyzing
existing SecreC specifications that are publicly available
as part of the Sharemind SDK.10 Some of these examples
leak information that is subsequently cancelled using
oblivious shuffling as described in Section VIII. Here,
the source analyser plays an important role, as it permits

10https://github.com/sharemind-sdk/secrec

11

https://github.com/sharemind-sdk/secrec

checking that the specification satisfies a leakage upper-
bound that is compatible with the leakage cancelling
theorem statement. In the remaining examples, proving a
leakage bound permits matching the specification to the
application requirements. We now demonstrate how to
verify leakage bounds using our tool. We also discuss how
the leakage cancelling steps can be performed manually,
at the moment with no tool support.

a) Quick sort: Comparison-based sorting is a very
heavy operation to execute obliviously in a naive way, due
to the high number of oblivious branches that it involves.
However any sorting specification that declassifies the
results of comparing vector elements, but nothing more,
gives rise to leakage that can be cancelled using oblivious
shuffling of the vector prior to sorting [17]. We have
proven a deterministic quick sort [26] (Section II) safe
and secure with the Φ cmp security policy from Section III
that leaks all comparisons between array elements. For
cancelling this leakage, it suffices to show that an
oblivious shuffle for an array of distinct elements induces
a uniform distribution on Φ cmp (Theorem 4), and that
the final sorted array is the same regardless of the relative
ordering of the inputs (Definition 7). The algorithm can
be generalized to arbitrary arrays by using the index of
each element in the input list as a tie-breaker [17].

b) Gaussian elimination: Our more intricate case-
study is an implementation of Gaussian elimination [28]:
secret uint maxFirstLoc(secret float[[1]] vec) {

secret float best = vec[0]; secret uint idx = 0;
for (uint i = 1; i < size(vec); i=i+1) {

secret bool c = vec[i] > best;
best = choose(c,vec[i],best);
idx = choose(c,i,idx);

}
return declassify(idx); }

The algorithm receives a k ∗ k square matrix and an
array of k coefficients, for k > 0, and solves a system of
k linear equations by iterating over the columns of the
matrix. For each column j, it finds the row i of the pivot
(the first maximum absolute value) using a procedure
that performs all comparisons obliviously, and declassifies
the output. Then, it shuffles the rows i and j, performs
standard matrix arithmetic on the values of the underlying
rows, repeating this process until the k − 1-th column.
We first proved that the source-level declassification trace,
constructed by instrumenting the source program with
ghost code, consists of a permutation of the row indices.
We then proved that the vector value indexed by the
output of the maxFirstLoc function is constant for all
possible permutations of the input vector. By combining
these results we can easily derive that the oblivious shuffle
pre-processing is sufficient to cancel the leakage under
the results presented in Section VIII.

c) Radix sort: As an alternative to comparison-
based sorting, we have proven the safety and security of
an oblivious radix sort [26]. The implementation has an
outer loop that iterates over the bit representation of the
vector elements and, for each bit, operates as follows:
it randomly shuffles the vector, computes a permutation
that sorts the array according to the i-th bit, declassifies
the permutation, and applies it in public to the vector.
We prove a leakage upper-bound for the loop body that
exactly matches the leakage of the permutation induced by
the i-th bit. The leakage cancelling theorem then implies
that the random shuffling preprocessing is sufficient to
cancel this leakage in each iteration. By composition of
the loop body, we get security for the entire algorithm.

d) Frequent itemsets: Finally, we have analyzed a
frequent itemset algorithm that searches for co-occurring
items in transactional data. Given a boolean matrix
encoding of items occurring in transactions, it computes
all the itemsets up to a given size k whose frequency
is above a certain threshold f , revealing those itemsets.
Concretely, we studied the apriori algorithm from [32],
which is based on level-wise search. The algorithm
computes all itemsets of size 1 up to k, using the itemsets
of size k− 1 and cached numbers of occurrences thereof
to compute the itemsets of size k. For efficiency, it
declassifies all the comparison tests of wether itemsets
of size up to k are above the frequency. We have proven
that its SecreC implementation is secure with a leakage
upper bound that releases only whether every itemset
up to k is frequent. Although not exercised, we could
additionally prove a functional correctness property that
the algorithm publishes in declassified form exactly all the
frequent itemsets up to k. This match between declassified
output and leakage upper bound means that the leakage
of intermediate computations is benign and hence the
performance benefit comes at no additional security cost.

e) Benchmarks: To give an idea of the complexity
of the algorithms and the required verification effort, we
have measured the number of lines of code (LOC) and
the number of proof obligations (PO) for the Boogie
code generated from a user-annotated SecreC program
(Table I).11 The verification experience is in all similar
to deductive verification environments such as Dafny,
and requires typical programmer-supplied annotations
for procedure contracts and loop invariants. Since se-
curity properties often depend on auxiliary functional
correctness properties, we distinguish the verification

11Our tool generates a single Boogie file, including encodings of
standard SecreC functions and Dafny builtin theories, that are implicitly
imported and replicated for all examples. Thus, we measure only proof
obligations originating from each SecreC example file.

12

SecreC LOC PO Time (s)
F S F S

quick-sort 101 161 464 2.182 3.484
radix-sort 135 322 911 1.618 3.223
apriori 414 3877 6104 100.335 19.692
gaussian 178 610 - 2.789 -

Table I: Verification results.

effort for security annotations (S) from their required
functional correctness annotations (F). We have also
measured the average execution time for discharging
the proof obligations over series of 10 runs on a standard
MacBook Pro 2016 clocked at 2,9 GHz.

The number of security POs tends to be twice as
large as the functional correctness ones, because our
Boogie product program transformation duplicates all
functions and statements without security annotations. For
apriori, we have placed a significant effort in proving the
soundness of the caching process and the observation that
all frequent itemsets are reachable by adding single items
to discovered frequent itemsets, as these are crucial for
justifying in the security analysis that leaked information
indeed corresponds to itemsets from the original database.
To prove security of our gaussian example, it remains
to show that our manually-instrumented leakage trace
exactly matches the program’s leakage trace. We could
then elegantly tie source-level leakage as the permutation
of the input defined by our instrumented trace. To support
this, we are currently extending our implementation to
handle output-dependent reasoning as in [14].

XI. RELATED WORK

Some authors use language-based verification methods
for optimizing MPCs. [33] relies on epistemic modal
logic to infer public intermediate values. [34] proved
a similar approach sound and complete for a simple
functional language. Others focus on the specification
and security enforcement of MPC protocols. [5], [35],
develop a domain-specific language for writing low-level
SecreC protocols and a sound data flow analysis to prove
the security of generated protocols w.r.t. Definition 5. [6],
[36] develop the Wysteria domain-specific language to
write mixed-mode MPC protocols, and give an embedding
into F*. Their approach is similar to ours in that the
computational behavior of programs is given by a single-
threaded and a multi-threaded semantics, which are
formally related. However, their notion of security is left
implicit and unrelated to the simulation-based notions. We
also remark that our language works at a different level of
abstraction. It specifies a MPC program as a composition
of high-level MPC operations (that compute an ideal

functionality typically agnostic of parties). Orthogonally,
the languages of [5] and [6] describe lower-level MPC
protocols that give meaning to executing a MPC operation
in a distributed cryptographic environment (they have
notions of shares and parties). These can be integrated
as primitive operations in our language. Recently, Haagh
et. al [37] have provided a machine-checked proof of a
concrete MPC protocol against active adversaries. They
present non-interference definitions that adapt our low-
level definitions to the active case, but do not consider the
problem of compilation from high-level specifications.

Our approach is based on the same idea of secure
compilation explored in [12]. On top of the differences
highlighted in the introduction, they consider a slightly
weaker security model where the adversary cannot select
the initial shares. Moreover, they do not address the
problem of verifying leakage of source programs. In
our approach, leakage is made explicit and verified at
source-level, providing early feedback to developers.

Leakage cancelling is a standard technique for opti-
mizing MPC programs [17], [26]–[28]. However, these
works are cast in the cryptographic setting, not supported
by language-based verification methods. Leakage can-
celling has also been considered for oblivious RAM [38]
and secure hardware [39]. Both works yield provable
guarantees; however, their setting is different.

XII. CONCLUSIONS

We gave a language-based security treatment of secret
sharing-based MPC software stacks. We showed that
our notion of source-level security is propagated, via
security-aware compilation, to cryptographically secure
protocols. We also provided both a formalization and an
implementation of a verification technique for source-
level leakage analysis in real-world examples.

Our results leave room for a number of future research
directions. One interesting open problem is to investigate
novel language-based approaches to deal with active
adversaries. Another promising direction (following our
formalization) is to implement a certified compiler or to
prove an existing compiler correct. Finally, another inter-
esting line of work is to extend our theoretical framework
and tools to fully cover probabilistic specifications.

ACKNOWLEDGMENT

The fourth author is financed by the COMPETE
2020 Programme within project POCI-01-0145-FEDER-
006961, by the FCT within project UID/EEA/50014/2013
and grant SFRH/BPD/121389/2016. The second author
is financed by Project NanoSTIMA/NORTE-01-0145-
FEDER-000016 through the NORTE 2020 Programme.

13

REFERENCES

[1] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft,
“Confidential benchmarking based on multiparty computation,” in
FC 2016. Springer, 2016, pp. 169–187.

[2] L. Kamm and J. Willemson, “Secure floating point arithmetic
and private satellite collision analysis,” International Journal of
Information Security, vol. 14, no. 6, pp. 531–548, 2015.

[3] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” arXiv preprint
arXiv:1801.03239, 2018.

[4] D. Bogdanov, P. Laud, and J. Randmets, “Domain-polymorphic
programming of privacy-preserving applications,” in PLAS 2014.
ACM, 2014, p. 53.

[5] P. Laud and J. Randmets, “A domain-specific language for low-
level secure multiparty computation protocols,” in CCS 2015.
ACM, 2015, pp. 1492–1503.

[6] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A program-
ming language for generic, mixed-mode multiparty computations,”
in S&P 2015. IEEE, 2014, pp. 655–670.

[7] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks, “Automating
efficient ram-model secure computation,” in S&P 2014. IEEE,
2014, pp. 623–638.

[8] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: a system
for secure multi-party computation,” in CCS 2008. ACM, 2008,
pp. 257–266.

[9] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM:
A programming framework for secure computation,” in S&P 2015.
IEEE, 2015, pp. 359–376.

[10] W. Henecka, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: tool for automating secure two-party computations,” in
CCS 2010. ACM, 2010, pp. 451–462.

[11] A. Schropfer, F. Kerschbaum, and G. Muller, “L1-an intermediate
language for mixed-protocol secure computation,” in COMPSAC
2011. IEEE, 2011, pp. 298–307.

[12] J. C. Mitchell, R. Sharma, D. Stefan, and J. Zimmerman,
“Information-flow control for programming on encrypted data,” in
CSF 2012. IEEE, 2012, pp. 45–60.

[13] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A frame-
work for fast privacy-preserving computations,” in ESORICS 2008.
Springer, 2008, pp. 192–206.

[14] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and
M. Emmi, “Verifying constant-time implementations.” in USENIX
2016, 2016, pp. 53–70.

[15] J. B. Almeida, M. Barbosa, G. Barthe, H. Pacheco, V. Pereira,
and B. Portela, “Enforcing ideal-world leakage bounds in real-
world secret sharing mpc frameworks,” Cryptology ePrint Archive,
Report 2018/4944, 2018, https://eprint.iacr.org/2018/4962.

[16] D. Bogdanov, P. Laud, S. Laur, and P. Pullonen, “From input
private to universally composable secure multi-party computation
primitives,” in CSF 2014. IEEE, 2014, pp. 184–198.

[17] K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi,
“Practically efficient multi-party sorting protocols from comparison
sort algorithms,” in ICISC 2012. Springer, 2012, pp. 202–216.

[18] A. Sabelfeld and D. Sands, “Declassification: Dimensions and
principles,” Journal of Computer Security, vol. 17, no. 5, pp.
517–548, 2009.

[19] M. Backes and B. Pfitzmann, “Computational probabilistic non-
interference,” in ESORICS 2002. Springer, 2002, pp. 1–23.

[20] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in FOCS 2001. IEEE, 2001, pp.
136–145.

[21] I. Damgård and J. Nielsen, “Universally composable efficient
multiparty computation from threshold homomorphic encryption,”
in CRYPTO 2003. Springer, 2003, pp. 247–264.

[22] V. B. Kukkala, J. S. Saini, and S. Iyengar, “Privacy preserving
network analysis of distributed social networks,” in Information
Systems Security. Springer, 2016, pp. 336–355.

[23] G. Couteau, “Revisiting covert multiparty computation,” IACR
Cryptology ePrint Archive, vol. 2016, p. 951, 2016.

[24] ——, “Efficient secure comparison protocols,” IACR Cryptology
ePrint Archive, vol. 2016, p. 544, 2016.

[25] G. Barthe, T. Espitau, B. Grégoire, J. Hsu, and P.-Y. Strub,
“Proving uniformity and independence by self-composition and
coupling,” in LPAR 2017. In print, 2017.

[26] D. Bogdanov, S. Laur, and R. Talviste, “A practical analysis of
oblivious sorting algorithms for secure multi-party computation,”
in NordSec 2014. Springer, 2014, pp. 59–74.

[27] S. Tople, H. Dang, P. Saxena, and E.-C. Chang,
“PermuteRam: Optimizing oblivious computation for efficiency,”
2015. [Online]. Available: http://www.comp.nus.edu.sg/∼shruti90/
papers/permuteram.pdf

[28] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk, “Rmind: a tool for
cryptographically secure statistical analysis,” IEEE Transactions
on Dependable and Secure Computing, 2016.

[29] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification
of code-based cryptographic proofs,” in POPL 2009. ACM,
2009, pp. 90–101.

[30] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P. Strub, “Easycrypt: A tutorial,” in FOSAD 2012, vol. 8604.
Springer, 2013, pp. 146–166.

[31] K. R. M. Leino, “Dafny: An automatic program verifier for
functional correctness,” in LPAR 2010. Springer, 2010, pp. 348–
370.

[32] D. Bogdanov, R. Jagomägis, and S. Laur, “Privacy-preserving his-
togram computation and frequent itemset mining with sharemind,”
Cybernetica research report T-4-8, Tech. Rep., 2009.

[33] F. Kerschbaum, “Automatically optimizing secure computation,”
in CCS 2011. ACM, 2011, pp. 703–714.

[34] A. Rastogi, P. Mardziel, M. Hicks, and M. A. Hammer, “Knowl-
edge inference for optimizing secure multi-party computation,” in
PLAS 2013. ACM, 2013, pp. 3–14.

[35] M. Pettai and P. Laud, “Automatic proofs of privacy of secure
multi-party computation protocols against active adversaries,” in
CSF 2015. IEEE, 2015, pp. 75–89.

[36] A. Rastogi, N. Swamy, and M. Hicks, “Wys*: A verified language
extension for secure multi-party computations,” arXiv preprint
arXiv:1711.06467, 2017.

[37] H. Haagh, A. Karbyshev, S. Oechsner, B. Spitters, and P.-Y. Strub,
“Computer-aided proofs for multiparty computation with active
security,” in CSF 2018. IEEE, 2018, p. In print.

[38] S. Tople, H. Dang, P. Saxena, and E.-C. Chang, “Permuteram:
Optimizing oblivious computation for efficiency,” Cryptology
ePrint Archive, Report 2017/885, 2017, https://eprint.iacr.org/
2017/885.

[39] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss,
and D. Sharma, “Observing and preventing leakage in mapreduce,”
in CCS 2015. ACM, 2015, pp. 1570–1581.

APPENDIX

APPENDIX A - FULL PROOF OF THEOREM 3

To prove (`, p)-privacy, we must show that, for all x̄
and 1 ≤ i ≤ n, the distributions of (x̄, y, yi, ti, ci, st)
are identical in the real and ideal worlds. For clarity in
presentation, we present the three main definitions that are
necessary for the proof in game-based form. Figure 10
presents correctness of local execution, i.e. that yi is

14

https://eprint.iacr.org/2018/4962
http://www.comp.nus.edu.sg/~shruti90/papers/permuteram.pdf
http://www.comp.nus.edu.sg/~shruti90/papers/permuteram.pdf
https://eprint.iacr.org/2017/885
https://eprint.iacr.org/2017/885

uniquely defined by (xi, ti, ci). Figure 11 describes low-
level correctness of Π according to Definition 3, namely
the correctness of Π with respect to its idealized version
p. Figure 12 presents low-level security of Π according
to Definition 4, namely the distributional equivalence of
two runs of Π for inputs of the same leakage.

game RealΠ,A():
(x̄, i, st)←←A1()
(ȳ, t, c)←←Π(x̄)

y ← Unshare(ȳ)
Return A2(x̄, yi, y, ti, ci, st)

game IdealΠ,A():
(x̄, i, st)←←A1()
(ȳ, t, c)←←Π(x̄)
y′i ← Πi(xi, ti, ci)
y ← Unshare(ȳ)
Return A2(x̄, y′i, y, ti, ci, st)

Figure 10: Correctness of local execution.

game RealΠ,A():
(x̄, st)←←A1()

(ȳ, ·, ·)←←Π(x̄)
y ← Unshare(ȳ)
Return A2(x̄, y, st)

game Idealp,A():
(x̄, st)←←A1()
x← Unshare(x̄)
y ← p(x)

Return A2(x̄, y, st)

Figure 11: Protocol correctness.

game LΠ,A():
(x̄, x̄′, i, st)←←A1()
x← Unshare(x̄)
x′ ← Unshare(x̄′)
If `(x) 6= `(x′):

Return (b←←{0, 1})
(·, t, c)←←Π(x̄)
Return A2(x̄, x̄′, ti, ci, st)

game RΠ,A():
(x̄, x̄′, i, st)←←A1()
x← Unshare(x̄)
x′ ← Unshare(x̄′)
If `(x) 6= `(x′):

Return (b←←{0, 1})
(·, t′, c′)←←Π(x̄′)
Return A2(x̄, x̄′, t′i, c

′
i, st)

Figure 12: Probabilistic non-interference.

Proof. Our proof is a sequence of three game hops,
represented in Figure 13 and described as follows.
G0 exactly matches the real world in Figure 8. G1

replaces the value of the received yi by an alternative y′i,
calculated from (xi, ti, ci) via Πi. We upper bound the
difference between these two experiments by constructing
an adversary B against Πi of Π such that

|Pr[G1()⇒ T]− Pr[G0()⇒ T]| = AdvΠi

Π,B

Adversary B executes as follows. B1 runs A1 to construct
(x̄, i, st) and selects it as input for the experiment of
Figure 10. This will produce a tuple (x̄, yi, y, ti, ci, st),
exactly matching the one that must be provided to A2.
B2 returns the result obtained from A2.
G2 replaces the value of the received y by an alternative

y′, computed via p. We upper bound the difference
between the two experiments by constructing an adversary
C against p-low-correctness of Π so that

|Pr[G2()⇒ T]− Pr[G1()⇒ T]| = Advp-ll-corr
Π,p,C

Adversary C executes as follows. C1 runs A1 to construct
(x̄, i, st), selecting (x̄, st) as the input for the low-level
correctness experiment of Figure 11. This will produce
a tuple (x̄, y, st). C2 will then run (·, t, c)←←Π(x̄); y′i ←
Πi(xi, ti, ci) to produce the tuple (x̄, y′i, y

′, ti, ci,m) to
be given to A2. C2 returns the result obtained from A2.

game G0Π,A():
(x̄, i, st)←←A1()
(ȳ, t, c)←←Π(x̄)

y ← Unshare(ȳ)
Return A2(x̄, yi, y, ti, ci, st)

game G1Π,A():
(x̄, i, st)←←A1()
(ȳ, t, c)←←Π(x̄)
y′i ← Πi(xi, ti, ci)
y ← Unshare(ȳ)
Return A2(x̄, y′i, y, ti, ci, st)

game G1Π,A():
(x̄, i, st)←←A1()
(ȳ, t, c)←←Π(x̄)
y′i ← Πi(xi, ti, ci)
y ← Unshare(ȳ)

Return A2(x̄, y′i, y, ti, ci, st)

game G2Π,p,A():
(x̄, i, st)←←A1()
(ȳ, t, c)←←Π(x̄)
y′i ← Πi(xi, ti, ci)
x← Unshare(x̄)
y′ ← p(x)
Return A2(x̄, y′i, y

′, ti, ci, st)

game G2Π,p,A():
(x̄, i, st)←←A1()
x← Unshare(x̄)

(ȳ, t, c)←←Π(x̄)
y′i ← Πi(xi, ti, ci)
y′ ← p(x)
Return A2(x̄, y′i, y

′, ti, ci, st)

game G3Π,p,A():
(x̄, i, st)←←A1()
x← Unshare(x̄)
x′←← Find(`(x))
x̄′←← Share(x′)
(ȳ, t′, c′)←←Π(x̄′)
y′i ← Πi(xi, t

′
i, c
′
i)

y′ ← p(x)
Return A2(x̄, y′i, y

′, t′i, c
′
i, st)

Figure 13: Proof hops for Theorem 3.

G3 replaces the values of (t, c) by those produced by
an alternate protocol execution, over a set of shares whose
leakage is the same as that of the original input. This
makes use of Find(l), which we assume to be an efficient
computation of a value x′, whose leakage is l. We upper
bound the difference between the two experiments by
constructing an adversary D against `-low-security of Π
such that

|Pr[G3()⇒ T]− Pr[G2()⇒ T]| = Adv`-ll-sec
Π,`,D

Adversary D executes as follows. D1 runs A1 to con-
struct (x̄, i, st). Then, it recovers x, runs Find(`(x))
to obtain an alternative x′ with the same leakage,
generates shares x̄′ and selects (x̄, x̄′, i, x′) as the input
for the low-level security experiment of Figure 12. This
will produce a tuple (x̄, x̄′, ti, ci, x

′), and D2 will run
y′i ← Πi(xi, t

′
i, c
′
i); y

′ ← p(x′) to produce the tuple
(x̄, y′i, y

′, ti, ci, st) to be given to A2. D2 returns the result
obtained from A2.

To conclude, we have that

AdvΠ,F,A,S() = AdvΠi

Π,B + Advp-ll-corr
Π,p,C + Adv`-ll-sec

Π,`,D

= 0

and Theorem 3 follows.

15

	Introduction
	Overview and motivating examples
	Source-level language
	Source-level security verification
	Low-level language
	Security-preserving compilation
	Cryptographic security
	Leakage cancelling
	Implementation
	Frontend
	Backend

	Experiments
	Related work
	Conclusions
	Acknowledgment
	References
	Appendix

